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Introduction. Let k be an algebraically closed field, and A a finite dimensional
^-algebra, which we shall assume, without loss of generality, to be basic and connected.
By module is meant throughout a finitely generated right v4-module. Following Happel
and Ringel [10], we shall say that a module TA is a tilting (respectively, cotilting) module
if it satisfies the following three conditions:

(1) Ex£(7\ —) = 0 (respectively, Ex£(—, T) = 0);
(2) Extl

A(T,T) = 0;
(3) the number of non-isomorphic indecomposable summands of T equals the rank

of the Grothendieck group Kn(A) of A.
These modules have found, since their introduction, numerous applications in the

representation theory of algebras (see [2, 9]); hence the interest in constructing them.
One method of construction uses torsion theories. Given a tilting (respectively, cotilting)
module TA, the full subcategories

and

respectively, 3~*(T) = {MA | Hom^(M, T) = 0}

and &*(T) = {MA \ Extl
A(M, T) = 0})

of the category mod A of A -modules are respectively the torsion class and the torsion-free
class of a torsion theory. Such a torsion theory is said to be a tilting (respectively,
cotilting) torsion theory. Conversely, Hoshino has shown in [12] that, if (ST, 2F) is a
torsion theory on mod A such that ?f contains all injective modules, and 5" or ^contains
only finitely many non-isomorphic indecomposable modules (we then say, by abuse of
language, that 5" or ^ is finite), then (5", SF) is a tilting torsion theory (see also [1], [18]).
While the first condition is obviously necessary, the second is not as is shown by the
following example. Let A be a wild hereditary algebra with at least three non-isomorphic
simple modules; it was proved by Ringel ([16], see also [6]) that A has a regular tilting
(and cotilting) module. For such a module, all the indecomposable preprojective
modules belong to the torsion-free class, while all the indecomposable preinjective
modules belong to the torsion class, so that both are infinite.

In this paper, we consider classes of algebras having the property that, for every
tilting or cotilting torsion theory (3~, SF), ST or 3* is finite. This is quite useful in practice,
since in many applications, it is easier to start by constructing the torsion theory, then
finding the corresponding module (this method was heavily applied, for instance, in [9,
(IV, 7)]). Since all representation-finite algebras obviously satisfy this property, we shall
be mainly interested in representation-infinite algebras. It was shown.in [11, (3)] that the
tame hereditary algebras satisfy the stated property. We shall prove the following
generalisation of this result.

THEOREM A. Let A be an iterated tilted algebra of euclidean type, and TA a tilting
(respectively, cotilting) module. Then ' 3~*(T) or &*(T) (respectively, 9~*(T) or &>*(T)) is
finite.
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70 IBRAHIM ASSEM AND OTTO KERNER

On the other hand, this property is not satisfied by the tubular algebras of [15]
(because of the existence of regular tilting modules). It follows directly from the theorem
that the stated property is satisfied by the tilted algebras of euclidean type. It is
well-known that such an algebra is either representation-finite or one-parametric (in the
sense of [17, (2.1)]). Also, this property is easily seen to be satisfied by a hereditary
algebra with two non-isomorphic simple modules. Our second theorem shows that, up to
finite enlargements, these are the only classes of tilted algebras which satisfy this
property.

THEOREM B. Let A be a tilted algebra. The following conditions are equivalent:
(1) for every tilting module TA, ST^T) or &*(T) is finite, and for every cotilting

module T'A, T*(T') or 9*(T) is finite;
(2) if A is tame, then A is representation-finite or one-parametric and, if A is wild,

then one of the end algebras of A is zero, and the other is hereditary with two
non-isomorphic simple modules.

Clearly, if TA is a regular tilting module, the equivalent conditions of the theorem are
not satisfied, but the converse is not true, as will be shown in the course of the proof. The
paper is organised as follows. In Section 1, we quote the definitions and results that will
be used in the sequel, prove Theorem A, then consider the case of the tubular algebras.
Section 2 is devoted to the proof of Theorem B.

1. Iterated tilted algebras of euclidean type.

1.1. Let A be a finite dimensional algebra. It is well-known that for any (basic)
algebra A, there exists a bound quiver (Q,l) such that we have an isomorphism
A ^kQ/I. A bound quiver algebra A = kQ/I can equivalently be considered as a locally
bounded A:-linear category with object class the set of points in Q, and set of morphisms
from x to y the vector space kQ(x, y) of all linear combinations of paths in Q from x to y
modulo the subspace I(x,y) = I C\kQ(x,y), see [8]. A full subcategory C of A is called
convex if any path in A with source and target in C lies entirely in C. We shall use freely
and without further reference properties of the category mod A, the Auslander-Reiten
translations T = DTr and T"1 = TrD, and the Auslander-Reiten quiver TA of A, as can
be found, for instance in [5], [15]. Recall that a component of TA is called preprojective
(respectively, preinjective) if it contains no oriented cycle, and each indecomposable
module in this component is of the form t~'P, with r > 0 and P projective (respectively,
•fl, with 5 > 0 and / injective). We shall denote by P(a) (respectively, /(«)) the
indecomposable projective (respectively, injective) module corresponding to a point a in
the ordinary quiver of A. The support of a module MA is the full subcategory of A
consisting of all objects a such that HomA(P(a), M) =£0.

For tilting theory and iterated tilted algebras, we refer to [2], [10]. By the
Brenner-Butler theorem, if A is an algebra, TA a tilting module and B = End TA, then the
functors HomA(T, —) and — <8>B T induce mutually inverse equivalences between the full
subcategories ^(T) of mod,4 and <3/»(r) = {NB | Torf(/V, T) = 0} of mod B, while the
functors Ext^(7\—) and Torf(—, T) induce mutually inverse equivalences between the
full subcategories ^ ( T ) of mod ,4 and %*(T) = {NB \ N®B T = 0} of modfl. Further,
(Sf*(r), %(T)) is a torsion theory on mod fi, which is splitting if A is hereditary. Similar
results hold for cotilting modules.
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If A is a finite connected quiver without oriented cycles, an algebra A is called
iterated tilted of type A if there exist a sequence of algebras A = Aa,Au . . . ,Am = A:A
and a sequence TA'] (0 ̂  i < m) of tilting or cotilting modules such that Ai+] = End TA'] for
each i (for equivalent definitions, see [2], [9]). If A is a Dynkin (respectively, euclidean,
wild) quiver, then A is said to be of Dynkin (respectively, euclidean, wild) type. If m < 1,
then A is called tilted of type A. Tilted algebras are characterised by the existence of
complete slices [15, (4.2)(3)j. The structure of the representation-infinite iterated tilted
algebras of euclidean type is described in [3, (2)]. In particular, each such algebra
contains a unique full convex subcategory which is tame concealed (that is, which is the
endomorphism algebra of a preprojective tilting module over a tame hereditary algebra).
Further, the Auslander-Reiten quiver of such an algebra always has a unique preprojec-
tive and a unique preinjective component. All other components are called regular.

1.2. LEMMA. Let A be a representation-infinite iterated tilted algebra of euclidean
type, and TA a tilting module without preprojective {respectively, preinjective) direct
summands. Then all the homogeneous tubes in TA belong to 3F*{T) {respectively,

Proof. If TA has no preprojective summands, its summands are regular or
preinjective, but certainly not homogeneous (because indecomposable homogeneous
modules have self-extensions). Thus it follows from the orthogonality of the tubes that,
for every indecomposable homogeneous module M, we have Hom^CT, M) = 0. The dual
statement follows from the fact that, if all summands of T are regular or proprojective,
then, by the Auslander-Reiten formula, Extl

A{T, M) = D HomA{M, TT) = 0 for every
indecomposable homogeneous module MA.

1.3. COROLLARY. Let A be a representation-infinite iterated tilted algebra of euclidean
type. Then A has no regular tilting module and no regular cotilting module.

Proof. By (1.2), A has no regular tilting module. That it has no regular cotilting
module follows from the fact that by [4, (2.5)] or [9, (IV, 5.6)], its opposite algebra Aop is
also a representation-infinite iterated tilted algebra of euclidean type.

1.4. Proof of Theorem A. We may certainly assume that A is representation-infinite.
By duality, it suffices to prove the statement in case TA is a tilting module.

We first claim that, if !P*(T) is infinite, then infinitely many simple homogeneous
/1-modules belong to 2F*{T).

This claim will be shown by induction on the rank n of K0(A). If n = 2, then A is the
Kronecker algebra (that is, is tame hereditary of type A[A) and the statement is trivial.
Assume that the rank of K0{A) equals n. If TA has no preprojective direct summand, the
statement follows from (1.2). Otherwise, observe that the preprojective direct summands
of T are partially ordered by the successor relation. We claim that T may be assumed to
have as direct summand a simple projective module.

Indeed, if this is not the case, let P{a) be a simple projective module, and

b*a
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the corresponding APR-tilting module [2, (1.6)]). Clearly, all direct summands of T
belong to 5"*(7[a]), and hence HomA(T[a], T) is a tilting fi-module, where B =
End T[a]. On the other hand, the functor

- <g> B T[a]: mod B -»• mod A

induces an equivalence %^(T[a])^. 3'*(T[a\) and its restriction to a functor
, T ) ) - » ^ ( T ) defines a full exact embedding of the category

(T[a], T)) as a cofinite subcategory of 3F*(T), which is closed under extensions.
Furthermore, the functor

Hom/4(T[a], —): mod A —* mod B

induces an equivalence between the full subcategories consisting of the homogeneous
modules in mod A and mod B, respectively. Inductively, applying a sequence of APR-tilts
corresponding to simple projectives in the preprojective component, we reach a situation
where T has as direct summand a simple projective module. As we have seen, in each
APR-tilting step, the torsion-free part induced by the image of T differs by at most one
indecomposable from the original one.

Assume thus that TA has as direct summand the simple projective eA, and let
A' =A/AeA. Then A' is a full convex subcategory of A and consequently, by [4, (5.2)],
each of its connected components is iterated tilted of Dynkin or euclidean type. Also, by
[14, (3.2)], all the summands of T except eA define a tilting v4'-module T = T/TeA such
that the canonical embedding mod A' <-» mod A induces an identification ^(T') = &*(T).
In particular, 3**(T') is infinite and consequently at least one of the connected
components of A' is a representation-infinite iterated tilted algebra of euclidean type. We
may thus assume that A' is connected.

By the induction hypothesis, infinitely many simple homogeneous A '-modules belong
to ^*(7") = &*(T). Since mod .4 contains only finitely many non-isomorphic self-
extending bricks which are not simple homogeneous, we infer that infinitely many simple
homogeneous /4-modules belong to 3F*(T), thus establishing our claim.

A dual argument, using [4, (5.2)] and [14, (3.1)], shows that, if 5"*(T) is infinite,
then infinitely many simple homogeneous /4-modules belong to 5"*(T).

Assume now that TA is a tilting module such that both J"*(T) and &*(T) are infinite.
The above reasoning implies that infinitely many non-isomorphic simple homogeneous
/4-modules belong to each of these subcategories. Let M e ^*(T) and N e 9~*(T) be two
simple homogeneous /4-modules. It follows from [4, (2.5)] that the supports of M and N
are equal, and actually equal to the unique tame concealed full convex subcategory of A.
Consequently, dimM = dimN. On the other hand, if ( - , - ) denotes the (homological)
bilinear form of A (see [10, (1.5)] or [2, (2.5)]), then

(dim T, dim M) = -dim* ExtA(T, M) < 0

because Ex£(7\ - ) = 0, HomA(T, M) = 0 and Extj,(7, At) * 0. Similarly

<dim7\dim/V)>0,

a contradiction which completes the proof of the theorem.
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1.5. COROLLARY. Let A be a tilted algebra of euclidean type, and TA a tilting
(respectively, cotilting) module. Then 2T*(T) or 2F*(T) (respectively, ST*(T) or &*(T)) is
finite.

1.6. We end this section by considering another important class of tame algebras,
namely that of the tubular algebras [15, (5)]. Such an algebra also has a unique
preprojective and a unique preinjective component, all other components being called
regular. The above results are not true for tubular algebras, as they have regular tilting
modules, and regular cotilting modules, which induce infinite torsion and torsion-free
classes.

LEMMA. Let A be a tubular algebra. Then A has a regular tilting module and a regular
cotilting module.

Proof. It follows from the definition of tubular algebras that A contains a full convex
subcategory B which is a tilted algebra of euclidean type having a complete slice if in its
preinjective component such that A is a branch extension of B by a branch rooted at a
regular indecomposable B-module. Let PA be the direct sum of the indecomposable
projective A -modulus which belong to the regular component, and UA denote the slice
module of if, considered as an >4-module. Then modulo some r-shift if, UA may be
assumed to be a regular ,4-module (which, in the notation of [15, (5)], lies in £?>„). The
module

(where xA denotes the Auslander-Reiten translation in mod A) is clearly a regular tilting
>l-module. Observe that, by [15, (5.2) (5)], End Tis again a tubular algebra. On the other
hand, both 3~*(T) and &*(T) are infinite, as they respectively contain all the preinjective
and all the preprojective v4-modules.

The statement about cotilting modules follows from the fact that Aop is cotubular and
hence, by [15, (5.2)(3)], also tubular.

2. Tilted algebras.

2.1. LEMMA. Let A be a representation-infinite tilted algebra of euclidean type.
(i) Assume that A has a complete slice if in its preinjective component, and let MA be

a predecessor of if such that ExtA(M,M) = 0. Then the class ^ ( M ) =
{XA | HomA(M, X) = 0} or the class Ge^M,,) of all A-modules generated by M is finite.

(ii) Assume that A has a complete slice if in its preprojective component, and let MA

be a successor of if such that Ext\(M, M) = 0. Then the class 8T*(M) =
{XA | Extl

A(M,X) = 0} or the class Cogen(rM) of all A-modules cogenerated by xM is
finite.

Proof. We shall first prove (i). It follows from the hypothesis that there exists a tame
hereditary algebra B, and a tilting module TB without preinjective direct summands such
that A = End TB and ^ ( T ) consists of the predecessors of if.

Assume first that M has an indecomposable preprojective direct summand Mt). We
claim that in this case ^*(M) is finite. Indeed, since ^*(/W) c 5F*(M>) and %*(T) is finite,
the finiteness of ^*(M) would follow from the finiteness of the class

= {XA e %(T) | HomA(M0, X) = 0}.
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Now, the image of any I e ^ ( M 0 ) n * , ( r ) under the equivalence — ®A T: <3/*(T) 3
3~*{T) belongs to the class

9*{Mo ®T) = {YB\ Homfl(M() ®A T, Y) = 0}

that is, [^*(A/0) n <3/*(r)] ^ T c ^*(M0 ®A T). However the latter class is finite, since
Mo <8)A T is an indecomposable preprojective S-module and B is tame hereditary. This
completes the proof of our claim.

Next, assume that M has no preprojective direct summand. We shall show that in
this case Gen(M/,) is finite. Again, the finiteness of Gen(MA) would follow from the
finiteness of the class

Gen(M) D %(T) = {XA e %(T) \ X is generated by M).

Now, the image of any X eGen(M)n ^ ( T ) under the right exact functor —(8)A T
clearly belongs to the class

Gen(M ®A T) = {YB \ Y is generated by M ®A T)

that is, [Gen(Af) U %(T)] ®ATc Gen(M ®A T). Applying the construction dual to that
of Bongartz in [7, (2.1)], let

0-» (M <S)A T)d-+EB-> (DM)B-+ 0

be the universal exact sequence, where d = dim^ ExtB(DB, M ®A T). It follows from [7,
(2.1)] that UB = (M <8>A T) © E is a tilting module. Since, as observed in [15, (4.1)(1)], the
indecomposable summands of E are injective or successors of M %A T, then U has no
preprojective direct summand. By [11, (3.2)], 3~*{U) = Gen((/) is finite. Consequently so
is Gen(M) D <3/*(r). This completes the proof of (i).

The proof of (ii) is dual: if M has a preinjective direct summand, we prove as above
that 5"*(A/) is finite, while if M has no preinjective direct summand, the finiteness of
Cogen(rA/) is proved using the fact that, if TB is a tilting module over a hereditary
algebra B such that EndTB=A, then the functor Tor?(-, T) is left exact, because

REMARK. Under the stated hypothesis, M is a partial tilting module. The above
lemma may then be used to give an alternative proof of (1.5).

2.2. Recall that an algebra A is called a finite enlargement of a full convex
subcategory B if all but at most finitely many non-isomorphic indecomposable A -modules
have their support entirely contained in B.

COROLLARY. Let A be a finite enlargement in the preinjective {respectively,
preprojective) component of a tilted algebra B of eudidean type having a complete slice in
that component. Then, for every tilting module TA, 5"*(T) or &*(T) is finite.

Proof. We shall assume that A is a finite enlargement in the preinjective component
of B (the other case is treated similarly). Let y be a complete slice in the preinjective
component such that all predecessors of Sf are B-modules. If T is a successor of &,
clearly 5"*(r) is finite. Otherwise, let To denote the direct sum of all indecomposable
summands of T which precede Sf. By (2.1), &*(T0) = {XB \ HomB(r0, X) = 0} or
Gen(r0) = {XB I X is generated by To} is finite. Since A is a finite enlargement of B, also

or y,(T) is finite.
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2.3. For tilted algebras of wild type, we shall use the notations and results of [14]. In
particular, let A be a wild quiver, B = kA and 7 = ©?=, % a tilting B-module such that
A = End TB (where 7J is indecomposable for all i). We let / (respectively, J) denote the
set of all i (1 < i < n) such that Ext^(7;, M) ¥= 0 (respectively, Hom/,(7], M) * 0) for only
finitely many indecomposables M e &*(T) (respectively, M e J » ( r ) ) . The algebras
/4O0 = End(®,e / , 7;) and «A = End(0,e 7 7)) are respectively called the right end algebra
and the left end algebra of A. Then

(i) A is an iterated one-point extension of «,A, and
(ii) there is a hereditary quotient algebra „£ of B and a tilting ^B-module » r '

without preinjective direct summands such that End(»r') = aA. Moreover,
.fl = B , x . . . x B , , with B, connected for all i, . r = TJ © . . . © 7",', where T,' is a tilting
fi,-module without preinjective direct summands and caA=A]x ... x A, for A{ - End T\.

The dual statements holds for Am.
The Auslander-Reiten quiver rA has the following shape.

Again, it has preprojective and preinjective components, all the other being called
regular. A component containing a complete slice is called a connecting component.

2.4. Proof of Theorem B. We shall first show that (i) implies (ii). The statement is
trivial if A is representation-finite, and follows from (1.5) if A is of euclidean type. We
may thus assume that A is a representation-infinite tilted algebra of wild type.

First, one of the end algebras ^A or Am is zero. Indeed, if this is not the case, the
slice module TA of a complete slice in the connecting component is a tilting (and also a
cotilting) module with both 9~*{T) and 9m(T) (and also &*{T) and 9*(T)) infinite.

Without loss of generality, we may supppose that Am is zero. We claim that «A is
connected. Indeed, if this is not the case, then we can write aA=AixA2 with /I,
connected, and both Ax and A2 representation-infinite. By (2.3)(ii), Ax is a tilted algebra
having a complete slice & in the preinjective component, and tf may be chosen so that
any predecessor of tf in mod A is an ,4,-module. Let Tx be the slice module of SP,
considered as an yl-module, let e, denote the identity of Au and 1 the identity of A; then
T = Tx © (1 - ex)A is a tilting ,4-module. Since all indecomposable regular /4,-modules
belong to 9*{T), then &*(T) is infinite, and since all ^2-modules belong to ST*(T), it is
infinite as well. This shows that «A is connected.

We shall now show that «A is tame or has only two non-isomorphic simple modules
(it is then necessarily hereditary). In order to prove it, we shall assume that this is not the
case and construct a tilting module TA such that both 9~t(T) and &t(T) are infinite. Now,
there exists a wild hereditary algebra B and a tilting module UB such that aA = End UB.
Then UB has no preinjective direct summands, and %(U) is a cofinite full subcategory of
the category mod ,4, closed under predecessors. By [14, (2.1)], each regular component %
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of Tfl contains a complete cone I\g, closed under predecessors and entirely contained in
3~*(U). By [16, 6], B has a regular tilting module V. We clearly may assume that all the
summands of V belong to the cones IV Consequently, 70 = HomB(U, V) is a regular
partial tilting y4-module. Let PA denote the direct sum of all non-isomorphic indecom-
posable projectives which belong to the preinjective component of TA. Then the module
TA = T0® P satisfies our assertion.

If XA is zero, the proof is entirely analogous using cotilting modules.
We shall finally prove that, conversely, (ii) implies (i). If A is tame and

one-parametric then, by (2.3) or [14, (4.2b)], A is a finite enlargement of a tilted algebra of
euclidean type and the statement follows from (2.2). If A is wild, one of its end algebras is
zero and the other is hereditary with two simple modules. By [13, (2.6)], all regular
indecomposable modules have self-extensions and consequently all the summands
of a tilting (or cotilting module are preprojective or preinjective. Assume that A*, is
zero. If a tilting module TA has a preprojective summand Tih then
&*(T) c &*(T0) = {MA | HomA(T0, M) = 0}, which consists of predecessors of 7;, (and Tn

has only finitely many non-isomorphic predecessors) and possibly modules whose support
is not contained in ^A (and A is a finite enlargement of ^A). If TA has no preprojective
summand, it is preinjective, ST*(T) = Gen(T) consists then of successors of T, and T has
only finitely many non-isomorphic successors. The proofs of the cases where mA is zero,
or where T is a cotilting module are dual.

2.5. EXAMPLE. Let A be the algebra given by the quiver

tx O-
a2

3 5

bound by /Jar, = 0, Pa2 = 0, ySj = 0, yd2 = 0. Then A is a tilted algebra having a complete
slice in its preinjective component and aA is the direct product of two copies of the
Kronecker algebra. The Auslander-Reiten quiver FA is given by

P(1)O

P(2)O

The indecomposable ^-modules with injective dimension at most one are precisely 1(1),
1(2), T/(3), T/(4), /(3), /(4), /(5) and P(5). Any cotilting module TA must then have
these as summands and hence 3~*(T) is always finite. On the other hand,

rA = p(2) e p(4) e P(5) e /(i) e T/(3)
is a tilting module with both 5\,(7") and @*(T') infinite.
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