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Summary

The continuous uploading of polygenic additive mutational variability has been reported in several studies in
laboratory species with an inbred genetic background. These studies have focused on the direct contribution
of new mutations without considering the possibility of epistatic effects derived from the interaction of new
mutations with pre-existing polymorphisms. In this work we focused on this main topic and analysed the stat-
istical and biological relevance of the epistatic variance for 9 week body weight in two populations of inbred
mice. We developed a new linear mixed model parameterization where founder-related additive genetic varia-
bility, additive mutational variability and the interaction terms between both sources of variation were
accounted for under a Bayesian design and without requiring the inversion of a matrix of epistatic genetic
covariances. The analyses focused on a six-generations data set from C57BL/6J mice (n=3736) and a five-
generations data set from C57BL/6Jhg/hg mice (n=2843). The deviance information criterion (DIC) clearly
favoured the model accounting for epistatic variability with reductions larger than 50 DIC units in both popu-
lations. Modal estimates for founder related, mutational and epistatic heritabilities were 0·068, 0·011 and
0·095 in C57BL/6J and 0·060, 0·010 and 0·113 in C57BL/6Jhg/hg, ruling out any doubt about the biological rel-
evance of epistasis originating from new mutations in mice. These results contribute new insights on the
relevance of epistasis in the genetic architecture of mammals and serve as an important component of an ad-
ditional source of genetic heterogeneity for inbred strains of laboratory mice.

1. Introduction

Although mutation is the ultimate source of polygenic
variation, i.e., the raw material for the maintenance of
genetic variability (Hill, 1982b), little is known about
its role and real contribution to the genetic variability
in mammals. Previous analyses characterized this
phenomenon in terms of the mutational input of gen-
etic variance per generation (σm

2 ), a well-defined gen-
etic parameter contributing less than 1% of the
phenotypic variance (Lynch, 1988; Houle et al.,
1996). Although polygenic mutational studies have
mainly been conducted on invertebrate laboratory
species (Hill, 1982a; Caballero et al., 1991), the rel-
evant contribution of σm

2 on the phenotypic variance

of quantitative traits has also been described in mice
(Bailey, 1959; Festing, 1973; Keightley & Hill, 1992;
Caballero et al., 1995) and sheep (Casellas et al.,
2010). Nevertheless, these σm

2 estimates cannot be con-
sidered as biologically irrelevant, as demonstrated by
the successful response to artificial selection reported
in some highly inbred lines (Hill, 1982a, 2005;
Keightley, 1998). Recent results focused on the ac-
cumulation of within-generation mutational varia-
bility revealed a remarkable source of additive
genetic variability representing up to 4% of the pheno-
typic variance for litter size in inbred mice (Casellas &
Medrano, 2008).

The effect of new mutations cannot be simplified to
only accounting for a direct additive contribution of
the gene itself, but it must also account for important
novel epistatic interactions between genes. Our knowl-
edge on physiological genetics strongly suggests that
interaction among gene products is ubiquitous
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(Wright, 1980). New mutations must be part of
this epistatic component although research has not
been conducted in this field. The contribution of
epistasis to genetic variance components remains
obscure due to methodological complexities (Crow
& Kimura, 1970; Goodnight, 1987, 1988; Wade,
1992; Cheverud & Routman, 1995) and the limited
contribution of epistasis to the covariance among
relatives (Cockerham, 1954; Hayman & Mather,
1955; Falconer, 1989). Experimental results remain
controversial (Simons & Crow, 1977; Barker, 1979),
although some studies have reported large contribu-
tions to the phenotypic variance (Peripato et al.,
2005; Leamy et al., 2008), they account for more
than 25% of the variability. In any case, the influence
of new mutations was not considered in these studies
and thus, the epistatic contribution linked to the con-
tinuous uploading of new mutations variance remains
unknown.

A basic assumption in studies involving inbred
strains of laboratory species is that inbred individuals
are genetically homogeneous across generations (Taft
et al., 2006; Stevens et al., 2007). In addition to the
direct additive variability generated by mutation
(Niu & Liang, 2009), the genetic homogeneity can
be seriously impaired if new mutational epistasis had
a relevant contribution to the phenotypic variability
of any quantitative trait of interest. In addition, the
study of mutational epistasis contributes information
relevant to livestock production systems where both
non-additive contributions and mutational additive
effects were recently revealed (Casellas et al., 2010;
Su et al., 2012).

The study of mutational epistatic effects opens an
interesting research field within the context of animal
genomics with potential implications for both basic
genetics research and applied animal production.
The purpose of the present investigation was to ana-
lyse epistatic interactions between new mutational ad-
ditive genetic effects and the genetic background
inherited from the founder populations, taking body
weight of two mice data sets as example. An appropri-
ate linear mixed model parameterization was devel-
oped to properly account for the different genetic
sources of variation, and the model was solved by
Bayesian inference.

2. Materials and methods

(i) Mice data sets

This research focused on the genetic interaction be-
tween founder-related additive polygenic effects and
new additive genetic variability arising from mutation.
Within-generation founder-related additive genetic
variance decreases with the number of generations in
inbred mice, these variances becoming almost null

after a few generations of full-sib mating (Casellas &
Medrano, 2008; Casellas et al., 2010). In order to
avoid biases due to the absence of founder-related
additive genetic variance in more recent generations,
our analyses was performed on subsets of mouse
data spanning few (five or six) generations, although
with a large number of mice per generation. These
restrictions provided large founder populations
where the additive genetic variance was properly
assessed (Table 1). On the other hand, contribution
of epistasis is typically assumed small and absorbed
into the founder-related additive genetic component
(Cheverud & Routman, 1995; Hill et al., 2008;
Crow, 2010). Note that founder-specific genetic vari-
ance must be clearly smaller in these highly inbred
populations than in regular populations, allowing for
a more efficient differentiation between both sources
of genetic variance. Although confusion between epis-
tasis and other sources of additive genetic variability
cannot be completely discarded, final estimates must
be seen as minimum boundaries for epistasis in these
populations.

As described by Casellas & Medrano (2008),
a C57BL/6J (B6) inbred mouse strain was kept in
the vivarium of the University of California (Davis,
CA) between October 1988 and May 2005. This popu-
lation was founded by the acquisition of two B6 males
and six B6 females from The Jackson Laboratory (Bar
Harbor, ME) and evolved during 46 non-overlapping
generations. Our analyses focused on a B6 subpopula-
tion derived and expanded from mice born in the 21st
generation (Table 1, generation G1) and maintained
during five non-overlapping generations (Table 1, gen-
erations G2 to G6) without additional contributions
from the main B6 line or other outside populations.
Whereas the main B6 line was maintained with a
reduced number of litters per generation (five to 47 lit-
ters), this subpopulation involved 701 litters and 3765
mice in a short period of six generations. Mice were
housed in polycarbonate cages under controlled tem-
perature (21 °C±2 °C), humidity (40–70%) and light-
ing (14 hr light, 10 hr dark, lights on at 7 a.m.)
conditions and managed according to the guidelines
of the American Association for Accreditation of
Laboratory Animal Care (http://www.aaalac.org).
Only single (one male/one female) and group matings
(one male/several females) were used to avoid multiple
paternities. Females were housed in individual cages
for parturition. Full-sib mating was preferentially
used to propagate the population. Pups were individu-
ally numbered by ear notching at 2 weeks of age. After
weaning (3 weeks) male and female pups were housed
in separate cages to avoid uncontrolled matings. Mice
were weighted 9 weeks (±2 days) after birth (9WK
body weight). All relevant data were recorded accu-
rately in all generations. Sire, dam, dates of mating,
birth and weaning, number of pups born and weaned

J. Casellas et al. 2

https://doi.org/10.1017/S001667231400010X Published online by Cambridge University Press

https://doi.org/10.1017/S001667231400010X


were recorded for each litter, and identification num-
ber, sex and 9WK body weight were recorded for
each mouse. Analyses were performed on 3736 mice
with 9WK body weight data coming from 691 litters,
whereas the pedigree file included 3765 mice with a
complete knowledge of all parental and maternal
relationships.

On the other hand, the high growth (hg) mutation
spontaneously arose in a four-way cross involving
AKR/J, C3H, C57BL/6J and DBA/2 inbred founders
(Bradford, 1971; Bradford & Famula, 1984), and was
introgressed into the B6 background (B6hg/hg) in 1981
(Bradford & Famula, 1984). This mutation, a 500 kb
deletion on mouse chromosome 10 (Horvat &
Medrano, 2001; Wong et al., 2002), deregulates the
growth hormone/insulin-like growth factor 1 system
(Medrano et al., 1991) and produces a 30–50% post-
weaning overgrowth without increasing adiposity
(Bradford & Famula, 1984; Corva & Medrano,
2000). Note that the B6hg/hg strain was isogenic to
B6, except for the hg mutation and a stretch of
AKR/J sequence around this mutation (Horvat &
Medrano, 1996). The B6hg/hg strain has been main-
tained for experimental purposes in our vivarium at
the University of California (Davis, CA) during
more than 150 generations and 5000 litters.
Although the number of litters per generation was

generally small, our analyses focused on a five-
generations expansion of this B6hg/hg strain generated
between years 1996 and 1997, involving between 46
and 198 litters per generation (Table 1). Animal
husbandry and data collection followed the same pro-
cedures defined for the B6 population. Analyses were
performed on a pedigree 2910 mice, 2843 of them
having 9WK body weight phenotypic information
(Table 1).

(ii) Statistical models

After appropriate edition, 9WK body weight in B6
and B6hg/hg data sets was modelled under the follow-
ing hierarchical structure:

y = Xb+ Z1p+ Z2a+ Z2m+ Z2(a×m) + e

where e was the column vector of random errors and y
was the column vector of phenotypic data linked to
systematic (b), permanent environmental (p) and gen-
etic effect (a, m and a×m) by X, Z1 and Z2 incidence
matrices, respectively. Note that the genetic sources
of variation were defined as the additive genetic effect
linked to the base generation (a; founder-related
additive genetic effect), the new additive variability
originated by mutation (m; see Wray (1990) for a
detailed description of this genetic effect), and the

Table 1. Summary of pedigree and phenotypic data for the two mice data sets, B6 and B6hghg

B6a population (B6hg/hg)a population

Mice Litters
9WKbweight, g
(mean±SE) Mice Litters

9WK weight, g
(mean±SE)

PEDIGREE DATA

Generation
G1 339 62 547 103
G2 974 160 1025 198
G3 958 175 675 152
G4 715 147 447 101
G5 565 120 216 46
G6 214 37

Overall 3765 701 2910 600

PHENOTYPIC DATA

Sex
Male 1497 472 26·92±0·06 1154 348 39·66±0·12
Female 2239 658 21·40±0·04 1689 554 29·29±0·06

Generation
G1 315 53 23·61±0·19 533 95 33·61±0·27
G2 974 160 23·53±0·11 1001 189 33·14±0·19
G3 955 174 23·65±0·11 660 145 32·78±0·22
G4 715 147 23·19±0·12 433 94 34·26±0·29
G5 563 120 24·20±0·15 216 46 35·60±0·43
G6 214 37 23·71±0·23

Overall 3736 691 23·61±0·05 2843 569 33·50±0·11

aB6 (C57BL/6J), B6hg/hg (C57BL/6J-hghg, B6 mice introgressed with the high growth mutation).
b 9WK weight: body weight at 9 weeks of age.
SE: Standard error.
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epistatic interaction between both terms (a×m).
Systematic effects accounted for sex (male or female)
and generation number with six and five levels for
B6 and B6hg/hg populations, respectively. The perma-
nent environmental effect was defined as the environ-
mental contribution inherent to each group of mice
kept in the same cage after weaning.

Our analyses focused on several aspects of the gen-
etic background for WK9 body weight in mice, requir-
ing an accurate specification of the distribution
pattern for a, m and a×m Assuming an infinitesimal
polygenic genetic architecture (Bulmer, 1980), a can
be assumed to be drawn from a multivariate normal
distribution as follows:

a A, σ2a � MVN(0,Aσ2a)
∣∣

where A is the numerator relationship matrix as
defined by Wright (1922), σa

2 is the additive genetic
variance component and 0 is a column vector or
zeros. Following Wray (1990) theoretical develop-
ments for new additive mutational variability, m can
be modelled under the following multivariate normal
distribution:

m M, σ2m � MVN(0,Mσ2m)
∣∣

where M is the Casellas & Medrano (2008) numerator
relationship matrix adapted from Wray (1990) to ac-
commodate new additive mutations, and σm

2 is the
mutational variance. The a×m effect is approximated
as the additive epistatic interaction between founder-
related and new mutational effects on the basis of
Cockerham’s (1954) model. This interaction is
assumed to be sampled from:

(a×m) H, σ2i � MVN(0,Hσ2i )
∣∣

whereH is the Hadamard product between matrices A
andM, and σi

2 is the interaction (or epistasis) variance.
Note that this parameterization applied to popula-
tions under Hardy–Weinberg equilibrium (Hardy,
1908; Weinberg, 1908), whereas these inbred popula-
tions were maintained under assorted mating of
full-sibs. Nevertheless, this must be viewed as a
reasonable equilibrium between biological plausibility
and mathematical parameterization. The main com-
plexity of this parameterization relies on the inversion
of covariance matrices (A−1, M−1 and H−1), an essen-
tial step for the proper construction of the mixed
model equations (Henderson, 1973). Matrices A−1

and M−1 converge to a well-known structure that
can be constructed with low computational require-
ments from a list of parents (Henderson, 1976;
Quaas, 1976; Wray, 1990; Casellas & Medrano,
2008), without requiring direct matrix inversion.
Conversely, we lacked the simplified rules for con-
structing H−1 and the direct inversion of H becomes
mandatory, resulting in high computational time

requirements for medium to large populations.
Although these computational demands for obtaining
H−1 would not be a decisive limitation for our analy-
ses, alternative parameterizations avoiding the direct
inversion of H could be of special interest for larger
data sets.

The previous hierarchical mixed model can be
rewritten as follows:

y = Xb+ Z1p+ Z2a+ Z2m+ Z2(Hi) + e

where i=H−1(a×m), the new interaction term i comes
from a multivariate normal distribution:

i H, σ2i � MVN(0,H−1HH−1σ2i ) = MVN(0,H−1σ2i )
∣∣
and only (H−1)−1=H is required for the proper con-
struction of the mixed model equations. This alterna-
tive parameterization of the mixed model equations
was described by Henderson (1984), although under
standard genetic evaluation models. Note that H can
be constructed from A and M, and both A and M
are obtained by the tabular method (Wright, 1922)
or other computationally efficient approaches. After
obtaining i, the a×m term can be calculated in a
straightforward manner by applying the following re-
lationship:

(a×m) = Hi

It is important to note that the variance component
(σi

2) does not undergo any modification during this
reparameterization, leading to a direct calculation of
the heritability for additive epistatic effects (hi

2; i.e.,
the percentage of total phenotypic variance accounted
for by σi

2) as follows:

h2i = σ2i / σ2a + σ2m + σ2i + σ2p + σ2e

( )

Both additive (ha
2) and mutational (hm

2 ) heritabilities
can be calculated in a similar way by appropriately
replacing the numerator σi

2 by σa
2 and σm

2 , respectively.
Despite current parameterization assuming null gen-
etic correlations between a, m and a×m, we must be
cautious because breeding values become linear func-
tions of mutation effects (Wray, 1990); collinearity
must be evaluated among the genetic effects included
in the model in order to determine their robustness
and accuracy. Within this context, Pearson correlation
coefficients were computed between each pairwise
combination of a, m, a×m and e, and their posterior
distributions were evaluated as indicators of related-
ness between genetic effects. High and positive corre-
lations would suggest a high degree of collinearity,
whereas null or almost null estimates must indicate
independence.

(iii) Bayesian analyses

Within a Bayesian development, the joint posterior
distribution of our model was proportional to the
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likelihood of the data multiplied by the a priori prob-
abilities of the unknown parameters of the model:

p b, p, a,m, i, σ2e, σ
2
e , σ

2
e, σ

2
e , σ

2
e y
∣∣( )/

p y b, p, a,m, i, σ2e
∣∣( )

p b( )p p σ2p

∣∣∣
( )

p σ2p

( )

× p a A, σ2a
∣∣( )

p σ2a
( )

p m M, σ2m
∣∣( )

p σ2m
( )

p i H, σ2i
∣∣( )

p σ2i
( )

p σ2e
( )

The likelihood of WK9 body weight data was defined
as multivariate normal:

p y b, p, a,m, i, σ2e
∣∣( )

= MVN Xb+ Z1p+ Z2a+ Z2m+ Z2 Hi( ), Ieσ2e
( )

,

With Ie being an identity matrix with dimensions
equal to the number of phenotypic data. The a priori
distribution of P was assumed to be drawn from
another multivariate normal density:

p p σ2p

∣∣∣
( )

= MVN 0, Ipσ2p
( )

,

Where Ip is an identity matrix with dimensions equal
to the number of elements in P, and the genetic effects
(a, m and a×m) were modelled under the multivariate
normal distributions previously defined in the earlier
sections of this manuscript. Flat priors were assumed
for b, σe

2 and σp
2. To evaluate the effect of a priori in-

formation on σa
2, σm

2 and σi
2, four different scaled

inverted χ2 prior distributions with hyperparameters
ν and S2 were assumed (Fig. 1) and tested indepen-
dently on our data sets (see below). Given the almost
null previous knowledge about the expected distri-
bution of σa

2, σm
2 and σi

2, these four independent scaled
χ–2 priors depicted a wide range of plausible scenarios
with a decreasing level of stringency for the distri-
bution of the variance component. Whereas prior 1
(ν=10; S2=0·1) has a narrow probability close to
the null estimate, prior 4 (ν=−2; S2=0) converged
to uniform distribution between 0 and+∞, ignoring
previous knowledge and providing the same a priori
probability to all values within the parametric space.

In order to elucidate the biological and statistical
relevance of the additive genetic effects, analyses

were performed under a three-step approach (see
below). During this process, the statistical perform-
ance of all models was evaluated and compared in
terms of goodness of fit and predictive ability. The
first comparison, i.e., goodness of fit, was carried
out by the deviance information criterion (DIC), a
Bayesian statistic integrating information from both
models fit to real data and mathematical complexity
in terms of number of parameters (Spiegelhalter
et al., 2002). Models with smaller DIC were favoured
as this indicated a better model fit and a lower degree
of model complexity. Differences larger than 3–5 DIC
units are typically assumed as relevant (Spiegelhalter
et al., 2002, 2003). On the other hand, the prediction
of future records given past data is a question of con-
cern that can be answered using the concept of predic-
tive density, a notion that arises naturally in Bayesian
statistics (Matos et al., 1997). To estimate predictive
ability, a new data set was generated by removing
50% of the records. Both mean square error (MSE)
and correlation coefficient (ρy,ỹ) were computed be-
tween expectations from the predictive distribution
and the removed records (see Casellas et al. (2007)
for a detailed description of the calculation of MSE
and ρy,ỹ).

During the first step, a reference model without ad-
ditive genetic effects (Model 0) was analysed. This
model assumed the same hierarchical structure and
a priori distributions defined for the complex model
described above, although arbitrarily fixing a, m and
a×m effects to 0. During the second analytical step,
Model 0 was complemented with the inclusion of
the a and m effects as unknown parameters of the
model (Model AM), although the a×m term was
still fixed to 0. Following Casellas & Medrano
(2008), the same a priori distribution was assumed
for σa

2 and σm
2 and therefore, four different parameter-

izations were analysed assuming priors 1, 2, 3 and 4
(Fig. 1). Finally, the Model AM with the smallest
DIC value evolved to the inclusion of the a×m as
an additional effect to be estimated (Model E). As
for the previous step, the four-scaled inverted
χ2-prior distributions for σi

2 were evaluated by four in-
dependent analyses. At the end, nine different models
were analysed and compared by the DIC, MSE and
ρy,ỹ parameters.

For each model and data set, three independent
Monte Carlo Markov chains (MCMC) were launched
for sampling for the marginal posterior distribution of
each unknown parameter in our analyses. All para-
meters were updated by Gibbs sampling (Gelfand &
Smith, 1990) and each MCMC was composed of
1050000 iterations. Chain convergence was checked
by visual inspection of σi

2 plots (or σm
2 for Model 0)

and by the Raftery & Lewis (1992) method.
Although convergence was reached with less than
1000 iterations in all MCMC, the first 50000

0 2 4 6 8 10

Variance
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ab
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it
y 

de
ns

it
y Prior 1

Prior 2

Prior 3

ν = 10; S 2 = 0.1

ν = 1; S 2 = 0.5

ν = 2; S 2 = 2

ν = -2; S 2 = 0

Fig. 1. A priori distributions for genetic variance
components analyzed using scaled χ−2 priors with
hyperparameters ν=10 and S2=0·1 (PR1), ν=1 and
S2=0·5 (PR2), ν=2 and S2=2.
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iterations were discarded. Given the autocorrelation
inherent to the successive iterations of Gibbs
sampling, only one iteration from each 50 iterations
was stored for inference purposes. The posterior distri-
bution of each parameter was constructed with 20000
values from each of the three MCMC evoking the
ergodic property of the chains (Gilks et al., 1996).

3. Results

(i) Phenotypic data

The phenotypic characterization of the two mouse
inbred strains were the starting point for the charac-
terization of the genetic sources of variation.
Average 9WK body weight phenotypic values for B6
and B6hg/hg strains are shown on Table 1. B6hg/hg

mice were 9·89 g heavier than B6 mice on average
(p<0·001) and, in a similar way, its raw phenotypic
variability increased to 34·40 g2; note that the pheno-
typic dispersion for the B6 population was 9·34 g2.
Males were heavier than females in both B6
(+5·52 g; p=0·001) and B6hg/hg (+10·37 g; p=0·001)
strains and within-generation averages were moder-
ately heterogeneous, providing few differences at
p=0·05. Note that both mouse sex and generation
were properly accounted for in the mixed linear mod-
els used in this study.

(ii) Model comparison

Model 0 lacked additive genetic effects and it was
assumed as the starting reference stage for our analy-
ses. This model reached an average DIC value of
13767·7 and 13810·0 for B6 and B6hg/hg mice, respect-
ively (Tables 2a and 2b); moreover, this model also
provided maximum estimates for MSE and minimum
estimates for ρy,ỹ when compared with remaining
models. Note that these values did not provide infor-
mation by themselves, but alternative models provide
the base to compare remaining estimates. The inclu-
sion of the a and m effects generalized Model 0 to a
model accounting for direct additive genetic effects
(model AM). Given the decreasing degree of strin-
gency evoked by the a priori distributions assumed
for σa

2 and σm
2 variances (Fig. 1), the effect of four

alternative stages of a priori knowledge on the
expected values of both variance components were
evaluated. Assuming that 3 to 5 DIC units are the
minimal departure to report significant differences
between two competing models (Spiegelhalter et al.,
2002, 2003), Model AM4 was clearly preferred when
compared with the null hypothesis characterized by
Model 0, as demonstrated by the 395·2 and 291·3
DIC units reduction in B6 and B6hg/hg populations,
respectively. The other three parameterizations of
Model AM (priors 1, 2 and 3) were slightly penalized

(Tables 2a and 3a) in relation to Model AM4,
although DIC, MSE and ρy,ỹ differences were not rel-
evant within each population. Given these small stat-
istical differences, Model AM was expanded to Model
E on the basis of Model AM4.

Model performance under the four alternative
a priori distributions for σi

2 provided very similar
results on B6 and B6hg/hg data sets. DIC favored
Model E4 (13199·7 and 13465·1, respectively) with
slight and non-relevant advantages on Model E3 (13
202·2 and 13467·3, respectively). The remaining para-
meterizations for σi

2 revealed larger than 5 DIC unit
penalizations, discarding the restrictive scenarios
drawn by these priors. Both MSE and ρy,ỹ showed a
similar trend, corroborating the advantage of Model
E3 and Model E4 in terms of predictive ability too.
In conclusion, Model EPIPR4 reduced DIC units
from Model AM4 by 172·8 (B6 population) and
53·6 (B6hg/hg population), providing decisive evidence
about epistasis in our populations.

(iii) Variance components

Variance components estimated under Model E3 and
Model E4 showed minimal differences and highest
posterior density regions at 95% (HPD95) were fully
overlapped (results not shown). Variance components
were reported on the basis of Model E4 (and Model
AM4). Founder-related additive genetic variance
was moderate in B6 and B6hg/hg populations, account-
ing for the 6·8 and 6·0% of the phenotypic variance,
respectively. Although modal estimates suggested a
slight reduction from the values obtained under
Model AM4 (9·2 and 8·2%, respectively), HPD95
were overlapped and discarded any significant depar-
ture. On the other hand, σm

2 was small and represented
∼1% of the phenotypic variance in both populations.
The final target of our analyses, σi

2, was remarkably
high in the B6 (0·505) and B6hg/hg (1·192) data sets,
with the HPD95 values far from the null estimate.
The modal contribution of this variance component
to the phenotypic variance was 9·5 and 11·3%, respect-
ively; HPD95 started at values larger than 3% of the
phenotypic variance, providing decisive evidence
about the biological relevance of epistatic interactions
on 9WK body weight in mice. Although a detailed
pairwise comparison between the estimates from
Model AM4 and Model E4 did not reveal relevant
departures in addition to σi

2, a small reduction of the
σe
2, could be suggested in terms of modal estimates.
This value suggests that epistatic variability was
mainly accumulated in the residual term of Model
AM4, without discarding the partial absorption of
epistatic effects in the remaining genetic and environ-
mental variance components.

Modal estimates for correlation coefficients be-
tween each pairwise comparison of genetic effects
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Table 2. χ−2 hyperparameter specifications and model comparison statistics for the C57BL/6J strain under Models 0
and AM (a) and Models E (b). Goodness of fit was assessed by the deviance information criterion (DIC), whereas
predictive ability was evaluated by the mean square error and the correlation coefficient between real and predicted
data (ρy,ŷ)

Model 0

Model AMa (depending on priors for σa
2 and σm

2 )

1 2 3 4

(a)

χ−2 hyperparameters
ν 10 1 2 −2
S2 0·1 0·5 2 0

DIC
Chain 1 13768·4 13375·1 13374·7 13372·2 13373·6
Chain 2 13766·9 13373·5 13372·8 13373·9 13372·5
Chain 3 13767·7 13374·0 13372·5 13372·9 13371·4
Mean 13767·7 13374·2 13373·8 13373·0 13372·5
SD 0·8 0·8 1·3 0·9 1·1

Mean square error, g
Chain 1 5·45 5·24 5·20 5·21 5·18
Chain 2 5·51 5·20 5·23 5·19 5·21
Chain 3 5·46 5·25 5·23 5·23 5·17
Mean 5·47 5·24 5·22 5·21 5·19
SD 0·03 0·03 0·02 0·02 0·02

ρy,ŷ
Chain 1 0·563 0·602 0·609 0·615 0·618
Chain 2 0·559 0·608 0·604 0·608 0·615
Chain 3 0·565 0·601 0·605 0·617 0·618
Mean 0·562 0·604 0·606 0·613 0·617
SD 0·003 0·004 0·003 0·005 0·002

Model Eb (depending on priors for σi
2)

1 2 3 4

(b)

χ−2 hyperparameters
ν 10 1 2 −2
S2 0·1 0·5 2 0

DIC
Chain 1 13210·5 13206·7 13202·3 13199·4
Chain 2 13209·7 13207·4 13201·6 13199·1
Chain 3 13209·8 13206·1 13202·7 13200·5
Mean 13210·0 13206·7 13202·2 13199·7
SD 0·4 0·7 0·6 0·7

Mean square error, g
Chain 1 5·00 4·96 4·87 4·61
Chain 2 5·06 4·95 4·89 4·67
Chain 3 5·07 4·90 4·83 4·66
Mean 5·04 4·94 4·86 4·65
SD 0·04 0·03 0·03 0·03

ρy,ŷ
Chain 1 0·659 0·680 0·692 0·724
Chain 2 0·637 0·681 0·689 0·730
Chain 3 0·636 0·689 0·707 0·728
Mean 0·644 0·683 0·696 0·727
SD 0·013 0·005 0·010 0·003

aMixed linear model including founder-related and mutational genetic effects.
bMixed linear model including founder-related, mutational and epistatic genetic effects.
SD: Standard deviation.
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Table 3. χ−2 hyperparameter specifications and model comparison statistics for the C57BL/6Jhg/hg strain under
Models 0 and AM (a) and Models E (b). Goodness of fit was assessed by the deviance information criterion (DIC),
whereas predictive ability was evaluated by the mean square error and the correlation coefficient between real and
predicted data (ρy,ŷ)

Model 0

Model AMa (depending on priors for σa
2 and σm

2 )

1 2 3 4

(a)

χ−2 hyperparameters
ν 10 1 2 −2
S2 0·1 0·5 2 0

DIC
Chain 1 13809·5 13519·2 13521·9 13519·5 13518·0
Chain 2 13811·0 13519·9 13519·9 13519·1 13519·1
Chain 3 13809·7 13518·5 13510·7 13518·3 13519·0
Mean 13810·0 13519·2 13520·5 13519·0 13518·7
SD 0·8 0·7 1·2 0·6 0·6

Mean square error, g
Chain 1 11·00 10·07 10·19 9·96 10·02
Chain 2 10·94 10·07 10·12 9·96 9·94
Chain 3 10·92 10·06 10·18 10·04 9·95
Mean 10·95 10·07 10·16 9·99 9·97
SD 0·04 0·01 0·04 0·05 0·04

ρy,ŷ
Chain 1 0·550 0·592 0·580 0·597 0·598
Chain 2 0·551 0·593 0·588 0·596 0·606
Chain 3 0·551 0·592 0·581 0·594 0·605
Mean 0·551 0·592 0·583 0·596 0·603
SD 0·001 0·001 0·004 0·002 0·004

Model Eb (depending on priors for σi
2)

1 2 3 4

(b)

χ−2 hyperparameters
ν 10 1 2 −2
S2 0·1 0·5 2 0

DIC
Chain 1 13476·1 13471·2 13467·6 13465·0
Chain 2 13475·3 13469·7 13467·7 13465·7
Chain 3 13475·8 13470·3 13466·7 13464·8
Mean 13475·7 13470·4 13467·3 13465·1
SD 0·4 0·8 0·6 0·5

Mean square error, g
Chain 1 9·52 9·35 9·17 8·97
Chain 2 9·51 9·39 9·19 9·02
Chain 3 9·52 9·34 9·15 8·99
Mean 9·52 9·36 9·17 8·99
SD 0·01 0·03 0·02 0·03

ρy,ŷ
Chain 1 0·625 0·652 0·685 0·707
Chain 2 0·627 0·648 0·689 0·699
Chain 3 0·624 0·651 0·684 0·705
Mean 0·625 0·650 0·686 0·704
SD 0·002 0·002 0·003 0·004

aMixed linear model including founder-related and mutational genetic effects.
bMixed linear model including founder-related, mutational and epistatic genetic effects.
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(a, m and a×m) were low and positive, ranging from
0·182 (a vs. m; B6) to 0·342 (a vs. a×m; B6).
Moreover, correlation coefficients between genetic
effects and residual terms (e) were even smaller, the
maximum modal estimate being 0·150 (m vs. e; B6hg/hg)
and the minimum being slightly lower than zero
(−0·022; a×m vs. e; B6). It is important to highlight
that HPD95 were wide in all cases and included the
null estimate by far; width of HPD95 took values be-
tween 0·331 and 0·543 correlation units.

4. Discussion

(i) Mouse strains and 9WK body weight

Although a description of raw phenotypes was not
the principal aim of this research, phenotypic and
pedigree data are the starting point for subsequent
genetic analyses; their formal characterization pro-
vides essential information for an accurate interpret-
ation of genetic estimates from complex mixed linear
analyses. In a similar way, relevant information is
contributed by the origin and genetic background
inherent to each mouse strain involved in the exper-
imental design. Both B6 and B6hg/hg mice were closely
related, since B6hg/hg strain was originated by intro-
gressing the hg mutation into the B6 background
(Bradford & Famula, 1984). This mutation and a
stretch of AKR/J sequence around the mutation
(Horvat & Medrano, 1996) were the known genetic
differences between these two inbred strains.
Nevertheless, B6 andB6hg/hg strainswere independently
bred for more than 20 generations and new mutations
arose separately and accumulated in each strain. On
the basis of the results of Casellas & Medrano (2008)
and Niu & Liang (2009), departures between B6
and B6hg/hg strains could be by far greater than the
anticipated hg mutation and AKR/J sequences.

All mice were kept in the same vivarium and under
very similar husbandry practices; therefore, pheno-
typic differences must be mainly due to the loci deter-
mining 9WK body weight. B6hg/hg mice were almost
10 g heavier at 9WK than their B6 mice, as expected
due to the hg mutation (Bradford & Famula, 1984).
In a similar way, phenotypic variance was also larger
for B6hg/hg mice (34·40 g2 vs. 9·34 g2), although this
departure in dispersion parameters could not be
anticipated by the allelic effect substitution of the
hg mutation. Note that the inheritance pattern of
this mutation was described as recessive with nearly
complete penetrance (Bradford & Famula, 1984).
Assuming a slight distortion on the B6hg/hg phenotypic
variance due to a residual departure from com-
plete penetrance, the increasing phenotypic vari-
ability must be related to developmental instability
(Vishalakshi & Singh, 2008; Debat et al., 2009) and
a scale effect, although the accumulation of new

genetic variability by mutation cannot be completely
discarded (Casellas & Medrano, 2008). Indeed, epi-
static QTL for growth and obesity were described be-
tween the hg mutation and several genomic locations
in other chromosomes (Corva et al., 2001). This ana-
lytical evidence suggested an increasing number of
genomic targets sensitive to new mutations in the
B6hg/hg background; some new mutations modulating
these genomic targets or other steps of the growth
hormone/insulin-like growth factor 1 pathway could
be responsible for part of this increased phenotypic
variability. Given that our research focused on the
partition of the phenotypic variance from different
genetic and environmental sources, changes in pheno-
typic variance between our two related strains was of
special interest.

(ii) Mixed linear models and a priori distributions

Making comparisons between models is a topic of
major interest in statistical genetics given the substan-
tial impact that a model can have on statistical infer-
ence. This phenomenon is of particular relevance in
Bayesian analyses where both model structure and
a priori information for model parameters could
have a deep impact on final conclusions. Whereas ex-
perimental data themselves must not be influenced by
arbitrary choices, prior distributions are arbitrarily
chosen from previous knowledge of the parameters
of interest. Given that studies on the epistatic ability
of new mutations were not previously conducted,
our a priori assumptions became a blind choice with
unpredictable consequences on the posterior inference
(Gianola & Fernando, 1986; Blasco, 2001). Within
this frame, our analyses examined model performance
in two areas: (1) analysing the relevance of the epi-
static interaction term between new mutations and
founder-related effects and (2) studying the consist-
ency of different a priori assumptions for the genetic
variance components.

Assuming a mixed linear model without additive
genetic effects as starting point, both B6 and B6hg/hg

data sets showed a substantial reduction (increase) of
the DIC and MSE (ρy,ỹ) statistics when a and m effects
were included. Note that both populations were con-
sidered as fully inbred populations, although the pres-
ence of two different sources of additive genetic
variance impaired the assumption of genetic homo-
geneity typically made on these inbred strains of
mice (Festing, 1979). These results agreed with the
previous conclusions of Casellas & Medrano (2008),
where a statistically significant and biologically rel-
evant source of genetic variance was detected for litter
size in an inbred population of B6 mice. The prelimi-
nary comparison of different a priori χ–2 distributions
for σa

2 and σm
2 did not reveal relevant departures in

terms of DIC, MSE and ρy,ỹ. Although DIC

Additive epistasis from new mutations in mice 9

https://doi.org/10.1017/S001667231400010X Published online by Cambridge University Press

https://doi.org/10.1017/S001667231400010X


discrepancies did not reach the 3–5 DIC units sug-
gested by Spiegelhalter et al. (2002, 2003), flat a priori
distributions for σa

2 and σm
2 were assumed for further

analyses.
The inclusion of the a×m was also favoured in

both data sets (Tables 2 and 3). In this case, the differ-
ent a priori distributions provided some relevant
differences in both data sets, reducing the DIC and
MSE estimates and increasing the ρy,ỹ estimate with
smoothed χ–2 distribution. As for σa

2 and σm
2 , Model

E4 reached the best performance, although differences
with Model E3 were not statistically significant in
both data sets. In any case, the small departures
observed between the different a priori distributions
for σi

2 suggested that the experimental data had
enough information content to override moderate
influences of prior information, even under very ex-
treme assumptions. As previously reported by
Casellas & Medrano (2008), these models including
mutational terms seemed to perform better under a
vague assumption for genetic variance components
over the parameter space.

(iii) Genetic variability in inbred mouse strains

Genetic variances were discussed on the basis of
Model E4 (and Model AM4) because it reached the
smallest DIC and MSE estimates and the largest ρy,ỹ
estimate, and the differences between estimated vari-
ance components across a priori distributions for gen-
etic variances were minimal (results not shown). In B6
and B6hg/hg mice 9WK body weight was moderately
heritable, with σa

2 accounting for 6·8 and 6·0% of
the phenotypic variance, respectively. Our estimates
were far from the heritability values obtained in
other outbred populations such as beef cattle, i.e.,
0·25 (Frizzas et al., 2009), dairy cattle, i.e., 0·48–0·57
(Toshniwal et al., 2008), goats, i.e., 0·35–0·47
(Snyman & Olivier 1999), and mice, i.e., 0·56
(Leamy et al., 2005), although they revealed a high de-
gree of genetic variability for an inbred population.
These estimates were accompanied by relevant muta-
tional variances accounting for ∼1% of the phenotypic
variance (Table 4). Note that estimated mutational
heritabilities were close to the upper limit of the values

Table 4. Modal estimates and highest posterior density region at 95% (HPD95) for the variance components and
heritabilities for the C57BL/6J (a) and C57BL/6Jhg/hg (b) data set

Parametera

Model AM4b Model E4c

Mode HPD95 Mode HPD95

(a)

σa
2 (g2) 0·384 0·171 to 0·831 0·364 0·190 to 0·800
σm
2 (g2) 0·045 0·006 to 0·148 0·058 0·009 to 0·161
σi
2 (g2) 0·505 0·248 to 0·998
σp
2 (g2) 1·580 1·364 to 1·822 1·529 1·299 to 1·786
σe
2 (g2) 2·180 1·766 to 2·649 1·759 1·332 to 2·149
ha
2 0·092 0·036 to 0·142 0·068 0·010 to 0·155
hm
2 0·010 0·001 to 0·032 0·011 0·001 to 0·033
hi
2 0·095 0·033 to 0·187

Parameter

Model A4 Model E4

Mode HPD95 Mode HPD95

(b)

σa
2 (g2) 0·807 0·457 to 1·319 0·636 0·325 to 1·067
σm
2 (g2) 0·091 0·048 to 0·161 0·110 0·047 to 0·192
σi
2 (g2) 1·192 0·457 to 2·169
σp
2 (g2) 2·318 1·832 to 2·860 2·277 1·774 to 2·813
σe
2 (g2) 7·350 6·067 to 8·236 6·343 5·149 to 7·379
ha
2 0·083 0·032 to 0·116 0·060 0·027 to 0·099
hm
2 0·009 0·003 to 0·044 0·010 0·003 to 0·042
hi
2 0·113 0·045 to 0·187

a σa
2: founder-related additive genetic variance; σm

2 : mutational variance; σi
2: epistatic variance; σp

2: permanent environmental
variance; σe

2: residual variance; ha
2: founder-related additive heritability; hm

2 : mutational heritability; hi
2: epistatic heritability.

bMixed linear model including founder-related and mutational genetic effects. Genetic variances were modeled under flat
a priori distributions within a Bayesian context.
cMixed linear model including founder-related, mutational and epistatic genetic effects. Genetic variances were modeled
under flat a priori distributions within a Bayesian context.

J. Casellas et al. 10

https://doi.org/10.1017/S001667231400010X Published online by Cambridge University Press

https://doi.org/10.1017/S001667231400010X


reviewed by Lynch (1988) and Houle et al. (1996),
and agreed with mutational heritabilities reported by
Caballero et al. (1995) in other B6-related mouse
strains. As was previously suggested by Casellas &
Medrano (2008) in the same B6 population, σm

2

must be viewed in highly inbred strains as a lower
limit for the infinitesimal polygenic genetic variance,
although higher σa

2 estimates can be anticipated
depending on the stationary equilibrium reached by
mutation and genetic drift phenomena. Given the full-
sib mating system applied in our populations, a quick
depletion of additive genetic variance could be antici-
pated and thus, σa

2 must originate from short-term
mutations arising in the few previous generations,
these being characterized by σm

2 (Casellas & Medrano,
2008). Additional genetic mechanisms contributing
a low level of genetic variance cannot be discarded,
e.g., loci under balancing selection (Crow, 2010),
although the relevance of σm

2 in our experimental
populations is of no doubt (Table 4). In any case,
this remarkable amount of founder-related and muta-
tional additive genetic variability provided an excel-
lent frame for the study of genetic epistasis between
both additive genetic variance components. It is
important to highlight that residuals and a, m and
a×m effects were moderately correlated, although
the posterior distribution of these correlation coeffi-
cients included the null estimate within the HPD95
in all cases. Nevertheless, a certain degree of collinear-
ity between these genetic and residual sources of vari-
ation cannot be completely discarded under the
current analytical model, this partially impairing the
accuracy of final estimates. This could be anticipated
by the original developments of Wray (1990) and
relies on the fact that breeding values are linear func-
tions of mutation effects (Wray, 1990) and part of the
epistatic effect could be absorbed by founder-related
additive genetic effects (Cheverud & Routman, 1995;
Hill et al., 2008; Crow, 2010).

Epistasis, the effect due to the interaction between
different genes, has been reported in F2 crosses from
inbred mouse strains (Caron et al., 2005; Yi et al.,
2006; Leamy et al., 2008) as well as livestock
(Barendse et al., 2007; Noguera et al., 2009; Uemoto
et al., 2009) and crop species (Silva & Hallauer,
1975; Goldringer et al., 1997; Xu & Jia, 2007). In
these studies, epistasis was modelled on a QTL basis
(Leamy et al., 2008; Noguera et al., 2009) or as an ad-
ditional variance component (Caron et al., 2005;
Yi et al., 2006). All designs assumed that the epistatic
load inherent to each experimental population did not
vary during data collection, even when this process
spanned several generations. This broad assumption
was far from being realistic although it provided the
first confirmations on the relevance of epistasis in
the genome of several species. Our research was an en-
deavour to generalize the study of epistasis when new

mutations were also accounted for in the analysis and
it represents the first experimental evidence for this
kind of mutational contribution in the scientific litera-
ture (Table 4).

Despite its basic role in evolution and speciation
(Cheverud & Routman, 1995), the link between epis-
tasis and mutation is controversial. Our results
showed that this link exists without doubt in labora-
tory mice and accounts for a remarkable percentage
of the total phenotypic variance (∼10%; Table 4),
even larger than the direct contribution of new muta-
tions. Although not more than a hypothesis, this ad-
vantage for σi

2 when comparing with σm
2 could be

related to the possibility of multiple epistatic interac-
tions originating from a unique mutation (i.e., larger
variability for σi

2), whereas the mutation itself does
not contribute more than its direct effect on σm

2 .
Taking Wray (1990) as a starting point, new muta-
tions not only contributed direct effects on 9WK
body weight in mice but also interacted with pre-
existing polymorphisms in the mouse genome. Note
that our analyses focused on a short period of time
(i.e., five or six generations) where, even under full-sib
mating, σa

2 was not depleted and allowed for a proper
estimation of the interaction term. Nevertheless, these
results from inbred mice strains cannot be directly
generalized to livestock species where much of the re-
cent additive genetic variance is the result of past and
recent selection (Nagylaki, 1993; Crow, 2010), and a
smaller σi

2 must be anticipated. However, these results
provide new evidence about the relevant role of new
mutations on maintaining genetic variability in mam-
mals and must be viewed as an important component
affecting the genetic fragility of inbred populations of
laboratory species. Although previous authors have
suggested that inbred strains cannot be considered as
genetically homogeneous (Taft et al., 2006; Stevens
et al., 2007; Casellas & Medrano, 2008), the ad-
ditional contribution of epistatic mutational effects
rules out any doubts on the genetic instability of in-
bred mice, maybe even in some cases impairing repro-
ducibility of research experiments.
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