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ASYMPTOTIC EQUIVALENCE OF ORDINARY AND

OPERATOR-DIFFERENTIAL EQUATIONS

P.S. SimeoNov AND D.D. Bainov

The paper considers problems connected with the asymptotic

equivalence of the system of ordinary differential equations

(1) & - fit,w

and the system of operator differential equations

(2) %= Flty) + glt,y.4.y)

The generality of the operator At guarantees a number of its
important implementations. By a specific choice of the operator

At the system (2) can be one of the concentrated delay, a system

of distributed delay, a system with maxima, etcetera.
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1. Preliminary Notation

This paper considers the problem of asymptotic equivalence of two
non-linear systems of differential equations, one of them being operator-
defferential. The proof of the main results will employ some of the ideas

presented in [1] and (2] .
let o be a real number, 0 be a region of the real Euclidean
space A' with norm |-] - and 2 and y be n-dimensional vector-

functions defined on [a,«) .

Let S denote the space of bounded, continuous #n-dimensional

vector-functions defined on [a,») with nom ||y|| = sup|y(t)| .
20

For each ¢ € [a,») , let an operator At: S > 7" be defined.

We shall consider the following two equations:

(1) T - fite)
(2) B fit,y) + glt,y,ay)

DEFINITION 1. The systems (1) and (2) are said to be asymptotically
equivalent if whenever one of these systems possesses a bounded solution on
the half-line, the other possesses a solution which tends to that of the

first as the independent variable ¢ tends to <« .

We shall say that condition (A) holds if the following conditions are

satisfied:
Al. in the domain [a,») x D the function f is continuously

differentiable, while f;(t,x) =3 (:xx) is locally Lipschitzian in X ;

A2. the function g(t,y,z) is continuous in the domain
[a,@) x D x U",

We shall say that condition (B) holds if the following conditions are

satisfied:
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Bl. for y € S and fixed, the function Aty is continuous in

t e [alw) H

B2. for any € > 0 and any T > 0 there exists § = &(e,t) > 0

such that, for € S and ]]zl - 22]] < § , the inequality

3153,
IAtzl - AtZZ] < ¢ holds for each t ¢ [a,T] .

Under the assumption that conditions (A) and (B) hold, the equation
(2) is an operator-differential one, which, by restrictions on the

operator At , includes important classes of functional-differential

equations, such as

B = fle,y) + gty (a(t)))

B _ fa,y060) + gle,y(t),y(t - a),y(t - b)),

%= f(t,y) + g(t,y, max y(s}) ,
seE(t)

_%': Ftoyl + glt.y, fg G(t,sly(s)ds) .

Let us denote by x(t;to,yo) the solution of (1), which satisfies

the initial condition x(to;to,xo) =z, .

By ¢(t,to,xo) we denote the
fundamental matrix solution of the equation of variations with respect to
the solution m(t;to,xo)

dz
I = fx(t,x(t;to,aco))z .

Recall that

o(t ,t ,x )

ELINER I, (Unit matrix)

1

(3) ax(t;to,:z:o)

axo ¢(t, to’ xo) 2

ax(t;to,zo)

at
o

- $(t,t L,z )f(t )
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Ccl. the set Q c D is bounded, open, convex and the closure { c D,

C2. for an arbitrary to 2o and z, € 2 the solution
x(t;to,xol of (1) exists for ¢t ¢ [a,to] and has values in D (this
implies that the corresponding fundamental matrix ¢(t,to,xo) exists in
the same region}

2. Main results

THEOREM 1. Let conditions (A}, (B) and (C) hold. Let y(t) be a
solution of (2) with values in Q for t =z = 2 o and suppose the integral

(4) Iy 6(t,8,y(8))g(s,y(s) A y)ds

converges uniformy on each bounded subinterval of [B,») . Then

x(t) = y(t) + fz ¢(t,8,y(s))g(s,yle),Ay)ds

is a solution of (1) on [B,=) , and |x(t) - y(t)| 0 as t -+« if and
only if

|f: ¢(’t,s,y(s))g(s,y(s),Asy)ds| >0 as t >,
Proof. since y(s) ¢ @ for g = 8 , it follows from C2 that the

integral fg ¢(t,s,y(s))g(s,y(s),Asy)ds is defined for ¢t e¢ [B,T7] . Also

by using (3), we obtain, for s 2z B

d’““'jls (1) _ 4(t,8,y(8)) [ - fls,y(s)) + L84

= ¢(t,s;y(s))g(s,y(s),Asy)

2(t;T,y(T)) = y(t) + I 6(t,8,y(s))g(s,y(s),A y)ds foxr B<tsT.

Since the improper integral (4) converges uniformly on each bounded

subinterval of [B8,») , then the function
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(5)  «(t) = Lim z(£;T,y(T)) = y(t) + [, $(t,8,y(s))g(s,y(s) A y)ds

Vg

as a uniform limit of solutions of (1), is also a solution of (1) on this
subinterval and hence zx(t) is a solution of (1) on [«,a) . Moreover,

(5) implies that |x(t) - y(t})| >0 as t > e .

Theorem 1 solves the first part of the problem of asymptotic

equivalence.

Now let x(t) be a solution of (1) with values in  for ¢ 2 a
and without limit points on the boundary of Q , that is there exists a
number d » @ such that for all ¢ 2 o {x:|x - x(t)| < d} c @

Theorem 2 investigates the converse problem to that considered in

Theorem 1. We shall obtain the result using the following condition (D):

D. If =z(t] is a continuous function with values in 2 for ¢ 2 a

and if o <t £ T , then
Ip 6(tys,2(s))gls,z(s) A =) |ds < HT) ,

where H(T) - 0 , as T -+ «» (we assume, without loss of generality, that

H(T) is a .continuous and non-increasing function)

THEOREM 2. Let conditions (4), (B), (C) and (D) hold and let =z(t)
be a bounded solution of (1) with values in @ for t 2 B without limit

points on the boundary of Q .

Then there is a g > ¢ and a solution y(t) of (2) for ¢t > 8 .,
such that |x(t) -y(t)| +0 as t o .

Proof. We choose B 2 a so that H(B) S 4 . For any integer #n 2 B

we define the set

Dn={zeS: |2(t) - x(t)| <d, gstsn

and the operator Q;Dn > 8§ as follows
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[x(t) - I} #(t,8,3(s))g(s,2(s),4 2)ds for B =<t sn,
Qz(t) = {x(t) - fg ¢(8,8,2 (s))g(s,a(s) A z)ds for d st s B,
x(t) for t<n.

It is easy to see that Dn is a closed, convex, bounded subset of

S . We shall show that the operator ¢ has a fixed point Y, € Dn

For this purpose we shall employ the Schauder Fixed Point Theorem, for

I

whose application it is sufficient to show that: 1I. QDn <D

II. & is continuous; III. QDn is compact in S .
I. The choice of B and condition (D) imply that for ¢ 2 o

(6) l@a(t) - =(t)| = swp [ |¢(r,8,2(s))g(s,a(s),A 2)|ds < H(p) s d

Bt
that is QDn c Dn .
II. Let 2,589 € Dn . Then for t 2 a we get the estimate
l@z,(t) - Qz,(t)] < B::Zn {" lo(t,8,2,(s))g(s,2,(8) A %)

- ¢(T,s,zz(s))g(s,zg(s),ASZZ)]ds .

Taking into account (A), (B) and (C) we conclude that & 1is continuous.

III. From (6) it follows that the set QDn is bounded. Since
Qz(t) = x(t) for all 3z € D, and t 2n , it is sufficient to show that
the set QDn is equicontinuous on the interval (o ,7]

Let ¢ > 0 be given. Since «(t) is uniformly continuous on

[a,n] , there exists 61 > 0 such that a < t1 < t2 £ 7n and

. €
- 1y th - _ . , i '
ltl t2| < &, imply that [x(tl) x(tz)l <7 Then, if 3z € D,

Bst;stysn and |t - t2| < §, , we have

1
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t
lQz(ty) - @a(ty)| < la(t,) - =(ty)| + ftj 19(t,.8,2(5))g(s,2(s) ,4,2) |ds

(7) + N

t |¢(t1,s,z(s)) - ¢(t2,s,z(s))||g(s,2(8),ASZ)|ds .

. ) (t,8,2
Then the mean value theorem and the equality a¢‘t’3% (o)

= fx(t,x(t;s,z(s))}d>(1:,s,z(s)) imply that ¢(t2,s,z(s)) - ¢(t1,s,z(s))

= fx(T,x(_T;s,z(_s)),)¢(T,s,z(s))(t2 - tl) » where tl < 1= 1(8) < t,

Therefore, the second integral in (7) does not exceed

(8) \ty-t,1 1% |f (t(s),x(t(s);8,2(s))) | |6(T(s),8,2(5)) | |g(s,2(s),4,2) |ds .
2 ®

Since the integrands in the first integral of the estimate (7) and

in (8) are limited by a common constant, independent of tl elB,m] ,
ty elB,m] and z € Dn » then there exists a § < §, , such that for

B < t1 < t2 sn, |t,= t2| <8 and 2z € D, the two integrals in (7) are

1

4 € €
less than 7 Hence le(tl) - Qz(tz)l < ?+ 7 < g .

If a<t, <Bst,<n, |t1 - t2| <&, then IQz(tl) -, (ty)|

7Y
|

|Qz(t,) - Qz(8)| + [Qz(8) - Qa(ty)| = lx(t)) - =(B)|+|Qz(8) - Qa(t,)]

€ E
<._+_.
74T Z <€

A

Finally, if a < ¢t, < t, < B, |t1-t2|

1 g < § , then |Qa(t,) - Qz(t,)|

lz(t;) - =(t,)] <%< € .

Thus, the hypothesis of Schauder Fixed Point Theorem holds and there

exists an Yy, « Dn such that Y, = Qyn , that is

y,(t) = (t) - [} ¢(t,8,y, (8))g(s,y,(s),Ay,)ds , for B <tsn

or
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y;l(t) = f(_t,x(t))+g(t,yn(t),Atyn)

- £y £ (ta(tss,y, (8)))6(t,6,y, (s))g(s,y, (s) Ay, )ds

Since
f(t,yn(t)) - flt,x(t)) = f(_t,x(t;t,yn(t))) - f(t,x(t))
= 1t L et altss,y (s)))ds
= ‘nds f »& :S.vyn &
_ ¢ . . '
= fn fx(t,x(t,s,yn(s)))¢(t,s,yn(s))[yn(s) - f(s,yn(s)))ds
we have
w(t) = - 15 f (t,a(tie,y (8)))8(t,0,y (s))0(s)ds , for B S t<n

where w(t) = yé(t) - flt,y, (t)) - g(t,yn(t),Atyn) . But this implies

w(t) = 0, thus yn(t) is a solution of (2) on [B,n] .

Let N =2 B be an integer and consider the sequence Yy +

n = N,N+1,... of fixed points. Clearly, Iyn(t)l < sup |z(t)| +d for
t28
t 2 B and the sequence {yn)m is equicontinuous on [B,N] .
N
By Ascoli's theorem there is a subsequence {ynl} of the yn's
converging uniformly on [B8,N] . Similarly, the functions Yp1

are solutions of (2) on [B,N + I]1 for nl 2 N + 1 and the sequence {ynl}
is equicontinuous on [B,¥ + 7] so there is a subsequence {yn2} of the
Y,;'S converging uniformly on [8,y + 1] . Clearly on the interval {B,y]

both subsequences converge to the same limit. Proceeding inductively we

define a function y(t) on [B,») and a chain of subsequences {ynk}

such that {ynk} converges uniformly to y on [8,N + K1 . The

sequence {y;};, g; =y then converges to Yy wuniformly on compact

nn

subintervals of [B,») . Moreover, yn(t) € Q@ and y(t) e Q for t 2B .
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Then, using condition (D), we obtain that
5y e(t,8,y(s))g(s,y(s) A y)ds

exists for ¢ 2 B . From the estimate

|£54(t,8,y(8))gls,y(s),A y)ds - I 6(t,8,7 (s))g(s,y, (s),4y, )ds|
< fZI¢Ct,s,y(s))g(s,y(s),Asy) - ¢(t,s,gn(s))g(s,gn(s),Asyn)|ds + 2H(m)

(m > t) it follows that

Lim [y 6(t,8,5,(s))g(s,5,(s),A g )ds = I} 6(t,8,y(s))g(s,y(s),Ay)ds

V(Sad

uniformly on compact subintervals of [B,x)

The functions yn(t) are solutions of (2) on [8,N + n] ;

consequently y(t) 1is also solution of (2) on [B,») and
y(t) = a(t) - I 6(t,8,y(s))g(s,y(s),Ay)ds
Hence, |y(t) - xz(t)| >0 , as t > .
The following theorem is a corollary of Theorem 1 and Theorem 2.

THEOREM 3. ILet conditions (A), (B), (C) and (D) hold. Then if
either of the equations (1) or (2) possesses a bounded solution on a
half-line with values in Q and without limit points on the boundary of
Q , then the other also possesses such a solution which tends to the
former as t > = .,

COROLLARY 1. Let us suppose that the differential equation (1) is

Linear, f(t,z) = A(t)z , vhere A(t) = a . (t))] .

Let gR?K=1,2,...,n be the components of the function g , that is
gK:[a,”)Xdew >R’ and the functions hK:[a,W) + [0,») be such that

lgg(tszy) | < hy(t) for (t,o,y) e la,=)X0X0" and K=1,2,...,1n .

Suppose also that for Z,j and K(%i#j) we have
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IZ hK('r) [exp If aKK(s)ds]d'r > 0 as t >
and

J’: |aij('r)|[exp ff a;;(g)deldt ~0 as t>e.

Then, if either of the equations (1) or (2) possesses a bounded
solution on a half-line with values in § and without limit points on
the boundary of @ , then the other also possesses such a solution which

tends to the former as ¢ » » .
The proof of Corollary 1 is carried out as in [Z].

EXAMPIE 1. Consider the equations

in 2
(9) dz=_ snzxtac,
dy _ _ sin 2y
(10} A g(t,y,Aty) s

E]

where ¢t el[l,»); z,y ¢ Q = (- ,EJ H Aty = max y(s) ;

sel1,¢t]

Do

lg(t,y(t),Ay)| < h(t) if y(t) e @ and [~ h(t)tdt < = .

We have x(t;8,3) = arctan(% tan 2) and ¢(t,s,2) = _a_.z

= st . Then, if =2(s) ¢ @ for s 2T 2t 21

32 sinzz + t2 cos 2

following estimate is valid

So |6(t,8,2(s))g(s,2(s),4 2) |ds < I h—(gli ds s Iy h(s)sds = H(T)'

Since 1lim H(T) = 0 , the conditions of Theorem 3 are fulfilled and
T-rco

equations (9) and (10) are asymptotically equivalent.
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