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1. Introduction

This article is a followup to [18], where I address the general problem of constructing

‘interesting’ families of contact structures in higher dimensions, together with developing

general computational techniques for SFT-type invariants.

In [18] (or [16]), I constructed families of contact manifolds M in any odd dimension
which have nonzero and finite algebraic torsion, in the sense of Latschev and Wendl [11].

In particular, they are tight and do not admit strong symplectic fillings. I also established,

in higher dimensions, that Giroux torsion (in the sense of [16]) implies algebraic 1-torsion.
My examples present a geometric structure which I call a spinal open book decomposition

or SOBD (based on the 3-dimensional version of [11]). This geometric structure, which

one could call partially planar, ‘supports’ a suitable contact structure and is of a certain
type which can be ‘detected’ algebraically by the SFT machinery.

In this article, I discuss the same examples as in [18] from a ‘dual’ point of view. While

the same underlying geometric decomposition is kept, the pieces of the decomposition have

reversed roles. The resulting supported contact structure is isotopic to the original one,
which is the expected behaviour, in terms of the expected ‘Giroux’-type correspondence

in the setting of SOBDs. However, the associated holomorphic data, originally a (2-
dimensional) finite-energy foliation, is replaced by a (2-codimensional) foliation by holo-
morphic hypersurfaces. While the holomorphic curve invariants should depend only on the

isotopy class of the supported contact structure, the two points of view complement each

other from a computational point of view. For instance, in [18] I used the finite-energy foli-
ation to bound the order of algebraic torsion from above. In this article, I use the dual foli-

ation to argue that the bounds from [18] are not, in general, necessarily the optimal ones.

After carrying out a detailed construction of examples in any odd dimension, I focus on a

family of 5-dimensional particular cases in order to illustrate the techniques developed for
the general case. For these, I study their SFT differential, up to order 2. While my original

aim was to show that the order of algebraic torsion is strictly greater than 1, the result

turned out to be quite unexpected. According to [16, Lemma 4.23] (which generalises
[11, Lemma 4.15]), roughly speaking, if all configurations of holomorphic buildings with

arithmetic genus g , no negative ends and r positive ends satisfying g +r ≤ N +1 cancel out
in pairs when counted in SFT (after introducing an abstract polyfold perturbation), then
there is no algebraic N -torsion. In the present case, after all possible such configurations

for N = 1 are classified (there are precisely 35 of them – see [16, Section 6.4]), all of them

come in cancelling pairs except one, which I call sporadic. Then, algebraic 1-torsion might
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actually arise from differentiating the asymptotics of this configuration. While I cannot
rigorously prove that algebraic 1-torsion indeed arises, I give a heuristic argument based

on string topology [4] showing that it very likely does.

However, even though my computation is not the expected one, what is remarkable is
that all the expected corollaries still hold. From knowledge of the SFT differential of my

5-dimensional examples, I show that they do not have Giroux torsion (which would follow

if they did not have algebraic 1-torsion). I also obtain nonexistence results of symplectic

cobordisms for these 5-dimensional contact manifolds.
The failure of my computation can be given the following conjectural interpretation.

Out of the 35 aforementioned configurations, there are two types: cylinders, and tori

with one puncture. The former all come in cancelling pairs, and among the latter, only
the sporadic one does not. For the corollaries, all I use is the cancellation phenomenon

for cylinders, whereas the tori play no role whatsoever. In contrast, both are taken into

consideration for algebraic 1-torsion. This suggests the existence of an invariant more
subtle than algebraic torsion, which I suspect would be obtained from the rational SFT

rather than the whole SFT, and still needs to be discovered. Morally, in the proof of the

corollaries I would be exploiting the properties of this hypothetical invariant. I expect to

pursue this line of research in further work.
A significant difficulty in practice is the lack of a higher-dimensional intersection

theory between punctured holomorphic curves, in the sense of Richard Siefring. In

dimensions 3 and 4, this is a good tool for proving that holomorphic curves with certain
prescribed asymptotics are unique, and therefore one knows exactly what to count.

In higher dimensions, although it does not make sense to count intersections between

holomorphic curves, it does make sense to count intersections between holomorphic curves
and hypersurfaces. But, as in the 4-dimensional situation, neither curves or hypersurfaces

are closed, so that intersections coming ‘from infinity’ need to be considered.

In this article, I will obtain the first applications of the basic intersection theory between

curves and hypersurfaces which are asymptotically cylindrical in a well-defined sense.
This is outlined in [16, Appendix C], cowritten with Richard Siefring (to appear as an

independent article [11]), and is a prequel to his upcoming work [18] generalising his

results of [11]. I shall use the results of [16, 11] to restrict the behaviour of holomorphic
curves in my examples. They necessarily lie in the leaves of a suitable codimension-2
holomorphic foliation. This will be crucial for extracting information from the SFT of my

examples.
Moreover, we need to understand the number of ways certain holomorphic building

configurations may glue to honest curves, which I intend to count, after making J generic.

For this, I make use of obstruction bundles in the sense of Hutchings and Taubes [11, 12], a

fairly nontrivial gadget to deal with in practice. The idea is to count the number of honest
curves obtained by gluing buildings, by algebraically counting the zero set of a section of

an obstruction bundle. While I will not explicitly compute those numbers, and instead

just prove existence results in suitable cases, the symmetries in the setup imply that there
are cancellations which can be exploited to obtain my results. Under the assumption that

obstruction bundles exist leafwise (which is satisfied for all applications of this article,

since relevant curves are leafwise regular), I show their existence in my examples by
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careful analytical considerations, exploiting the fact that curves lies in hypersurfaces of
the foliation.

1.1. On the invariant

The invariant I will use, algebraic torsion, was defined in [11] and is a contact invariant

taking values in Z≥0 ∪ {∞}. It was introduced, using the machinery of symplectic field
theory, as a quantitative way of measuring nonfillability, giving rise to a ‘hierarchy

of fillability obstructions’ (cf. [18]). At least morally, 0-torsion should correspond to

overtwistedness, whereas 1-torsion is implied by Giroux torsion (the converse is not true).

Having 0-torsion is actually equivalent to being algebraically overtwisted, which means
that the contact homology, or equivalently its SFT, vanishes [11, Proposition 2.9]. This

is well known to be implied by overtwistedness, but the converse is still wide open.

The key fact about this invariant is that it behaves well under exact symplectic
cobordisms, which implies that the concave end inherits any order of algebraic torsion that

the convex end has. Thus, algebraic torsion may be also thought of as an obstruction to

the existence of exact symplectic cobordisms. In particular, finiteness of algebraic torsion
is an obstruction to strong symplectic fillability (and in favourable cases, by choosing

the right coefficients for the SFT, it obstructs certain weak fillings; see [16, Rem. 1.3,

Cor. 1.5]). Moreover, there are connections to dynamics: any contact manifold with finite

torsion satisfies the Weinstein conjecture (i.e., there exist closed Reeb orbits for every
contact form).

It should be mentioned that there are other notions of algebraic torsion in the literature

which do not use SFT, but which are only 3-dimensional (see [11] for the version using
Heegaard Floer homology, or the appendix in [11] by Hutchings using Embedded Contact

Homology (ECH)).

1.2. Statement of results

For the SFT setup, I follow [11], to which I refer the reader for more details. I will take the
SFT of a contact manifold (M ,ξ) (with coefficients) to be the homology H SFT∗ (M ,ξ ;R) of

a Z2-graded unital BV∞-algebra (A[[h̄]],DSFT ) over the group ring RR :=R[H2(M ;R)/R],
for some linear subspace R ⊆ H2(M ;R). Here, A = A(λ) has generators qγ for each good

closed Reeb orbit γ with respect to some nondegenerate contact form λ for ξ , h̄ is an
even variable and the operator

DSFT : A[[h̄]] → A[[h̄]]

is defined by counting rigid solutions to a suitable abstract perturbation of a J -
holomorphic curve equation in the symplectisation of (M ,ξ). It satisfies

• DSFT is odd and squares to zero,
• DSFT (1) = 0 and
• DSFT =∑k≥1Dk h̄k−1,
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where Dk : A → A is a differential operator of order ≤ k , given by

Dk =
∑

�+,�−,g,d
|�+|+g=k

ng(�+,�−,d)

C (�−,�+)
qγ −

1
. . . qγ −

s− zd ∂

∂qγ +
1

. . .
∂

∂qγ +
s+

.

The sum ranges over all nonnegative integers g ≥ 0, homology classes d ∈ H2(M ;R)/R
and ordered (possibly empty) collections of good closed Reeb orbits �± = (γ ±

1 , . . . ,γ ±
s±)

such that s+ +g = k . After a choice of spanning surfaces as in [5, p. 566; see also p. 651],

the projection to M of each finite-energy holomorphic curve u can be capped off to a
2-cycle in M , and so it gives rise to a homology class [u] ∈ H2(M ), which I project to

define [u] ∈ H2(M ;R)/R. The number ng(�
+,�−,d) ∈ Q denotes the count of (suitably

perturbed) holomorphic curves of genus g with positive asymptotics �+ and negative

asymptotics �− in the homology class d , including asymptotic markers as explained in
[5, 21], and including rational weights arising from automorphisms. C (�−,�+) ∈ N is

a combinatorial factor defined as C (�−,�+) = s−!s+!κγ −
1

. . . κγ −
s− , where κγ denotes the

covering multiplicity of the Reeb orbit γ .
The most important special cases for my choice of linear subspace R are R= H2(M ;R)

and R = {0}, called the untwisted and fully twisted cases, respectively, and R = ker�

with � a closed 2-form on M . I shall abbreviate the latter case as H SFT∗ (M ,ξ ;�) :=
H SFT∗ (M ,ξ ; ker�), and the untwisted case as H SFT∗ (M ,ξ) := H SFT∗ (M ,ξ ;H2(M ;R)).

Definition 1.1. Let (M ,ξ) be a closed manifold of dimension 2n + 1 with a positive,
co-oriented contact structure. For any integer k ≥ 0, we say that (M ,ξ) has �-twisted

algebraic torsion of order k (or �-twisted k -torsion) if [h̄k ] = 0 in H SFT∗ (M ,ξ ;�). If this

is true for all �, or equivalently, if [h̄k ] = 0 in H SFT∗ (M ,ξ ;{0}), then we say that (M ,ξ)

has fully twisted algebraic k -torsion.

I will refer to untwisted k -torsion in the case where � = 0, in which case R =
H2(M ;R),RR = R, and we do not keep track of homology classes. Whenever I refer to

torsion without mention of coefficients, I mean the untwisted version, and indeed in this
article, as opposed to its predecessor [18], I will work only with the untwisted case (except

when recalling Theorem 1.4). I will say that if a contact manifold has algebraic 0-torsion
for every choice of coefficient ring, then it is algebraically overtwisted, which is equivalent

to the vanishing of the SFT homology or its contact homology. By definition, k -torsion
implies (k +1)-torsion, so we can define its algebraic torsion to be

AT (M ,ξ ;R) := min{k ≥ 0 : [h̄k ] = 0} ∈ Z≥0 ∪{∞},
where we set min∅ = ∞. Denote it by AT (M ,ξ) in the untwisted case.

Examples of 3-dimensional contact manifolds with any given order of torsion k − 1,
but not k −2, were constructed in [11]. I will consider a generalisation of their examples.

Consider 	 a surface of genus g which is divided into two pieces 	+ and 	− along some

dividing set of simple closed curves � of cardinality k , where 	− has genus 0 and 	+ has
genus g −k +1. Consider also a closed (2n −1)-manifold Y such that Y × [−1,1] admits

the structure of a Liouville domain (which I call a cylindrical Liouville semifilling). Let

Mg := Y ×	.
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Figure 1. The SOBD structure in M .

Fix the following notation:

Notation 1.2. Throughout this document, the symbol I will be reserved for the interval

[−1,1].

I can adapt the construction of the contact structures in [11] to my models. Decompose

the manifold M = Mg = Y ×	 into three pieces

Mg = MY

⋃
M ±

P ,

where MY =⊔k Y × I ×S1 is the spine and M ±
P = Y ×	± is the paper (see Figure 1).

There is also a an extra distinguished region, denoted M ±
C and called the interface, having

two components which are smoothly of the form
⊔k Y × [−δ,δ]×S1. It corresponds to

the region where spine and paper glue together, and can be thought of as a smoothing of

the corner MY ∩M ±
P (see Figures 2 and 3; cf. Remark 3.3).

We have natural fibrations

πY : MY → Y × I

π±
P : M ±

P → Y±,

where Y± := Y ×{±1}, with fibres S1 and 	±, respectively, and they are compatible in
the sense that

∂((π±
P )−1(pt)) =

k⊔
π−1

Y (pt),

where pt ∈ Y± ⊂ Y × I . While πY has a Liouville domain as base and a contact manifold

as fibre, the situation is reversed for π±
P , which has a contact base and Liouville fibres.

This is a prototypical example of an SOBD. While I will not include a formal definition
of this notion, the reader is invited to consult [16] for a tentative one.

Using this decomposition, a contact structure ξk can be constructed which is a small

perturbation of the ‘confoliation’-type stable Hamiltonian structure ξ± ⊕T	± along M ±
P ,

and is a contactisation for the Liouville domain (Y × I ,εdα) along MY , for some small

ε > 0. This means that it coincides with ker(εα +dθ), where θ is the S1-coordinate. This

was done in detail in [18], where the following was proved:
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Theorem 1.3 ([18]). For any k ≥ 1 and g ≥ k , the (2n + 1)-dimensional contact

manifold (Mg = Y ×	,ξk ) satisfy AT (Mg,ξk ) ≤ k −1. In particular, it is not (strongly)

symplectically fillable. Moreover, if (Y ,α±) are hypertight and k ≥ 2, the corresponding
contact manifold (Mg,ξk ) is also hypertight. In particular, AT (Mg,ξk ) > 0, and it is tight.

In this article, I consider the ‘dual’ SOBD, where the roles of the fibrations are reversed:

π∗
Y : MY → S1

(π±
P )∗ : M ±

P → 	±,

so that π∗
Y is a Liouville fibration over a contact base and (π±

P )∗ a contact fibration over
a Liouville base. Observe that we can do this due to the absence of monodromy (the

fibrations are trivial).

The associated contact structure ξ ∗
k is now a perturbation of the (integrable) stable

Hamiltonian structure T (Y × I ) along MY , which is now the paper, and isotopic to

a ‘(Y±,α±)-contactization’ of the Liouville domain (	±,ελ±) along M ±
P , which is now

the spine (for some Liouville form λ±). More concretely, ξ ∗
k is isotopic, along M ±

P , to

ker(ελ± +α±). One can check explicitly that ξk and ξ ∗
k are isotopic contact structures [16].

I will drop the ∗ from the notation, since my statements depend only on the isotopy type

of the contact structure. When needed, I will loosely refer to the original (undualised)

SOBD and all the associated data (contact form, almost complex structure, foliation,
etc.) as ‘model A’, and to the dualised SOBD and associated data as ‘model B’ (cf.

Definition 3.1).

The authors of [16] define a generalised higher-dimensional version of the notion of
Giroux torsion. This notion is defined as follows: consider (α+,α−) a Liouville pair on a

closed manifold Y 2n−1 – that is, the 1-form β = 1
2 (esα+ + e−sα−) is Liouville in R×Y .

Consider also the Giroux 2π-torsion domain modelled on (Y ,α+,α−) given by the contact

manifold (GT,ξGT ) := (Y × [0,2π ]×S1, kerλGT ), where

λGT = 1+ cos(r)

2
α+ + 1− cos(r)

2
α− + sin(r)dθ (1)

and the coordinates are (r,θ) ∈ [0,2π ] × S1. Say that a contact manifold (M 2n+1,ξ)

has Giroux torsion whenever it admits a contact embedding i : (GT,ξGT ) ↪→ (M ,ξ).

In this situation, denote by O(GT ) ⊆ H 2(M ;R) the annihilator of the subspace
i∗
(
H1(Y ;R)⊗H1(S1;R)

) ⊂ H2(M ;R), where i∗ is the map induced by the embedding

i on H2. The following was conjectured in [16] and proved in [18]:

Theorem 1.4 ([18]). If a contact manifold (M 2n+1,ξ) has Giroux torsion, then it has
�-twisted algebraic 1-torsion, for every [�] ∈ O(GT ), where GT is a Giroux 2π-torsion

domain embedded in M .

Conversely, one could ask whether there exist examples of nonfillable contact manifolds

without Giroux torsion. Examples of 3-dimensional weakly but not strongly fillable

contact manifolds without Giroux torsion were given in [18]. In higher dimensions, the
following theorem can be proved without appealing to the abstract perturbation scheme

for SFT (see Disclaimer 1.11). I use the fact that the unit cotangent bundle of a closed

hyperbolic surface fits into a cylindrical semifilling [11].
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Theorem 1.5. Let (M 5
0 ,ξ0) be a 5-dimensional contact manifold with Giroux torsion,

and let Y be the unit cotangent bundle of a closed hyperbolic surface. If (M = 	 ×Y ,ξk )

is the corresponding 5-dimensional contact manifold of Theorem 1.3 with k ≥ 3, then

there is no exact symplectic cobordism having (M0,ξ0) as the convex end and (M ,ξk ) as

the concave end.

In particular, we obtain the following:

Corollary 1.6. If Y is the unit cotangent bundle of a closed hyperbolic surface and

(M = 	 × Y ,ξk ) is the corresponding 5-dimensional contact manifold of Theorem 1.3

with k ≥ 3, then (M ,ξk ) does not have Giroux torsion.

In the other direction of Theorem 1.4, examples of contact 3-manifolds which have 1-
torsion but not Giroux torsion were constructed in [11]. In higher dimensions, we have
fairly strong geometric reasons for the following:

Conjecture 1.7. The examples of Corollary 1.6 have untwisted algebraic 1-torsion (for
any k ≥ 1).

For k ≥ 3, this would give an infinite family of contact manifolds with no Giroux torsion
and algebraic 1-torsion in dimension 5.
The interesting thing about this conjecture is that it builds on the relationship between

SFT and string topology as discussed in [4]. There are certain nonzero counts of punctured
tori in the symplectisation of (Y ,α), where α is the standard Liouville form, which survive

in M . They are given in terms of the coefficients of the Goldman–Turaev cobracket

operation on strings in the underlying hyperbolic surface. One can find elements in the
SFT algebra of (Y ,α) whose differential in R×Y has nonzero contributions from these

tori and other pair-of-pants configurations, but by index considerations only the former

survive in M . This is how 1-torsion should arise. In fact, out of 35 possibilities, consisting

of both cylinders and 1-punctured tori, this is the only possible configuration from which
1-torsion can arise (see Section 4.3). I will therefore refer to it as sporadic. However, I

provide a heuristic argument as to why I expect it to be true.

Theorem 1.5 would then be a result which is beyond the scope of algebraic torsion,
since the presence of such a cobordism would only yield the already-known fact that both

ends have algebraic 1-torsion. In fact, in the proof of Theorem 1.5, only holomorphic

cylinders play a role, whereas 1-punctured tori do not. In contrast, both are taken into
consideration for 1-torsion. This suggests the existence of an invariant more subtle than

algebraic torsion, which I suspect would be obtained from the rational SFT. Also, the

computations in [11] (e.g., the proofs of Theorems 3 and 6 in that article) could be

interpreted in this way.
Putting Theorem 1.3 together with Corollary 1.6, we obtain the following:

Corollary 1.8. There exist infinitely many nondiffeomorphic 5-dimensional contact
manifolds (M ,ξ) which are tight and not strongly fillable and which do not have Giroux

torsion.

To my knowledge, there are no other known examples of higher-dimensional contact

manifolds as in Corollary 1.8.
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The contact structure ξk of Theorem 1.3 can be twisted close to the dividing set, by
performing the l-fold Lutz–Mori twist along a hypersurface H lying in ∂(

⊔k Y × I ×S1).

This notion was defined in [16], and builds on ideas by Mori in dimension 5 [21]. It

consists of gluing copies, along H , of a 2π l-Giroux torsion domain (GTl,ξGT ) := (Y ×
[0,2π l ] × S1, kerλGT ), the contact manifold obtained by gluing l copies of GT = GT1
together. The resulting contact structures are all homotopic as almost contact structures.

By construction, all of these have Giroux torsion, so by Theorem 1.4 they have �-twisted

1-torsion, for [�] ∈ O = O(GT ). See Appendix 4.6 for more details.
As a corollary of Theorem 1.5, we get the following:

Corollary 1.9. Let Y be the unit cotangent bundle of a closed hyperbolic surface, and

let (M = 	 ×Y ,ξ) be the corresponding 5-dimensional contact manifold of Theorem 1.3,
with k ≥ 3. If (M ,ξl ) denotes the contact manifold obtained by an l-fold Lutz–Mori twist

of (M ,ξ), then there is no exact symplectic cobordism having (M ,ξl ) as the convex end

and (M ,ξ) as the concave end (even though the underlying manifolds are diffeomorphic,
and the contact structures are homotopic as almost contact structures).

In the proof of Theorem 1.5, I make use of obstruction bundles, in the sense of Hutchings

and Taubes [11, 11]. I prove that they exist in my setup, under the condition that they
exist inside the leaves of a codimension-2 holomorphic foliation. This suffices for all the

applications of this article, since relevant curves are leafwise regular. As a by-product,

I derive a result for superrigidity of holomorphic cylinders in 4-dimensional symplectic
cobordisms, which might be of independent interest. This is a natural adaptation of the

results of [11, Section 7] to the punctured setting. Recall that a somewhere injective

holomorphic curve is superrigid if it is immersed and has index zero and the normal
component of the linearised Cauchy–Riemann operator of every multiple cover is injective.

Theorem 1.10. For generic J , every somewhere injective holomorphic cylinder in a 4-
dimensional symplectic cobordism with index zero and vanishing Conley–Zehnder indices
(in some trivialisation) is superrigid.

Disclaimer 1.11. Since the statements of my results make use of machinery from

symplectic field theory, they come with the standard disclaimer that they assume that its
analytic foundations are in place. However, I have taken special care in that the approach

taken not only provides results that will be fully rigorous after the polyfold machinery

of Hofer, Wysocki and Zehnder is complete but also gives several direct results that are

already rigorous. Such is the case for Theorem 1.5, for example. Moreover, let me clarify
that while it will not be necessary for my results here, polyfold counts and obstruction

bundle counts (whenever these exist) are expected to agree.

2. Guide to the article

The main construction is carried out in Section 3, which corresponds to the building of my
model contact manifolds and stable Hamiltonian structures in any odd dimension, from

a ‘dual’ point of view as in [18]. I construct a foliation by holomorphic hypersurfaces in

Section 3.4. In Section 3.6, I use the results from [11] to show that relevant holomorphic
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curves lie in the leaves of the foliation. I discuss obstruction bundles in Section 3.8 from a
fairly general point of view, and I prove their existence for curves in the symplectisation

of my models, assuming their existence leafwise.

I illustrate my techniques in Section 4.3, where I study the algebraic 1-torsion of a
special family of contact manifolds in dimension 5. I discuss the sporadic configuration in

Section 4.4, and its relationship to string topology. Theorem 1.5 is proved in Section 4.5.

In Appendix 4.6 I derive Theorem 1.10. In Appendix 4.6 I describe the Lutz–Mori

twists and apply them to my model contact manifolds to obtain the contact structures
of Corollary 1.9.

2.1. Basic notions

A contact form in a (2n +1)-dimensional manifold M is a 1-form α such that α∧dαn is a

volume form, and the associated contact structure is ξ = kerα (I will assume that all the

contact structures are co-oriented). The Reeb vector field associated to α is the unique
vector field Rα on M satisfying

α(Rα) = 1, iRαdα = 0.

A T -periodic Reeb orbit is (γ,T ), where γ : R → M is such that γ̇ (t) = TRα(γ (t)),
γ (1) = γ (0). I will often just talk about a Reeb orbit γ without mention of T , called
its period, or action. If τ > 0 is the minimal number for which γ (τ) = γ (0), and k ∈ Z+
is such that T = kτ , we say that the covering multiplicity of (γ,T ) is k . If k = 1, then
γ is said to be simply covered (otherwise it is multiply covered). A periodic orbit γ is
said to be nondegenerate if the restriction of the time T linearised Reeb flow dϕT to

ξγ (0) does not have 1 as an eigenvalue. More generally, a Morse–Bott submanifold of

T -periodic Reeb orbits is a closed submanifold N ⊆ M invariant under ϕT such that

ker(dϕT −1) = TN , and γ is Morse–Bott whenever it lies in a Morse–Bott submanifold
and its minimal period agrees with the nearby orbits in the submanifold. The vector field

Rα is nondegenerate/Morse–Bott if all of its closed orbits are nondegenerate/Morse–Bott.

A stable Hamiltonian structure (SHS) on M is a pair H = (�,�) consisting of a closed
2-form � and a 1-form � such that

ker� ⊆ kerd�, and �|ξ is nondegenerate, where ξ = ker�.

In particular, (α,dα) is an SHS whenever α is a contact form. The Reeb vector field
associated to H is the unique vector field on M defined by

�(R) = 1, iR� = 0.

There are analogous notions of nondegeneracy/Morse–Bottness for SHSs.

A symplectic form in a 2n-dimensional manifold W is a 2-form ω which is closed
and nondegenerate. A Liouville domain is a compact symplectic manifold with an exact

symplectic form ω = dλ, such that the associated Liouville vector field V (defined by the

equation iV dλ = λ) is transverse to the boundary. Any Liouville domain necessarily has
nonempty boundary. A boundary component M of a Liouville domain (endowed with

the boundary orientation) is convex if the Liouville vector field is positively transverse

to M , and is concave if it is so negatively. An exact cobordism from a (co-oriented)
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contact manifold (M+,ξ+) to (M−,ξ−) is a Liouville domain (W ,ω = dα) with boundary
∂W = M+

⊔
M−, where M+ is convex, M− is concave and kerα|M± = ξ±. Therefore, the

boundary orientation induced by ω agrees with the contact orientation on M+ and differs

on M−. A Liouville filling of a (possibly disconnected) contact manifold (M ,ξ) is a compact
Liouville cobordism from (M ,ξ) to the empty set. A strong symplectic cobordism and a

strong filling are defined in the same way, with the difference that ω is exact only in a

neighbourhood of the boundary of W (so that the Liouville vector field is defined in this

neighbourhood but not necessarily in its complement). A contact manifold (M 2n−1,ξ) is
weakly fillable if it is the smooth boundary of a symplectic 2n-manifold (W 2n,ω), such

that (ω+τdλ)|ξ is symplectic for every τ ≥ 0, for one (and hence every) choice of contact

form λ. Say then that (W ,ω) is a weak filling for (M ,ξ).
The symplectisation of a contact manifold (M ,ξ = kerα) is the symplectic manifold

(R×M ,ω = d(eaα)), where a is the R-coordinate. A Liouville manifold is a noncompact

symplectic manifold which is obtained from a Liouville domain by attaching cylindrical
ends at each boundary component, modelled on (half-)symplectisations of the contact

structures at the corresponding boundary component. In particular, a symplectisation

is a Liouville manifold. Similarly, the symplectisation of a stable Hamiltonian manifold

(M ,�,�) is the symplectic manifold (R×M ,ωϕ), where ωϕ = d(ϕ(a)�)+� and ϕ is an
element of the set

P = {ϕ ∈ C∞(R,(−ε,ε)) : ϕ′ > 0}.
Here, ε > 0 is chosen small enough so that ωϕ is indeed symplectic. An H-compatible (or

simply cylindrical) almost complex structure on a symplectisation (W = R×M ,ωϕ) is
J ∈ End(TW ) such that

J is R-invariant,J 2 = −1, J (∂a) = R, J (ξ) = ξ, J |ξ is �-compatible.

The last condition means that �(·,J ·) defines a J -invariant Riemannian metric on ξ . If

J is H-compatible, then it is easy to check that it is ωϕ-compatible, which means that
ωϕ(·,J ·) is a J -invariant Riemannian metric on R×M .

I will consider, for cylindrical J , punctured J -holomorphic curves u : (	̇,j ) → (R×M ,J )

in the symplectisation of a stable Hamiltonian manifold M , where 	̇ = 	\� with � a
finite set of punctures, (	,j ) is a compact connected Riemann surface and u satisfies

the nonlinear Cauchy–Riemann equation du ◦ j = J ◦ u. I will also assume that u is

asymptotically cylindrical, which means the following. Partition the punctures into
positive and negative subsets � = �+ ∪�−, and at each z ∈ �±, choose a biholomorphic

identification of a punctured neighbourhood of z with the half-cylinder Z±, where

Z+ = [0,∞)×S1 and Z− = (−∞,0]×S1. Then writing u near the puncture in cylindrical

coordinates (s,t), for |s| sufficiently large, it satisfies an asymptotic formula of the
form

u ◦φ(s,t) = exp(Ts,γ (Tt))h(s,t).

Here T > 0 is a constant, γ : R → M is a T -periodic Reeb orbit, the exponential map

is defined with respect to any R-invariant metric on R× M , h(s,t) ∈ ξγ (Tt) goes to 0
uniformly in t as s → ±∞ and φ : Z± → Z± is a smooth embedding such that φ(s,t)−
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(s +s0,t + t0) → 0 as s → ±∞ for some constants s0 ∈R, t0 ∈ S1. I will refer to punctured

asymptotically cylindrical J -holomorphic curves simply as J -holomorphic curves.

Observe that for any closed Reeb orbit γ and cylindrical J , the trivial cylinder over γ ,

defined as R×γ , is J -holomorphic.
The Fredholm index of a punctured holomorphic curve u which is asymptotic to

nondegenerate Reeb orbits in a (2n + 2)-dimensional symplectisation W 2n+2 = R× M
is given by the formula

ind(u) = (n −2)χ(	̇)+2cτ
1(u∗TW )+μτ

CZ (u). (2)

Here, 	̇ is the domain of u and τ denotes a choice of trivialisations for each of
the bundles γ ∗

z ξ , where z ∈ �, at which u approximates the Reeb orbit γz . The term

cτ
1(u∗TW ) is the relative first Chern number of the bundle u∗TW . In the case where W
is 2-dimensional, this is defined as the algebraic count of zeroes of a generic section of
u∗TW which is asymptotically constant with respect to τ . For higher-rank bundles, cτ

1
is determined by imposing the condition that it is invariant under bundle isomorphisms

and satisfies the Whitney sum formula (see, e.g., [21]). The term μτ
CZ (u) is the total

Conley–Zehnder index of u, given by

μτ
CZ (u) =

∑
z∈�+

μτ
CZ (γz )−

∑
z∈�−

μτ
CZ (γz ).

3. Model contact manifolds: A dual point of view

I will construct a contact model for the underlying manifold M = Y × 	. Here, as
described in the introduction, Y fits into a cylindrical semifilling and 	 is an orientable

genus g surface, decomposed into a genus zero piece 	− and a positive genus piece 	+
along a dividing set of k circles. The main features of this contact model are as follows:

closed Reeb orbits of low action correspond to pairs (p,γ ) of critical points p of suitable
Morse functions on 	± and closed R±-orbits γ in (Y ,α±); and we will have a foliation of

its symplectisation by holomorphic hypersurfaces for a suitable almost complex structure

compatible with an SHS deforming the contact data. These hypersurfaces project to flow
lines on the surface 	, and they can be identified with either cylindrical completions of the

Liouville domain Y ×I or symplectisations of its boundary components. The results in [11]

can then be used to prove that any holomorphic curves necessarily lie in a hypersurface
of this foliation, which is the key tool for restricting their behaviour. After constructing

the model, I will restrict my attention to a specific family of 5-dimensional models for

which I prove Theorem 1.5.

3.1. Construction of the model contact manifolds

Consider Y 2n−1 such that (Y × I ,dα) is a cylindrical Liouville semifilling. Assume that

α = {αr }r∈I is a 1-parameter family of 1-forms such that αr is contact for r �= 0. All known
examples of such semifillings admit an α satisfying this condition, and I will make it a

standing assumption (which is by no means crucial). I will denote by ξ± = kerα± the

contact structures on Y± := Y ×{±1} where α± = α±1 = α|Y± , by V the Liouville vector
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field associated to dα and by Rr the Reeb vector field associated to αr for r �= 0, and
R± := R±1. Consider also 	 = 	− ∪∂ 	+, a genus g surface obtained by gluing a genus

zero surface 	− to a genus g −k +1 > 0 surface 	+, along k boundary components in an

orientation-reversing manner, and the manifold M = Y ×	. Throughout this article, I
shall use the convention that whenever I deal with equations involving ± or ∓, they are

interpreted as having a different sign according to the region (the upper sign denotes the

‘plus’ region, and the lower, the ‘minus’ region).

Take collar neighbourhoods of each boundary component of 	± of the form N (∂	±) :=⊔k [−1,0] × S1, with coordinates (t±,θ) ∈ [−1,0] × S1, such that ∂	± = {t± = 0}. Glue

these surfaces together to a cylindrical region U having k components, each of which

looks like [−1,1]×S1 � (r,θ), so that r = ∓t±. I now use the fact that each surface 	±
carries a Stein structure providing a Stein filling of its 1-dimensional convex contact

boundary. That is, we can take Morse functions h± on 	± which are plurisubharmonic

with respect to a suitable complex structure j±, which in the collar neighbourhoods look
like h±(t±,θ) = et± and j±(∂t±) = ∂θ . Moreover, we have that λ± = dCh± = −dh± ◦ j± is a

Liouville form, with a Liouville vector field given by ∇h±, where the gradient is computed

with respect to the metric g± = gdλ±,j± = dλ±(·,j±·) and where we can assume that the

gradient flow for h± is Morse–Smale (see [11, Lemma 4.1] for details). Thus, in the collar
neighbourhoods we have λ± = et±dθ = e∓rdθ and ∇h± = ∂t± = ∓∂r . The Hamiltonian

vector field Xh± = j±∇h±, computed with respect to the symplectic form dλ± inducing

the orientation in 	±, is tangent to the contact-type level sets.
Take the orientation on M = Y ×	 to be the one induced by α− on the first factor,

and on the second factor orient 	 so that its piece 	− is oriented by dλ− and its piece

	+ is oriented by the opposite orientation, given by dλ+. Take both h± to have a unique
minimum in 	±; I will use the convention of calling the minimum of h+ the maximum

(cf. Remark 3.9).

Define for K+ > K− � 0 large constants a smooth function g0 : [−1,1] →R, such that it

is constant equal to K− in [−1,−1+δ) for some small δ > 0, equal to K+ in (1−δ,1], g0 > 0
everywhere and g ′

0 ≥ 0 with strict inequality in the interval (−1+δ,1−δ). The parameter

δ > 0 is chosen so that the Liouville vector field in Y × [−1,1] is given by V = ±∂r in the

corresponding components of {|r | > 1− δ}. Define also a function γ : [−1,1] → R so that
γ (r) = −e∓r in {|r | > 1− δ}, and γ < 0. Take

gε(r) = g0(r)+ ε2γ (r),

where ε is chosen small enough so that gε > 0.
Now define

hε =
{

K± − ε2h±, in 	\U
gε, in U .

This is a (well-defined and smooth) function on 	, and ε can be chosen small enough
so that hε > 0.
Next, choose a smooth function ψ : [−1,1] →R+ satisfying ψ(r) = e∓r in {|r | > 1−δ/3},

ψ ≡ 1 on [−1+ δ,1− δ], rψ ′(r) ≤ 0. Define

fε(r) = εψ(r),
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so that fε > 0, f ′
ε ≡ 0 along [−1+ δ,1− δ].

With these choices, let �ε be the 1-parameter family of 1-forms in M = Y ×	 given
by

�ε =
{

ελ± +hεα±, in Y × (	\U)

fεdθ +hεα, in Y ×U . (3)

We can slightly modify α so that the different expressions in �ε glue together smoothly:

we have α = e±r−1α± in the corresponding components of the region {|r | ≥ 1 − δ}),
and we can replace α by a 1-form (of the same name) which looks like φ(r)α±. Here,
φ : {|r | ≥ 1− δ} → R is a smooth function which coincides with e±r−1 near |r | = 1− δ,
equals 1 on |r | = 1 and has a nonnegative/nonpositive derivative in the positive/negative

components of {|r | ≥ 1 − δ}. I shall denote ξε := ker�ε (this was called ξk in the

introduction).

Definition 3.1. I shall refer to the family of contact forms �ε (see Lemma 3.2) as model

B, in contrast with model A, which is the family of contact forms for M constructed

in [18].

Lemma 3.2.

1. For a fixed K+ � 0, �ε is a contact form for K− sufficiently close to K+, and

sufficiently small ε > 0.
2. Model A is isotopic to model B.

Proof: I will prove this lemma by viewing model B as arising from the double
completion construction (see [11, 16]). This is something very useful which can be used

to produce a suitable stable Hamiltonian structure deforming the contact data, as well

as the required isotopy between both models. Morally, both models should be isotopic,

since they are ‘supported’ by the same geometric decomposition underlying the dual
SOBDs.

Denote by N∞(Y ) = Y × (1− δ, +∞)×S1 and N∞(−Y ) = Y × (−∞, − 1+ δ)×S1.

Also, denote by 	∞± the Liouville completion of 	± obtained by attaching cylindrical
ends of the form (−δ, +∞)×S1 at each boundary component. The coordinates t± and θ

extend to the cylindrical ends in an obvious way; denote the latter by N (∂	∞± ). We also

have

M ±,∞
P = Y ×	∞

±
M ∞

Y = Y ×R×S1.

Take a variable r parametrising the R-direction in the completion Y ×R. Now define

the double completion as the open manifold

E∞,∞ = (−∞, −1+ δ)×M −,∞
P

⊔
(1− δ, +∞)×M +,∞

P

⊔
(−1, +∞)×M ∞

Y / ∼ ,

where we identify (r,y,t−,θ) ∈ (−∞, − 1 + δ) × Y ×N (∂	∞− ) with (t,y,r,θ) ∈ (−1, +
∞)×N∞(−Y ) if and only if t = t−, and (r,y,t+,θ) ∈ (1− δ, +∞)×Y ×N (∂	∞+ ) with

(t,y,r,θ) ∈ (−1, +∞)×N∞(Y ) if and only if t = t+. Denote by E∞,∞(t) the subset of

E∞,∞ where the variable t is defined (see Figure 2).
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Figure 2. The double completion E∞,∞.

Choose smoothing functions F+,G+ : (1− δ,1) → R and F−,G− : (−1, −1+ δ) → R (see
Figure 3) satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(F+(ρ),G+(ρ)) = (ρ −1,0), for 1− δ < ρ ≤ 1−2δ/3
(F−(ρ),G−(ρ)) = (0,ρ), for −1 < ρ ≤ −1+ δ/3
G ′+(ρ) < 0, F ′+(ρ) > 0, for 1−2δ/3 < ρ < 1− δ/3
F ′−(ρ) > 0, G ′−(ρ) > 0, for −1+ δ/3 < ρ < −1+2δ/3
(F+(ρ),G+(ρ)) = (0, −ρ), for 1− δ/3 ≤ ρ < 1
(F−(ρ),G−(ρ)) = (ρ +1,0), for −1+2δ/3 ≤ ρ < −1+ δ.

For L ≥ 1 and Q ≥ 0, define M L,Q as the codimension-1 submanifold of E∞,∞ given by

M L,Q :=
{
∂EL,Q ∩

(
{r ∈ [−L+ δ,L− δ]}∪ {t ≤ Q −1}

)}⋃
M ±,L,Q

C ,

where EL,Q = E∞,∞\({|r | > L}∪ {t > Q}), and

M ±,L,Q
C ={(r = F±(ρ)±L,t = G±(ρ)+Q,y,θ) :

(ρ,y,θ) ∈ (R± ∩{1 > |ρ| > 1− δ})×Y ×S1} (4)

are the smoothings of the corners of EL,Q .

We then have a decomposition

M L,Q = M ±,L,Q
P

⋃
M ±,L,Q

C

⋃
M L,Q

Y ,

which we define as

M ±,L,Q
P := (Y × (	±\U))∩M L,Q
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Figure 3. The choice of smoothing.

M L,Q
Y := (Y × [−1+ δ,1− δ]×S1))∩M L,Q .

Remark 3.3. I call M ±,L,Q
P the spine, the region M L,Q

Y the paper (these regions should

have swapped names and be called paper and spine, respectively, for the model A version)
and M ±,L,Q

C the interface or smoothed corner. With this notation, U = M L,Q
Y ∪M ±,L,Q

C .

This is a spinal open book decomposition for M L,Q . I shall drop the L,Q from the notation

when talking about L = 1,Q = 0. Note that M L,Q is diffeomorphic to M for every L,Q .

If we define

Ê∞,∞ =
⋃
L≥1

M L,L−1 ⊂ E∞,∞,

which is foliated by the disjoint submanifolds M L,L−1, the function hε : M → R can be

extended to Ê∞,∞ by fixing suitable identifications of M L,L−1 with the diffeomorphic

manifold M = M 1,0 via the following:

• hε(y,z,r) := hε(z ),

for (y,z,r) ∈ Ê∞,∞ ∩E∞,∞(t)c = Y × (	±\N (∂	±))×{|r | ≥ 1}.
• hε(F±(ρ)±L,G±(ρ)+L−1,y,θ) := hε(r),

for (F±(ρ)±L,G±(ρ)+L−1,y,θ) ∈ M ±,L,L−1
C .

• hε(y,r,t,θ) := hε

(
1−δ
L−δ

r
)
, for (y,r,t,θ) ∈ Y × [−L+ δ,L− δ]×S1 ⊆ ML,L−1

Y .

• hε(y, ±L,t,θ) ≡ hε(±1), for (y, ±L,t,θ) ∈ M ±,L,L−1
P ∩E∞,∞(t).

Also extend λ± and α to E∞,∞, so that they look like λ = etdθ and α = e∓r−1α± over

the cylindrical ends. I claim that the 1-form

�ε := ελ+hεα (5)

can be made Liouville in E∞,∞ after sufficiently shrinking the first derivative of hε (in the
uniform norm) but keeping hε uniformly large. By a version of the Thurston trick [16],

we need only check that hεα can be made Liouville in Y ×R ⊂ {t = 0}, over which E∞,∞
is a ‘fibration’ with symplectic fibres with cylindrical ends (which change topology).
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Let dvol be the volume form in Y with respect to the α−-orientation, defined by the
equation

dαn = dvol ∧dr .
We can then write

αr ∧dαn−1
r = link(αr )dvol,

where r �→ link(αr ) ∈ C∞(Y ) is the self-linking function, whose sign is opposite to that

of r ∈ R. We then have

d(hεα)n = hn−1
ε (hε −nh ′

ε link(αr ))dvol ∧dr . (6)

Observe that even though

link(αr ) = en(±r−1)link(α±)

over the cylindrical ends, and hence is not bounded as a function of r on the whole real

line, our choice of extension of hε implies that h ′
ε ≡ 0 for |r | ≥ 2. We can choose h ′

ε uniformly

small enough on [−2,2], without making hε small, by observing that h ′
ε = g ′

ε = g ′
0 + ε2γ ′

can be made small by taking ε small and K− sufficiently close to K+ (so that g ′
0 is small),

and so (6) is positive.

We can then compute the Liouville vector field associated to hεα, which is given by

Vε := hε

hε +h ′
εdr(V )

V .

(Recall that V is the Liouville vector field associated to α.) Therefore it is a positive

multiple of V , for suitably small h ′
ε , for a multiple which is as arbitrarily close to 1 as

desired, and coincides with ±∂r over {|r | ≥ 2}. It follows that the Liouville vector field

associated to �ε is Zε := X +Vε . Here, X is the Liouville vector field of λ, defined by

X =
⎧⎨⎩

X+, on {r > 1− δ}
X−, on {r < −1+ δ}
∂t, on {|r | < 1},

(7)

where X± is the Liouville vector field associated to dλ±. Since Vε can be made as
arbitrarily close to V as we wish, Zε is transverse to M L,Q for every L,Q , and therefore,

for the fixed choice L = 1,Q = 0, the manifold (M = M 1,0,�ε |M ) is contact. This proves

the first part of Lemma 3.2, through the observation that �ε |M (for �ε as defined in (5))
coincides with (3) after setting fε(r) = εeG±(r).

For the second part, I point out that model A in [18] was also constructed via the double

completion, but with the Liouville form �ε replaced by the Liouville form λσ = σα +λ,

where σ = R → R+ is a suitable smooth function (see [18, Section 3.1, pp. 37–38]). Then
linearly homotope between the Liouville forms λσ and �ε via

�t = gt (σ,hε)α + gt (1,ε)λ,

where gt (A,B) = (1− t)A+ tB is the linear interpolation between the quantities A and
B . Again by Thurston’s trick, to show that �t is Liouville for all t we only need to check

that gt (σ,hε)α and gt (1,ε)λ are Liouville forms in the horizontal and vertical directions,

respectively, and that the Liouville vector field Zt associated to �t is transverse to M
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for every t . The 1-form gt (1,ε)λ is obviously Liouville, and its Liouville vector field is
clearly a multiple of that of λ. For the 1-form gt (σ,hε)α, the computation is the same as

for hεα, with the expression of the corresponding Liouville vector field being the same

as for Vε but with hε replaced by gt (σ,hε). The path �t |M is then an isotopy of contact
forms interpolating between model A and model B. This proves Lemma 3.2.

3.2. Deformation to an SHS along the cylindrical region

To obtain an SHS deforming the contact data, which I will need to construct holomorphic

hypersurfaces, I homotope the Liouville vector field over MY (the model B paper) as
follows. Choose a bump function κ : R → R which equals 1 outside of the unit interval

and 0 in [−1+ δ,1− δ], with sign(κ ′(r)) =sign(r) �= 0 for r ∈ {1− δ < |r | < 1}.
Define

W s
ε :=
{

Zε, in E∞,∞\({|r | ≤ 1}∩E∞,∞(t))
X + (sκ(r)+1− s)Vε, in {|r | ≤ 1}∩E∞,∞(t).

We can check that

Hs
ε := (�s

ε,�ε) = (iW ε
s d�ε |TM ,d�ε |TM )s∈[0,1]

is a family of SHSs on M which deform model B (obtained for s = 0) and such that

�s
ε is contact for s < 1. This follows from the fact that the Reeb dynamics are invariant

when M is flowed via W s
ε inside E∞,∞ (see (8)) – that is, W s

ε is stabilising – or via a
straightforward check which I leave to the reader.

Focusing now on the case where L = 1, Q = 0, we have �s
ε = ελ+ (sκ +1−s)hεα, which

we can explicitly write as

�s
ε =
⎧⎨⎩

ελ± +hεα±, in M ±
P = Y × (	\U)

fε(r)dθ + (sκ(F±(r)±1)+1− s)hεα, in M ±
C = Y × (R± ∩{|r | > 1− δ})×S1

εdθ + (1− s)hεα, in MY = Y × [−1+ δ,1− δ]×S1,

where again we denote fε(r) = εeG±(r) (cf. (3)).

One can check that the Reeb vector field Rs
ε associated to Hs

ε is given by

Rs
ε =

⎧⎪⎨⎪⎩
Rε, in M ±

P
1

Ds
ε +fεhε

∂αr
∂r (Rr )

((h ′
ε +hε

∂αr
∂r (Rr ))∂θ − f ′

εRr ), in M ±
C

∂θ/ε, in MY ,

(8)

where Ds
ε := fεh ′

ε − (sκ(F± ±1)+1− s)hεf ′
ε .

Every pair (p,γ ) consisting of a critical point p of h± and a closed R±-orbit γ gives
rise to a closed Reeb orbit of Rs

ε of the form γp := (γ,p) ∈ Y ×	. The closed Reeb orbits

which do not correspond to critical points of h± can be made to have arbitrarily large

period by taking ε sufficiently close to zero. Therefore we can find an action threshold
Tε > 0 (s-independent) such that limε→0 Tε = +∞ and such that every closed Reeb orbit

of Rs
ε of action less than Tε either lies in Y ×U or is a cover γ l

p of a simple closed Reeb

orbit γp , for l ≤ Nε , where Nε := max{n ∈ N : γ n has action less than Tε}.
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The following lemma will be used in the proof of Theorem 1.5:

Lemma 3.4. The 2-form ω = d(eε�s
ε ) is symplectic in (0,ε0]×M for sufficiently small

ε0 > 0 and for 0 ≤ s < 1, and induces the orientation given by the natural product

orientation (where the orientation on M is as described before Lemma 3.2).

Proof: It follows by direct computations [16].

3.3. Compatible almost complex structure

I proceed now to define an Hs
ε -compatible (and nongeneric) almost complex structure J s

ε

in R×M . I define it on ξ s
ε = ker�s

ε and extend it in a cylindrical way.

Write

ξ s
ε =
{

ξ± ⊕Ls
ε, in M ±

P ∪M ±
C

˜T (Y × I ), in MY ,
(9)

where ˜T (Y × I ) = {v − (1−s)hε
α(v)

ε
∂θ : v ∈ T (Y × I )} and Ls

ε is a bundle of (real) rank 2.
The latter may be written as

Ls
ε =
⎧⎨⎩

T	±, in crit(h±) ⊆ M ±
P〈∇h±,hεXh± − ε|∇h±|2R±

〉
, in M ±

P \crit(h±)

〈V = ±∂r,W 〉, in M ±
C ,

(10)

where

W := ∓fεRr ± (sκ(F± ±1)+1− s)hε∂θ .

Over the region M ±
P = Y × (	±\U), the differential of the projection π : Y × (	±\U) →

	±\U is an isomorphism for every ε when restricted to Ls
ε . We can then define

J s
ε |ξsε = J± ⊕ (π |Ls

ε
)∗j± (11)

with respect to the splitting above in equation 9, where J± is a dα±-compatible almost

complex structure in ξ± and j± is a dλ±-compatible almost complex structure on 	±
which satisfies j±(∂t±) = ∂θ on the collar neighbourhoods.

Choose now a dα-compatible almost complex structure J0 in the Liouville domain Y ×I
which is cylindrical in the cylindrical ends {|r | > 1− δ}. Along these, its restriction to ξr
coincides with J± .
Over the region Y ×U = Y × I × S1, the projection πY : Y ×U → Y × I gives an

isomorphism

dπY |ξsε : ξ s
ε = ˜T (Y × I )

�−→ T (Y × I ),

and thus J S
ε = π∗

Y J0 is an almost complex structure on ξ s
ε .

In order to glue the two definitions along the region R×M ±
C , compute that J s

ε (W ) =
sκ(F± ± 1)+ 1− s)hε∂r close to r = ±1 and J s

ε (W ) = fε∂r close to r = ±1∓ δ. We can

then define J s
ε (W ) = βs

ε,±(r)∂r for suitable interpolating functions βs
ε,±(r).

We thus get a well-defined almost complex structure J s
ε over the whole model.
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Figure 4. Foliation by holomorphic hypersurfaces. The vertical lines are the cylindrical hypersurfaces

corresponding to critical points min (minimum), hyp (hyperbolic) an max (maximum), and the

nonvertical ones are the noncylindrical H ν
a .

Compatibility. One can check that J s
ε is Hs

ε -compatible by explicit computation on

these splittings (cf. [16, pp. 47–48] for the model A case).

Remark 3.5. Observe that (9) is holomorphic. One can directly check that c1(ξ
1
ε ) = 0

whenever c1(ξ±) = 0.

3.4. Foliation by holomorphic hypersurfaces

The goal of this section is to construct a foliation of R×M by holomorphic hypersurfaces

(where the almost complex structure is the one compatible with the noncontact SHS H1
ε ).

Recall the Morse functions h±, whose gradient flow we assume to be Morse–Smale.

Proposition 3.6. For ε ∈ (0,ε0], there exists a foliation F =⋃a,ν H ν
a of the symplecti-

sation of H1
ε by J 1

ε -holomorphic hypersurfaces, which come in three types (see Figure 4):

1. (Cylindrical hypersurfaces over critical points) For p ∈ crit(h±), there exists a

cylindrical hypersurface of the form R× Hp, where Hp := Y × {p}, a copy of the
symplectisation of (Y ,α±).

2. (Positive/negative flow-line hypersurfaces contained in one side of the dividing set)

These are parametrised by

H ν
a = {(a(s),ν(s)) : s ∈ R}×Y ,

where a : R → R is a proper function and ν : R → int(	±) is a nonconstant

negative/positive reparametrisation of a flow line for h±.
If lims→±∞ ν(s) = p±, then H ν

a is asymptotically cylindrical over Hp± (see [16, 11]

for a definition) and has exactly one positive and one negative end. If ν is contained

in 	+ (and thus ν connects the maximum to a hyperbolic point), the positive end
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corresponds to the maximum. If ν is contained in 	− (and thus ν connects the

minimum to a hyperbolic point), it corresponds to the minimum.

3. (Page-like hypersurfaces crossing sides of the dividing set) These may be written as

H ν
a = H ν,−

a

⋃
H ν,cst

a

⋃
H ν,+

a ,

where

H ν,cst
a = {a}×Y × [−1,1] ⊆ R×MY

H ν,+
a := {(a+(s),ν+(s)) : s ∈ [0, +∞)}×Y ⊆ R×M +

P

H ν,−
a := {(a−(s),ν−(s)) : s ∈ (−∞,0]}×Y ⊆ R×M −

P .

Here, a+ : [0, +∞) → R and a− : (−∞,0] → R are proper functions, and ν = ν+ �ν−
for ν+ : [0, +∞) → 	+ a nonconstant reparametrisation of a negative Morse flow line

of h+ and ν− : (−∞,0] → 	− a nonconstant reparametrisation of a positive Morse

flow line of h−, both satisfying ν±(0) ∈ ∂	±. If lims→±∞ ν±(s) = p±, the hypersurface
H ν

a is asymptotically cylindrical over Hp± , having exactly two positive ends.

Proof: Along the paper, compute that

J 1
ε R± = F∇g±h± +G∂a,

where

F = εhε

hε + ε2|∇h±|2 , G = −hε .

Observe that F > 0, G < 0. Then

〈R±,J 1
ε R±〉⊕ ξ± = 〈F∇g±h± +G∂a〉⊕TY ,

a J 1
ε -invariant and integrable distribution over M ±

P . Integrating this distribution, we get

the hypersurfaces H ν
a as in the proposition. For instance, for the hypersurfaces of the

second type, take a and ν to satisfy

ν̇(s) = ∓F (ν(s))∇g±h±(ν(s))

ȧ(s) = ∓G(ν(s)).

For hypersurfaces of the third type, one can check that for a± and ν± satisfying the same

ODEs, we can glue each piece as in the statement to get a hypersurface H ν
a whose tangent

space is

TH ν
a =
{ 〈R±,J 1

ε R±〉⊕ ξ±, over M ±
P ∪M ±

C
T (Y × I ), over MY ,

which is clearly J 1
ε -invariant. The assertion about the asymptotic behaviour of the ends of
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H ν
a is deduced by the fact that orientations change as we move from one side to the other.

The condition that the holomorphic hypersurfaces H ν
a are asymptotically cylindrical

follows from the fact that they project to 	 as the Morse flow line ν [16].

Remark 3.7. For a flow-line hypersurface H ν
a which does not cross the dividing set, and

p± = lims→±∞ ν(s) a critical point, the projection map

P ν
a : H ν

a = {(a(s),ν(s)) : s ∈ R}×Y → R×Hp±,

(a(s),ν(s),y) �→ (s,y,p±),

gives an identification of H ν
a with R×Hp± , which, up to replacing s by −s over M −

P , is a
biholomorphism. In particular, it maps holomorphic curves in H ν

a to holomorphic curves

in R× Hp± . The hypersurfaces which do cross sides are cylindrical completions of the

Liouville domain Y × I , and their cylindrical ends are identified with the symplectisation

of (Y ,α±) via the a map as above.

Remark 3.8. Assume that (Y ,α±) both satisfy the Weinstein conjecture, so that there

are closed α±-Reeb orbits. Then the hypersurfaces H ν
a which stay on the same side of the

dividing set contain finite-energy J s
ε -holomorphic curves (for every s). These are of the

form

ua
γ : R×S1 → R×M

ua
γ (s,t) = (a(s),ν(s),η(t)),

where ν and a are as before and η is a closed α±-Reeb orbit satisfying lims→±∞ ν(s) = p±
for p± critical point. The asymptotic behaviour of ua

γ is thus the same as the hypersurface

H ν
a containing it (namely, the positive/negative cylindrical ends of the curve lie in the

positive/negative cylindrical ends of the hypersurface, so that the Reeb asymptotics of the
curve are contained in the cylindrical asymptotics of the hypersurface). These cylinders

correspond to trivial cylinders under the identification of Remark 3.7.

For a general choice of closed manifold Y (satisfying the standing assumption that
Y × I is Liouville), there is no reason why holomorphic cylinders crossing sides should

exist, and in fact there are examples for which they do not (e.g., for Y the unit cotangent

bundle of a closed hyperbolic surface; see Section 4.2, fact C).

Remark 3.9. In the language and notation of [16, 11], the holomorphic foliation F is
compatible with the Hε-admissible fibration (	,π	,Y ,Hε). Here, π	 : M = Y ×	 → 	 is

the natural projection, and Hε is a suitably defined Morse function on 	 having the same

critical points as h±, but up to orientation reversal on 	+, so that its unique maximum
is the minimum of h+ [16]. The binding of F is

⋃
p∈crit(Hε ) Hp , where each Hp is a strong

stable hypersurface. The sign function sign : crit(Hε) → {−1,1} is defined by sign(p) = ±1
if p ∈ crit(h±) ⊆ 	±.
I will use this fact in Section 3.6, together with the results from [16, 11], to show that

every holomorphic curve in R×M with positive asymptotics corresponding to critical

points has to lie in a leaf of F .
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3.5. Index computations

For closed Reeb orbits γp : S1 → M of the form γp(t) = (γ (t),p), for p ∈ crit(h±) and γ

a closed α±-Reeb orbit, we have a natural identification

�(γ ∗
p ξ s

ε ) = �(γ ∗ξ±)⊕�(Ls
ε |p) = �(γ ∗ξ±)⊕�(Tp	±), (12)

where the second summand denotes the space of sections of the trivial line bundle over S1

with fibre Ls
ε |p = Tp	±. This splitting corresponds to splitting into tangent and normal

components with respect to the hypersurface Hp containing γp . Any trivialisation τ of
γ ∗ξ± extends naturally to a trivialisation of γ ∗

p ξ s
ε , which I shall also denote by τ .

Proposition 3.10. Consider a trivialisation τ of γ ∗ξ± over the simply covered α±-
Reeb orbit γ , inducing a natural trivialisation τ l of (γ l )∗ξ± for every l . Then for each

sufficiently small ε > 0 there exists a covering threshold Nε, satisfying limε→0 Nε = +∞,
such that the Conley–Zehnder index of γ l

p for l ≤ Nε with respect to the induced

trivialisation of (γ l
p)∗ξ s

ε given by (12) is

μτ l
CZ (γ l

p) =
{

μτ l
CZ (γ l )+1, if p is the maximum or minimum

μτ l
CZ (γ l ), if p is hyperbolic.

Here, μτ
CZ (γ ) denotes the Conley–Zehnder index of γ in the case where this Reeb orbit

is nondegenerate or Morse–Bott.

Remark 3.11. In the Morse–Bott case, we need to add suitable weights adapted to

the spectral gap of the corresponding operator to obtain μτ
CZ (γ ), as explained in, for

example, [11].

Proof: I sketch the proof (see [16, Prop. 4.9] for full details). Consider the asymptotic

operator associated to the Reeb orbit γ l
p . This operator looks like

Aγ l
p

: W 1,2((γ l
p)∗ξ s

ε ) → L2((γ l
p)∗ξ s

ε )

Aγ l
p
η = −J s

ε (∇tη−T∇ηRε),

where ∇ is any symmetric connection in M and

T = �ε(γ̇
l
p) = lhε(p)α±(γ̇ ) = lhε(p)Tγ

is the action of γ l
p (Tγ = α±(γ̇ ) is the action of γ ). The splitting of this operator into

tangent and normal components with respect to the hypersurface Hp is a direct sum of
the form

Aγ l
p

= Aγ l ⊕A±
ε,γ l , (13)

where

A±
ε,γ l = −i∇t − εlTγ ∇2

ph±. (14)

The operator A±
ε,γ l is the normal asymptotic operator associated to γ l acting on �(Tp	).
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The additivity of μCZ implies that

μτ l
CZ (γ l

p) = μτ l
CZ (γ l )+μCZ (A±

ε,γ l ).

For ε > 0 small enough, the operator A±
ε,γ l is nondegenerate, and the smaller ε is, the

larger we are allowed to take Tγ l = lTγ . Since every orbit of action less than Tε satisfies

the condition that this operator is nondegenerate, we have

μCZ (A±
ε,γ l ) = 1− indp(h±) ∈ {0,1}, (15)

and this computation is valid for l ≤ Nε = max{n ∈ N : γ l has action < Tε}.

3.6. Holomorphic curves lie in hypersurfaces

In this section, I shall make use of intersection theory for punctured holomorphic curves

and holomorphic hypersurfaces, as outlined in [16, 11], to which I refer for the relevant

definitions and notation.
If we assume by perturbing that (Y ,α±) are nondegenerate contact manifolds, then we

are in the situation of [16, 11], as can be easily checked. For instance, I have already

observed that the splitting of the asymptotic operator Aγ l
p
into tangent and normal

components is given by Aγ l
p

=Aγ l ⊕A±
ε,γ l

p
, where the normal operator has Conley–Zehnder

index μCZ (A±
ε,γ l

p
) = 1− ind(h±) = sign(p)(indp(Hε)−1), where Hε and the sign function

are the ones of Remark 3.9.

Proposition 3.12. Suppose u : Ṡ →R×M is a finite-energy J 1
ε -holomorphic curve which

has all of its positive ends asymptotic to Reeb orbits of the form γ l
p, with l ≤ Nε. Then

the image of u is contained in a leaf of the foliation F .

Proof: Given such a curve u, by Stokes’ theorem we have that its negative ends have

action bounded by Tε , and so also correspond to critical points. Since all of its asymptotics
project to 	 as points, we can define a map v := π	 ◦u : S → 	 between closed surfaces.

We are therefore in the situation of [11], which, since the map sign : crit(Hε) → {−1,1} is
surjective, implies the result.

Remark 3.13. Proposition 3.12 reduces the study of J 1
ε -holomorphic curves/buildings

inside R × M to the study of J0-curves/buildings inside the completion W0 of the

cylindrical Liouville semifilling Y × I . Recall that J0 is any cylindrical dα-compatible
almost complex structure in Y × I , and W0 is obtained by attaching cylindrical ends to

∂(Y × I ) = (Y−,α−)
⊔

(Y+,α+). Holomorphic buildings inside W0 are distributed along

a main level, which can be identified with W0 itself, and perhaps several upper levels,
which come in two types depending on whether they correspond to the symplectisation

of (Y ,α+) or (Y ,α−) (see Figure 5). In further sections, I will refer to these upper levels

as right or left, respectively.
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Figure 5. A building in W0 = Ŷ × I , the completion of the cylindrical Liouville semifilling Y × I .

3.7. Regularity inside a hypersurface versus regularity in the symplectisation

for curves of genus zero

Consider u : Ṡ → R×M , a finite-energy J 1
ε -holomorphic curve with asymptotics of the

form γ l
p , l ≤ Nε , and genus g . By Proposition 3.12, u(Ṡ ) ⊆ H for some H ∈ F . If H

is positively/negatively asymptotically cylindrical over Hp± , then the positive/negative
asymptotics of u are of the form γ l

p± for some simply covered orbit γ ⊆ H±. Denote by

� = �+ ∪�− the set of punctures of u (where �± is the set of positive/negative punctures).

Define a partition �± = �±
0 ∪ �±

1 ∪ �±
2 , where �±

i denotes the set of positive/negative
punctures for which the corresponding asymptotic is of the form γ l

p , with indp(Hε) = i ∈
{0,1,2}.
Lemma 3.14. Assume that u ⊆ H has genus g = 0 and is Fredholm regular inside H ,

and that

#�−
0 +#�−

1 +#�+
1 +#�−

2 < 2. (16)

Then u is Fredholm regular in R×M .

Remark 3.15. Observe that since all the positive asymptotics of u correspond to the

same critical point of Hε (and similarly for all the negative ones), #�±
i �= 0 implies

#�±
j = 0 for j �= i .

Proof: Consider the complex splitting Nu = N H
u ⊕ u∗NH , where Nu is the normal

bundle to u (in the generalised sense, in which u is allowed to have critical points; see
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[11, Sec. 3.3]), N H
u is the normal bundle to u inside H and NH is the normal

bundle to H inside R × M (a trivial complex line bundle). Then we get a matrix

representation of the normal linearised Cauchy–Riemann operator DN
u : W 1,2,δ0(Nu) ⊕

X� → L2,δ0(HomC(Ṡ,Nu)), given by

DN
u =
(

DN
u;TH

DN
u;NT

DN
u;TN DN

u;NH

)
,

where

DN
u;TH

: W 1,2,δ0(N H
u )⊕X� → L2,δ0(HomC(Ṡ,N H

u ))

and

DN
u;NH

: W 1,2,δ0(u∗NH ) → L2,δ0(HomC(Ṡ,u∗NH ))

are Cauchy–Riemann type operators and the off-diagonal operators are tensorial. Here,
X� is a finite-dimensional vector space of smooth sections which are supported near

infinity and parallel to the Morse–Bott submanifolds containing the asymptotics of u.
Without loss of generality, we can assume that they are tangent to H .

The assumption that u is regular inside H is equivalent to the surjectivity of DN
u;TH .

Moreover, I claim that DN
u can be assumed upper-triangular in this matrix representation,

that is, that

DN
u;TN = 0.

This, which is basically a generalisation of [11, Lemma 3.8], can be seen as follows: take

any metric making the splitting T (R× M )|H = TH ⊕ NH orthogonal, and take ∇ to
be the associated Levi-Civita connection. This connection is symmetric and preserves

this orthogonal splitting. If ξ ∈ W 1,2,δ0(N H
u ), take a smooth path t → ut of maps of class

W 1,p,δ(Ṡ,H ), with image inside H , such that ∂t |t=0ut = ξ , u0 = u. Since H is holomorphic,
∂ut ∈ L2(HomC(Ṡ,u∗

t TH )) takes values in u∗
t TH . Then DN

u ξ = πN∇t (∂ut )|t=0 takes values

in N H
u ⊆ u∗TH , since ∇ preserves the splitting, and the claim follows.

Therefore, to show that DN
u is surjective, it suffices to show that DN

u;NH
is. For this, we

can use the automatic transversality criterion in [11], for the case of a line bundle. We
need to check that

ind(DN
u;NH

) > −2+2g +#�even, (17)

where we denote by �even the set of punctures z at which the Conley–Zehnder index of

the asymptotic operator of DN
u;NH

at z is even. Observe that �even = �+
1 ∪�−

1 . Moreover,

the operator DN
u;NH

is asymptotic at each puncture z of u to the normal asymptotic

operator associated to the corresponding Reeb orbit γ lz
pz at z , whose Conley–Zehnder

index is μN (γ lz
pz ) = |indpz (Hε)− 1|. By the Riemann–Roch formula, the Fredholm index

https://doi.org/10.1017/S1474748020000559 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000559


SFT Computations and Intersection Theory 1245

of DN
u;NH

is

ind(DN
u;NH

) =χ(Ṡ )+
∑
z∈�+

μN (γ lz
pz )−
∑
z∈�−

μN (γ lz
pz )

=2−2g −#� +#�+
0 +#�+

2 −#�−
0 −#�−

2

=2−2g −2#�−
0 −2#�−

2 −#�+
1 −#�−

1 ,

(18)

using #� =∑i∈{0,1,2} #�±
i and c1(NH ) = 0 in the natural trivialisation. Using #�even =

#�+
1 +#�−

1 , (17) can only be satisfied if g = 0, in which case it is equivalent to (16).

Remark 3.16. Lemma 3.14 implies that the holomorphic cylinders of Remark 3.8 are
regular index 1 cylinders in R×M . This generalises the situation in [11].

3.8. Obstruction bundles

In this section I will deal with the existence of obstruction bundles over buildings of

holomorphic curves in R× M , to deal with the cases where Fredholm regularity fails.

Given such a building u, I want to compute the number of gluings one obtains from u for
a generic perturbation of J in the case where its components fail to be transversely cut

out, but not too badly. For this, each component of u must consist of either a regular curve

or a curve for which the dimension of the cokernel of the (normal) linearised Cauchy–
Riemann operator is constant as the curve varies in its corresponding moduli space. I will

refer to these curves as not too bad. If such is the case, one can construct an obstruction

bundle Ou, an orientable bundle whose fibre is the direct sum of the cokernels of these
operators, where the sum varies over the components of u which are not regular. The

base of this bundle is the domain of a pregluing map, together with the parameter space

keeping track of a fixed perturbation of J . Given such a generic (small) perturbation

t �→ Jt of J = J0 through cyilindrical almost complex structures, the idea is to preglue
the components of the J0-holomorphic building u and impose that the resulting preglued

curve be Jt -holomorphic. The resulting equation can be viewed as an obstruction to

gluing in the form of a section of the obstruction bundle, whose algebraic count of zeroes
is precisely the number of holomorphic gluings of u one obtains for sufficiently large gluing

parameters. This technique, coming from algebraic geometry and Gromov–Witten theory,

has been used, for example, in [10] and [11] in the context of ECH (see also [8] and [9]
for gentler introductions).

I sketch the construction in a fairly general case, where curves are immersed and

nonnodal. The nonimmersed case is slightly more technical, and for simplicity I will omit

it. The normal bundle needs to be replaced with the restriction of the tangent bundle of
W to the curves in question, including a suitable Teichmüller slice parametrising complex

structures on the domain, and divided by the action of the automorphism group. The

nodal case just adds an extra S1 factor as a gluing parameter for each node to the base
of the obstruction bundle.

Setup. Let t �→ Jt be a generic perturbation of J = J0, t ∈ [0,1], and consider a

J0-holomorphic building u = (u1
1, . . . ,u

1
r1, . . . ,u

N
1 , . . . ,uN

rN ) with N ≥ 1 floors, C ≥ N
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components (where C =∑N
i=i ri) denoted ui

j , consisting of R-translation classes of either
regular curves or curves which are not too bad. I denote the not-too-bad curves by uk , for

k ∈ {1, . . . ,r}. Assume all of the ui
j are immersed. Assume also that u contains no trivial

cylinder components, since they are regular and glue uniquely, so they do not affect the

counts which I will consider. Then there is an orientable obstruction bundle

Ou → [0,1]×
N−1∏
i=1

[Ri, +∞)×
N∏
i=1

⎛⎝⎛⎝ ri∏
j=1

Mi
j

⎞⎠/R
⎞⎠ := Bu,

where Ri � 0 is a gluing parameter for gluing the ith floor to the (i +1)th floor of u, and
Mi

j is the moduli space of J0-holomorphic curves containing ui
j (without modding out the

R-action on the target). The fibre of Ou over an element in the base is
⊕r

k=1 coker D
N
k ,

where DN
k is the normal linearised Cauchy–Riemann operator of the kth not-too-bad

curve uk .

The base of the obstruction bundle is that of the pregluing map, and the interval [0,1]
is where the t parameter varies. Observe that the case r = 0 is when every component is

regular, and we have a unique gluing. The case N = 1 is also considered, in which there is
no gluing to do but the components could be multiply covered, in which case I still wish

to count their contributions in the form of a count of zeroes of a section of this bundle.

Remark 3.17.

i) (Orbibundle) In practice, one should check that the moduli spaces Mi
j correspond-

ing to not-too-bad curves are orbifolds at worst. The obstruction bundle is then an
orientable orbibundle, and the count of zeroes of a generic section is a weighted,

rational count. The way to count is independent of the abstract perturbation scheme

for polyfolds (see, e.g., [6] or [21] for a basic exposition on how to count zeroes of
sections of orbibundles). In this article, the configurations that I care about will

satisfy this orbifold condition, and the existence of obstruction bundles and a way

of counting will be enough for my purposes.

ii) (Tangent space) Under the assumption of i), in practice one should also ask that

TukMk = kerDN
k , (19)

where uk is the kth not-too-bad curve and Mk its corresponding moduli space. This

condition is automatic for regular curves, but for not-too-bad curves a priori we only

get the inclusion TukMk ⊂ kerDN
k . In the case of orbifolds, this is to be understood

in the orbifold sense, where the tangent space is the quotient of an euclidean space

by the action of the isotropy group. The condition is necessary to make sure that

the counts of zeroes actually correspond to holomorphic gluings (cf. Remark 3.18).

iii) The fact that Ou admits local trivialisations can be proven via standard results

from nonlinear analysis (e.g., via the constant rank theorem for Fredholm operators

[3, Corollary 3.1]).
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A section s of this bundle, the obstruction section, is defined roughly as follows. Take
pregluing data (t,r,v) ∈ Bu, where

r = (r1, . . . ,rN−1),

v = (v1
1 , . . . ,v1

r1, . . . ,v
N
1 , . . . ,vN

rN ).

Identify the R-translation classes v i
j with representatives. Consider a tuple

� = (ψ1
1, . . . ,ψ1

r1, . . . ,ψ
N
1 , . . . ,ψN

rN ),

where ψ i
j is a section of the normal bundle of v i

j belonging to a suitable Hilbert completion

of the space of smooth sections.
We can construct a (only approximately Jt -holomorphic) preglued curve ⊕(t,r,�)v out

of the J0-building v with the property that it converges to v as every component of

r approaches +∞. This is a standard construction, and is done by exponentiating ψ i
j

along v i
j and using suitable smooth cutoff functions βi

j , which equal 1 in the interior of

v i
j and decay towards its cylindrical ends, translated in a way determined by the gluing

parameters r (see, e.g., [11, Sec. 5.2]).

If we impose that ⊕(t,r,�)v is Jt -holomorphic, we get an equation (cf. [11, Lemma 5.2])
of the form

N∑
i=1

ri∑
j=1

βi
j �

i
j (t,r,�) = 0,

where

�i
j (t,r,�) = Di

jψ
i
j +F i

j (t,r,�).

Here, Di
j is the linearised Cauchy–Riemann operator of v i

j for t = 0, and the second

summand involves extra terms arising from the patching construction, mostly nonlinear
and depending only on the values of ψm

n for which v i
j is adjacent to vm

n .

For sufficiently small t and fixed sufficiently large Ri , there exists a unique � = �t,v

such that

• ψ i
j ⊥ kerDi

j , for every i,j ;
• �i

j (t,r,�) = 0, if ui
j (or equivalently v i

j ) is regular;
• �i

j (t,r,�) ⊥ imDi
j , if ui

j (or equivalently v i
j ) is not too bad

(cf. [8, Lemma 2.4, p. 8] and [11, Sec. 5.6, Prop. 5.6, Prop. 5.7]). Then we can define

s(t,r,v) =
r⊕

k=1

πk�k (t,r,�t,v) =
r⊕

k=1

πkFk (t,r,�t,v),

where πk is the orthogonal projection to coker DN
k . Therefore, there is a one-to-one

correspondence between the zeroes of s(t, · ,v) and the Jt -holomorphic gluings of v.

Moreover, s(t, · ,v) is transverse to the zero section of Ot
u (the restriction of Ou to

{t}×{∗} ⊂ Bu) for generic Jt .
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Remark 3.18. Under the assumptions of Remark 3.17, it can be easily computed that

dimBu = virt-dim(u)+ rankOu. (20)

We conclude that if virt-dim(u) = 1, then generically, for fixed small t and fixed

large gluing parameters, there will be finitely many Jt -gluings, given by zeroes of the

obstruction section as a section of Ot
u.

Existence of obstruction bundles. In the case where the hypotheses of Lemma 3.14 are

not satisfied for a possibly multiply covered curve u : (Ṡ,j ) → H ⊆ W = R×M , I wish

to have a criterion for the existence of an obstruction bundle for building configurations
containing u. I will assume that u is is not too bad in H , which includes the case where

u is regular (all curves discussed in this article will be leafwise regular). I prove that u is

not-too-bad in R×M , which provides obstruction bundles in R×M .
As in the proof of Lemma 3.14, consider the splitting

DN
u =
(

DN
u;TH

DN
u;NT

0 DN
u;NH

)
. (21)

If the hypotheses of Lemma 3.14 fail, then we have

indDN
u;NH

≤ 0.

Indeed, this follows from (18), if we assume that g ≥ 1 or #�−
0 +#�−

1 +#�+
1 +#�−

2 ≥ 2.
By [11], we get a bound

dimkerDN
u;NH

≤ K (c1(NH ,u),#�even), (22)

where

2c1(NH ,u) = indDN
u;NH

−2+2g +#�even = −2(#�−
0 +#�−

2 ) ≤ 0 (23)

and

K (c,G) = min{k + l |k,l ∈ Z≥0,k ≤ G,2k + l > 2c, l even}.
If c1(NH ,u) < 0, which is equivalent to either #�−

0 or #�−
2 being nonzero (which is

the case only when u lies in the cylindrical hypersurface over min or max ), we have that

DN
u;NH

is injective. In the case where c1(NH ,u) = 0, we obtain

dimkerDN
u;NH

≤ 2.

Case 1: H is noncylindrical. In this case, dimkerDN
u;NH

≥ 1, since ∂a is then normal
to H , and the almost complex structure is R-invariant.

Case 1.A: Generic case. If H projects to a flow line joining the maximum to the
minimum, all nearby index 2 flow lines are obtained by a pushoff in the 	-direction of

a normal section η which decays asymptotically, and this corresponds to holomorphic

pushoffs of u in nearby hypersurfaces. I conclude that

dimkerDN
u;NH

= 2,
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and so

kerDN
u = kerDN

u;TH
⊕〈∂a,η〉.

Case 1.B: Nongeneric case. In the case of an index 1 flow line, the section η is not

there, and we have dimkerDN
u;NH

= 1, spanned by the R-direction. We obtain that

kerDN
u = kerDN

u;TH
⊕〈∂a〉.

For both cases 1.A and 1.B, since the index is only dependent on the moduli space,

and I have shown that the dimension of the kernel satisfies the same, I conclude that

the dimension of the cokernel depends only on the moduli space. This finishes the
noncylindrical case.

Case 2: H is cylindrical. I have already observed that DN
u;NH

is injective for the case

where H is cylindrical over the maximum or minimum, but the argument was not enough
to cover the case where H is cylindrical over a hyperbolic critical point. I show that

the operator DN
u;NH

is injective by a perturbation argument, when H is cylindrical (over

any critical point), as follows. For ε = 0, R×M ±
P is foliated by cylindrical holomorphic

hypersurfaces R×Y ×{p} for any p ∈ M ±
P . This implies that

DN
u = DN

u,ε =
(

DN
u;TH

DN
u;NT

0 DN
u;NH

)
ε→0−→
(

DN
u;TH

0
0 ∂

)
.

The operator ∂ is injective, since the elements in its kernel are holomorphic sections

which decay at the punctures. Since injectivity is an open condition in the usual Fredholm
operator topology, it follows that DN

u;NH
is injective for sufficiently small ε > 0. Therefore,

kerDN
u = kerDN

u;TH
,

which depends only on the moduli containing u, by assumption. This finishes all cases.

Remark 3.19. Note that we have obtained

dimkerDN
u;TH

= ind(γ ) = ind(p+)− ind(p−), (24)

if u is contained in a hypersurface H projecting to the flow line γ , joining the critical
points p− and p+.

Remark 3.20. In Case 2 before, the small value that ε needs to be depends a priori

on the curve u. While this is perhaps just a technicality, as long as we consider curves
u with Morse–Bott asymptotics, of which the positive have bounded total action (for a

fixed bound), we can assume that this operator is injective for such a family of curves,

since there will be finitely many such moduli spaces.
Observe that in the case of a regular cylinder inside a cylindrical hypersurface, this

implies that it is regular in R× M . This includes the case of a cylinder lying in a

cylindrical hypersurface corresponding to a hyperbolic critical point, which is not covered

by Lemma 3.14.
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I have proved the following:

Proposition 3.21 (Cylinders). Every cylinder with two positive ends over a hyperbolic

critical point (necessarily the same for both ends) and regular in a noncylindrical

hypersurface has an obstruction bundle of rank 1. We can take ε > 0 sufficiently small so
that cylinders which are regular inside their corresponding hypersurface are also regular

in R× M for every other case (including all cases where u has a negative end). For

cylinders lying in cylindrical hypersurfaces corresponding to a hyperbolic critical point,
we can ensure their regularity as long as we consider fixed action bounds on the positive

asymptotics, or finite families of moduli spaces.

More generally, we have the following:

Proposition 3.22 (Curves with arbitrary topology). Assume that u ⊆ H is not too

bad inside H , and the rest of the hypotheses of Lemma 3.14 fail (i.e., either g > 0 or (16)

fails). If u does not lie in a cylindrical hypersurface corresponding to a hyperbolic critical

point, then u is not too bad in R×M . Moreover, for every T > 0 action threshold, we can
choose an ε > 0 sufficiently small such that every curve u which lies in such a hypersurface

and is not too bad inside of it, and with the total action of its positive asymptotics bounded

by T , is not too bad in R×M .
In all of the preceding cases, this implies that there exists an obstruction bundle Ou for

gluing u to any building configuration which contains it.

Remark 3.23. It is not hard to show that for small ε > 0, the rank of Ou is

rankOu = rankOH
u − indDN

u;NH
+dimkerDN

u;NH
, (25)

where OH
u is the obstruction bundle of u inside H and the second term is given by (18).

Recall from Remark 3.19 that in the case for noncylindrical hypersurfaces H , we have
dimkerDN

u;NH
∈ {1,2}, depending on whether the corresponding flow line is index 1 or 2;

and for cylindrical hypersurfaces, dimkerDN
u;NH

= 0. It can also be shown that

cokerDN
u = cokerDN

u;TH
⊕ cokerDN

u;NH
. (26)

Remark 3.24. Given a leafwise not-too-bad curve u, if we assume that (19) holds for

the leafwise moduli space and the operator DN
u;TH

(e.g., if u is leafwise regular), then

the computation of the kernel of the total operator DN
u implies that it also holds in the

ambient manifold R×M .

This finishes the general construction. From now on, I discuss a particular subclass of

examples, for which I obtain the results from the introduction.

4. Nonfillable 5-dimensional model with no Giroux torsion

For this section, I fix Y = ST ∗X to be the unit cotangent bundle of a closed hyperbolic
surface X with respect to a choice of hyperbolic metric, and π : Y → X the natural

projection. The 1-form α− is the standard Liouville form, and α+ is a prequantisation

contact form (recall the notation introduced in the first paragraph of Section 3.1). This
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means that α+ is a connection form with curvature dα+ = π∗ω, where ω is a symplectic
form on X representing c1(Y ) = −2+2g(X ) > 0 in H 2(X ;R) � R when T ∗X is viewed

as a complex line bundle – that is, area(ω) = ∫X ω = −χ(X ). This example of Y × I was

originally constructed in [11]. I consider the family of 5-dimensional contact manifolds
M = Y ×	 constructed in previous sections.

I will dig into the SFT of this class of examples and derive my results. I shall investigate

whether these examples have 1-torsion (for any number k of circles in the dividing set,

not just k = 1,2, in which case we already know they do by Theorem 1.3; note that in
the case k = 1, we know the precise algebraic torsion, which is zero). In Section 4.3, I will

classify all possible building configurations that can contribute to 1-torsion in the whole

SFT algebra, and in Section 4.5 I will prove Theorem 1.5.

4.1. Curves on symplectisation of prequantisation spaces: Existence and

uniqueness

Consider (Y ,ξ = kereHλ), a prequantisation space over an integral symplectic base (X ,ω),
where H is a Hamiltonian on X and dλ = π∗ω. It is a reasonably standard construction

that any choice of ω-compatible complex structure on X naturally lifts to a compatible

J on the symplectisation of Y , for which there exists a finite-energy foliation FH by J -
holomorphic cylinders. These project to X as flow lines of H (with respect to the metric

induced by ω and the almost complex structure on X ), and their asymptotics correspond

to circle fibres over the critical points of H (see, e.g., [16, 21]).

Lemma 4.1 (Uniqueness). Let X be a closed surface of genus g ≥ 1, and let ω be an

integral area form on X . Let π : Y → X denote the prequantisation space over X , with a

connection (contact) form λ whose curvature form satisfies dλ = π∗ω. Then for any choice
of ω-compatible complex structure on X lifting to a compatible almost complex structure J
on R×Y , any action threshold T > 0 and any Morse Hamiltonian H : X →R, we can find

sufficiently small ε > 0 such that any genus g ′ < g holomorphic curve on (R×Y ,eεHλ)

whose positive asymptotics all correspond to critical points of H and have total action
bounded by T is a multiple cover of a flow-line cylinder in the finite-energy foliation FH

induced by H .

Proof: In the degenerate case H = 0, the projection R×Y → X is holomorphic, and
every Reeb orbit in Y is a multiple of the S1-fibre. So a curve as in the statement induces

a holomorphic map into X , defined on a closed curve of genus g ′. By holomorphicity,

it has nonnegative degree, and it has zero degree if and only if it is constant. If it has
positive degree, by Poincaré duality it induces an injection in cohomology – that is, we

get an injective map R2g ↪→R2g ′
. But this cannot happen if g ′ < g . I conclude that it has

vanishing degree, and so the curve is a cover of a the trivial cylinder.
In the nondegenerate case where H is a small but nonidentically zero Morse perturba-

tion, one can use holomorphic cascades (in the sense of [1]) to reduce to the degenerate

case, or alternatively the results from [11] (see the proof of [16, Lemma 6.3]).
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4.2. Some remarks and useful facts

Recall that (Y = ST ∗X ,α−) is the unit cotangent bundle of a closed hyperbolic surface,

and α− is the standard Liouville form. I shall need the following facts about closed α−-
orbits (e.g., [4, 18, 16]):

• They project to X as closed hyperbolic geodesics.
• They are nondegenerate.
• Their Conley–Zehnder indices vanish in a natural trivialisation.

Consider the symplectic form dα on Y × I , where the Liouville form α can be taken

as described in the first paragraph of Section 3.1 (cf. [11]). Take J0, a cylindrical dα-

compatible almost complex structure in the completion W0 = Ŷ × I . Recall that in

Section 3.3 we defined an almost complex structure J 1
ε in R×M , which is compatible

with the SHS H1
ε and for which we have a foliation by holomorphic hypersurfaces F . By

a generic perturbation of J0 (and hence of J 1
ε along the hypersurfaces in F), using [16,

Thm. 4.4.3] we can assume the following:

(A) Every somewhere injective holomorphic curve u in the completion W0 = Ŷ × I
which intersects the main level (recall Remark 3.13) is regular, and therefore

satisfies indW0(u) ≥ 0 (where this denotes the index computed in W0).

Using c1(ξ±) = 0, from Remark 3.5 we obtain the following:

(B) c1(ξ
1
ε ) = 0.

Observe that since closed Reeb orbits for α− project down to closed hyperbolic

geodesics, they are noncontractible, and Reeb orbits for α+ project to points. This implies

the following fact:

(C) There are no holomorphic cylinders in my model crossing sides of the dividing set.

This does not happen for the 3-dimensional cases in [11], where the hypersurfaces are
cylinders.

Observe that we are allowed to take a generic almost complex structure J− on (R×
Y−,d(eaα−)) and use it in the construction of the model. Since the index of every cylinder
is necessarily zero, every multiply covered cylinder is unbranched and multiple covers of

trivial cylinders are again trivial, we obtain the following:

(D) Every holomorphic cylinder in (R×Y ,d(eaα−)) is necessarily trivial. And every
holomorphic curve of index zero is necessarily a trivial cylinder.

Recall that for a given free homotopy class of simple closed curves in a hyperbolic
surface X , there is a unique geodesic representative. This implies that if two Reeb orbits

in (Y ,α−) are joined by a holomorphic cylinder in W0 with two positive ends (which by

D is necessarily contained in the main level W0), they correspond to the same geodesic,

but with different orientation. In particular, they are disjoint Reeb orbits. We conclude
the following:

(E) In W0, every holomorphic cylinder with two positive ends on a left upper level
joins disjoint Reeb orbits.
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4.3. Investigating 1-torsion

In this section, I will study the portion of the SFT differential of the contact manifold

(M = ST ∗X ×	,ξ) which has the potential to yield 1-torsion, where I denote by ξ the

isotopy class of contact structures on M that I have defined in previous sections. Recall

from the introduction that we have a power series expansion DSFT =∑k≥1 Dk h̄k−1 of said
differential, where Dk is a differential operator of order ≤ k . This operator is defined by

counting holomorphic curves in R×M with |�+|+g = k , where �+ is the set of positive

punctures and g is the genus. Here I consider the untwisted version of the SFT, where I
do not keep track of homology classes. I will compute the projection of the operators D1
and D2 to the base field R, but consider their actions on Reeb orbits only up to a large

action threshold. In other words, forget the q-variables from these operators, so that we
only consider curves with no negative ends. While the projection of D1 to R vanishes

identically (there are no holomorphic disks), the computation for D2 is rather involved.

According to [16, Lemma 4.23] (a generalisation of [11, Lemma 4.15]), for N = 1 – where

N is as in the statement of that lemma – if all holomorphic building configurations with
arithmetic genus g , no negative ends and r positive ends satisfying g + r ≤ 2 come in

cancelling pairs (and so the R-components of D1 and D2 are zero), then there is no

1-torsion. However, the result is rather unexpected: among precisely 35 possibilities of
such building configurations, there is only one, the sporadic configuration, which does not

cancel. This mean that the only way to obtain 1-torsion (below the action threshold) is

to differentiate the asymptotics of this configuration, since the differential of all other
low-action orbits has (at most) q variables in the D2 coefficient appearing in front of h̄.
While I cannot prove rigorously that 1-torsion indeed arises, in the next section I provide

a heuristic argument as to why I expect this to be true. While I originally expected

that the classification of these buildings would show that 1-torsion does not arise, I will
use knowledge of cylinder configurations (the fact that they cancel in pairs) to prove

Theorem 1.5.

Setup. Denote by HX a choice of a Morse function satisfying the Morse–Smale
condition on X . Choose a (nongeneric) cylindrical almost complex structure J+ on the

symplectisation of (Y ,α+ = eε′HX λ), coming from a lift of a complex structure on X ,

inducing a foliation FX of R×Y by HX -flow-line cylinders (as described in Section 4.1).
Here, choose ε′ > 0 small enough so that Lemma 4.1 holds for T = Tε′ . Denote by γp;q the

simply covered Reeb orbit in M corresponding to (p,q) ∈ crit(h+)× crit(HX ) (recall the

Morse functions h± introduced in Section 3.1). Given a holomorphic curve (or building)

u in R×M with asymptotics corresponding to critical points of h±, for either one or both
of the Morse functions, and then lying in a hypersurface of the foliation F , I will view it

as a punctured curve in W0 when convenient (recall Remarks 3.7 and 3.8). I will denote

by indM (u) (resp. indW0(u)) its Fredholm index when viewed as a curve in R×M (resp.
in W0). By (B), we have

indM (u) = (μτ
CZ )M (u)

indW0(u) = −χ(u)+ (μτ
CZ )W0(u).
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Note that the absence of the Euler characteristic term in the first formula is because R×M
is 6-dimensional (whereas W0 is 4-dimensional). By Proposition 3.10, given l ≤ Nε , then

for orbits γ l
p;q for hyperbolic p, we have (μτ

CZ )M (γ l
p;q) = (μτ

CZ )W0(γ
l
p;q) = ind(q)−1; and

for orbits γ l
p;q , for p the maximum or minimum, we have (μτ

CZ )M (γ l
p;q) = (μτ

CZ )W0(γ
l
p;q)+

1 = ind(q).

Recall that k is the number of circles in the dividing set. For k ≤ 2, we already know

that the model has 1-torsion (by Theorem 1.3), so set k ≥ 3. Denote by M1
g,r (J

1
ε ;Tε) the

moduli space of all translation classes of index 1 connected J 1
ε -holomorphic buildings in

R×M with arithmetic genus g , no negative ends and r positive ends approaching orbits
whose periods add up to less than Tε . Elements in this moduli space are the buildings

that potentially glue (in general, after an abstract polyfold perturbation; or a generic

perturbation of J , in the case where the element has an obstruction bundle) to curves
which might contribute to the projection to the ground field R of the SFT differential.

I will prove the existence of a choice of coherent orientations such that elements in

M1
g,r (J

1
ε ;Tε), whenever g +r ≤ 2, cancel in pairs (after introducing, in sequence, a contact

perturbation of the stable Hamiltonian structure; a nondegenerate perturbation of the

contact form; and a generic perturbation of J ), except for a single sporadic building

configuration. This unusual configuration consists of a single-level punctured torus, and

I will discuss it in the next section.

Classification. If u is an element ofM1
g,r (J

1
ε ;Tε) with g +r ≤ 2, since r ≥ 1 by exactness,

then it can only glue to one of the following:

• Case 1. A plane with one positive end.
• Case 2. A cylinder with two positive ends.
• Case 3. A 1-punctured torus with one positive end.

Case 1 is ruled out, since Reeb orbits in Y are noncontractible (for both the
prequantisation form and the standard Liouville form), as are the Reeb orbits in Y ×U .
The other orbits are ruled out by the definition of Tε and M1

g,r (J
1
ε ;Tε). This means that

there is no 0-torsion, so this already shows that the model is tight (we already knew this

from [16], since both (Y ,α±) are hypertight).
So I take up the other two cases. Case 2 is the only one which is relevant for Theorem 1.5

and Corollary 1.6, so I will not include details for case 3, which are rather involved. I first

observe that the Reeb orbits in the asymptotics of every floor of u are of the form γ l
p;q ,

for some l ≤ Nε (for Nε as in Proposition 3.10). This is certainly the case for asymptotics
outside of the cylindrical region, by the action restriction given by Tε . Since Reeb orbits

like these project to 	 as points, the projection of u to 	 is a cobordism between the

sum of the positive asymptotics of the top floor of u lying in Y ×U (which are positive
multiples of the dividing circles) and zero. On the other hand, since u has at most two

positive asymptotics, there is at least one component of Y ×U which does not contain

asymptotics of u (here use k ≥ 3). But then, one can find a simple closed curve which
passes through this component and has a nonzero intersection number with the sum of

these asymptotics, which is absurd (see Figure 6). By induction, removing the top floor

at each step, we obtain the claim.
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Figure 6. A simple closed curve in 	 with nonzero intersection number with the projection of the positive

asymptotics which lie in Y ×U of a hypothetical building u ∈ M1
g,r (J1

ε ;Tε) with g + r ≤ 2, containing
such. It follows that no such u exists.

I can then appeal to Proposition 3.12, which yields the fact that each component of u

lies in one of the holomorphic hypersurfaces of the foliation, so that u can be viewed as

a building inside W0 = Ŷ × I .

Case 2. A cylinder with two positive ends.

Since u glues to a cylinder with no negative ends, and since the Reeb orbits γp;q are

noncontractible, then it can be shown that u can only consist of a cylinder with two
positive ends in the bottom floor, together with two chains of cylinders on top of its ends

(see Figure 7).

By (C), no component of u, all of which are cylinders, can have asymptotics in different

sides. Also, recall that we can assume that u is a stable building, so that it does not have
levels consisting only of trivial cylinders.

We see that u cannot consist solely of right upper-level components (corresponding to

the prequantisation space), since its bottom level would be a cylinder with two positive
ends and then cannot be a cover of a flow-line cylinder, which contradicts Lemma 4.1. We

also see that it cannot consist solely of left upper-level components, since its bottom level

cannot be a trivial cylinder (it has no negative ends), which contradicts observation(D).
Then u has a nontrivial component in the main level, which I call u0.

Case 2.A. Both asymptotics of u0 lie on a left level. Label by hyp or min the

Reeb orbits appearing in u, according to whether they lie over a hyperbolic point or the
minimum. Since u0 lies in a hypersurface, its two positive asymptotics necessarily have

the same label. Thus, for each string, the associated ordered sequence of labels can only

look like (hyp, . . . ,hyp,min, . . . ,min). The number of hyps or mins may be zero, but not
both (see Figure 8). Observation (D) implies that all the upper components correspond

to trivial cylinders (under Remark 3.8). We then see that the only possibility for u is the

one depicted in Figure 8, since all others will have index different from 1.
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Figure 7. The only possible a priori combinatorics for u in the case g = 0, r = 2.

Figure 8. A possible configuration for the index 1 building u for the case g = 0, r = 2.

Observe that u0 has only hyperbolic asymptotics, and if it is multiply covered, it is

necessarily unbranched. Since J0 is generic, Theorem A.3 implies that u0 is regular in W0,
and the same is true for its upper components, which are trivial. By Proposition 3.21, we

obtain an obstruction bundle of rank 1 for this configuration.

This configuration has a cancelling ‘evil twin’, obtained by replacing the index 1 upper
component, which lies over an index 1 Morse flow line γ connecting hyp to min, with the

index 1 cylinder lying over the flow line γ (the unique other flow line connecting hyp to

min). Taking the coherent orientation to be compatible with the Morse orientation (as
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in [11, Rem. 4.14]), the algebraic counts of zeroes of the obstruction sections associated

to the twin configurations will cancel out after introducing a generic perturbation (i.e., a

geometric perturbation of J ).
One can check that the associated obstruction bundles satisfy the properties of

Remark 3.17. Indeed, observe that the moduli space of u0 is just a copy of R corresponding

to its R-translations, since it is otherwise geometrically isolated (in both the hypersurface
and the 	 directions). This includes the case where u0 is multiply covered, since it is a

unbranched cover. The other components are a trivial cylinder, which is not included in

the obstruction bundle, and a regular index 1 cylinder, which is rigid after dividing by R.
If u0 is multiply covered with degree d , then so is the index 1 component. We then see

that its obstruction bundle is the trivial bundle

Ou = R× [0,1]× [R, +∞) → [0,1]× [R, +∞),

where R is a large gluing parameter. This implies that conditions i and ii in Remark 3.17
are satisfied.

Case 2.B. Both asymptotics of u0 lie on a right level.

Every component in the upper levels of u is either contained in a holomorphic
hypersurface H ν

a corresponding to an index 1 Morse flow line ν connecting a hyperbolic

point hyp ∈ 	+ to the maximum max ∈ 	+ or contained in a hypersurface R×Hhyp or

R×Hmax lying over either hyp or max . Moreover, Lemma 4.1 implies that when u is
viewed as lying inside W0, they are (necessarily unbranched) covers of flow-line cylinders.

Denote by q1,q2 ∈ crit(HX ) ⊆ X the critical points corresponding to the two positive

asymptotics of u0. Label by (hyp;indq(HX )) or (max;indq(HX )) the Reeb orbits appearing

in u, according to whether they lie over a hyperbolic point or the maximum, and where
q ∈ crit(HX ) is the corresponding critical point. Again, since u0 lies in a hypersurface, the

first component of the labels of its two positive asymptotics necessarily agree.

Observe that if v denotes a right upper-level component of u, we have

1 = indM (u) = indM (u0)+
∑
v

indM (v) ≥ indM (v) ≥ indW0(v) ≥ 0.

Denote by u ′
0 the somewhere injective curve underlying u0, which, since Reeb orbits

are noncontractible, is a cylinder over which u0 is unbranched and satisfies indW0(u
′
0) =

indW0(u0). By (A), we have that

0 ≤ indW0(u
′
0) = indW0(u0) = indp(HX )−1+ indq(HX )−1 ≤ indM (u) = 1,

so that

3 ≥ indp(HX )+ indq(HX ) ≥ 2.

If the two labels of the positive ends of u0 are max, then its index in M is

indM (u0) = indp(HX )+ indq(HX ) ≥ 2.
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Figure 9. All five possible configurations with positive ends on a right upper level (up to obvious

symmetries). The dotted lines separate the main levels from the upper levels. The upper-level components

correspond to unbranched covers of flow-line cylinders over X , which are regular inside their corresponding

hypersurface.

Since 1 = indM (u) ≥ indM (u0) ≥ 2, we get a contradiction. Then both asymptotics of u0
have hyp as the first component of their label, which in particular implies indW0(u0) =
indM (u0).
Assume indp(HX )+ indq(HX ) = 2, so that u0 has index zero in W0. In the case that

(indp(HX ),indq(HX )) = (0,2), the automatic transversality criterion in [11] implies that

it is regular in W0. If (indp(HX ),indq(HX )) = (1,1), then we use Theorem A.3 to conclude
again that u0 is regular in W0. The only possibilities for u are shown in Figure 9; all of

them have a cancelling ‘evil twin’ in the Morse theory sense, and an associated obstruction

bundle of rank 1.

We have only one case left: (indp(HX ),indq(HX )) = (1,2) (and both labels hyp). Then
indW0(u) = indM (u0) = 1, and u = u0 is nonbroken, that is, has only one level, with a

nontrivial main level. The bottom component u0 is regular inside its hypersurface, as can

be checked via automatic transversality. The resulting configuration, depicted in Figure 9,
also has a rank 1 obstruction bundle and a cancelling evil twin, since it lies over an index

1 flow line connecting a hyperbolic point in 	+ to the minimum in 	−.
We can also study the obstruction bundles for all the configurations in Figure 9, and

see that we are in the situation explained in Remark 3.17. For the ones with two floors,

the obstruction bundle is exactly the same as that of the configuration in Figure 8 – that

is, the trivial R bundle over [0,1]× [R, +∞), for large gluing parameter R � 0. For the

unique configuration with a single floor, let us assume the worst case scenario: that u0 is an
unbranched cover of degree d . Then we see that its moduli space is 2-dimensional, of the

formM0 ∼=R×MH , where the R-component corresponds to its R-shifts andMH denotes

its moduli space inside the hypersurface H containing u0. Therefore, M0\R ∼= MH , and
this is at worst a 1-dimensional orbifold. These come only in two types: a circle or an

interval. I conclude that Ou is (at worst) an R-bundle over a cylinder [0,1] × S1 or a

square [0,1]×A for some interval A. This implies that the conditions of Remark 3.17 are
satisfied.

I conclude that after perturbing to generic J , the count of gluings of the configurations
considered is zero, and finishes case 2.
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Figure 10. The sporadic configuration.

Case 3. 1-punctured torus with one positive end.

I will not give details of the classification, since I shall not need it for my purposes.
There are 29 such configurations, all of which have obstruction bundles. Moreover, all

have mirror cancelling pairs, except one of them, depicted in Figure 10. See [16].

4.4. The sporadic configuration

In this section, I address Conjecture 1.7. Let u be the sporadic configuration depicted in

Figure 10. Observe first that u is in fact regular in R×M . Indeed, since it cannot be a cover

of a plane, it is somewhere injective, and so regular in the hypersurface H := R×Hmin .

Equation (18) implies that indDN
u;NH

= 0, and since DN
u;NH

is injective (H is cylindrical),
we have that it is surjective. By (26), I deduce the claim.

Some string topology. Recall the definition of Goldman–Turaev string bracket and

cobracket operations in the case of a hyperbolic surface. This is the starting point of
Chas and Sullivan’s string topology [2]. I follow the exposition of [16], which builds

on [4].

Let X be a closed surface of genus at least 2. The set of nontrivial free homotopy

classes of loops (i.e., a conjugacy class of the fundamental group) is countable. Choose
some ordering on this set, label by [i ] the ith one and make the convention that [−i ]
denotes a change in orientation of the corresponding geodesic. Let V denote the vector

space generated by the free homotopy classes of noncontractible loops on X . We define
the string cobracket

� : V → V ⊗V

as follows. Represent [i ] by a string s in general position, so that it has finite self-

intersections x1, . . . ,xk . At any xj there are two directions in the string, which we orient

by the orientation on X . We can resolve the string s at each self-intersection xj , obtaining

two new strings s j
1 and s j

2 . For instance, s j
1 is obtained by following the first direction out

of xj and taking the piece of s connecting xj back to itself, and similarly for s j
2 , following
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the second direction. Define

�([i ]) =
k∑

j=1

[s j
1 ]⊗ [s j

2 ]− [s j
2 ]⊗ [s j

1 ].

This cobracket is a Lie cobracket – that is, it is bilinear and co-antisymmetric and satisfies

the co-Jacobi identity. Similarly, define the string bracket

∇ : V ×V → V ,

which is a Lie bracket (see [16]).
In this notation, we have the coefficients Ai

j,k for �, defined by

�([i ]) =
∑
j,k

Ai
j,k [j ]⊗ [k ].

On the SFT side, denote by d i the SFT-count of sporadic configurations inside R×ST ∗X
whose positive asymptotic corresponds to [i ]. Cieliebak and Latschev show, by looking at
the boundary of index 1 moduli spaces of holomorphic curves with Lagrangian boundary

components in T ∗X , the existence of linear relationships between the count of index 1

curves in R×ST ∗X and the coefficients of these string operations. This allows them to
compute the full SFT Hamiltonians for T ∗X and R×ST ∗X . In the case of 1-punctured

tori, we have the following [16, Thm. 2.2.1]:

d i =
∑
j

Ai
j,−j ∈ Z. (27)

Relationship to 1-torsion [4, Figure 17] gives an example of a closed geodesic [i ] for

which d i is nonzero. Denote by qi the corresponding SFT generator in R×M . Since I

have shown that every sporadic configuration is leafwise regular, we have

DSFT

( qi
d i

)
= h̄ +O(h̄2).

Observe that I have used the fact that there are no holomorphic disks.
Now all the other contributions to the previous differential come from potential index 1

building nodal configurations u with only one positive end approaching [i ], which glue to

curves after introducing an abstract perturbation. If such a building is entirely contained
in R×Hmin , then

1 = indM (u) = 1−#�−(u),

from which we obtain that #�−(u) = 0. And if u is not contained in this cylindrical

hypersurface, we have two cases: either its (unique) top-level curve u projects to an index
2 flow line connecting the minimum to the maximum or it lies over an index 1 flow line.

In the first case, the top-level curve u cannot have any other ends, since the hypersurface

containing it has only positive ends, but this cannot happen, since it only has one positive
end (over the minimum) and Reeb orbits are noncontractible. In the second case, u has

a twin over the opposite index 1 flow line. However, we do not know whether the latter

building configurations have associated obstruction bundles, and indeed there are a priori
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many of them to classify (they can have any number of negative punctures, as well as

any positive genus, always having Fredholm index 1 in M ).

In any case, this is strong geometric evidence for the following:

Conjecture 4.2. Any building configuration that can contribute to the differential of qi
and does not lie in R×Hmin cancels its twin configuration.

If this conjecture were true, then we would have that the term O(h̄2) does not have
any q variables. Since each term of the form 1+O(h̄) not involving q variables can be

inverted as a power series in h̄, we would obtain

DSFT

( qi
d i (1+O(h̄))−1

)
= h̄,

and so our 5-dimensional model would have 1-torsion (which would prove Conjecture 1.7).

Observe that this absence of q variables is a purely 5-dimensional phenomenon, in

the following sense: since indW0(u) = −χ(u) for a curve u inside H = R× Hmin , the
only possible contributions for the differential of qi inside H come from our sporadic

configuration, as well as 3-punctured spheres with one positive end, at [i ], and two

negative ones, at [j ] and [k ], say. However, the latter configurations have index −1 in

R×M , so do not contribute to DSFTqi in the ambient manifold. Moreover, from [4] and
[16] we have that the SFT count of such curves inside H , which we denote ai

j,k , coincides

with the string coefficients ai
j,k = Ai

j,k . Observe that we know from (27) that there is at

least one j for which Ai
j,−j is nonzero. So indeed, we can find 3-punctured spheres in H

which contribute nontrivially to the SFT count in H but do not in R×M .

4.5. Non-SFT proof of Theorem 1.5

In this section, I prove Theorem 1.5. Recall the definition of a Giroux 2π -torsion domain:
given a Liouville pair (α+,α−) on a closed manifold Y 2n−1, this is the contact manifold

(GT,ξGT ) := (Y × [0,2π ]×S1, kerλGT ), where

λGT = 1+ cos(r)

2
α+ + 1− cos(r)

2
α− + sin(r)dθ (28)

and the coordinates are (r,θ) ∈ [0,2π ]×S1.

This contact manifold carries a suitable notion of an SOBD. These SOBDs, which

I call Giroux SOBDs, were described in detail in [18, 16], for more general contact

manifolds obtained by gluing together collections of ‘Giroux domains’. In the case of
Giroux 2π -torsion domains, the SOBD structure is obtained by declaring small δ-collar

neighbourhoods of the slices {r ∈ {0,π,2π}} to be the ‘paper’ components, and their

complement the ‘spine’. The paper components are then trivial fibrations over Y with
fibres (the pages) which are cylinders [−δ,δ]×S1, and the spine components are trivial

S1-fibrations over a Liouville domain of the form Y × I for some interval I . In particular,

the model A construction of contact structures of [18, 16] can be used. We obtain a contact
form �GT which lies in the isotopy class of λGT , together with a finite-energy foliation

by holomorphic curves of R× GT , such that the cylindrical pages lift as holomorphic

cylinders with two positive ends asymptotic to Reeb orbits corresponding to critical points
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of a Morse function in Y × I . Moreover, we have a uniqueness theorem for punctured
holomorphic curves in R× GT , which states that any other holomorphic curve with

asymptotics which are simply covered and correspond to critical points has to be a

reparametrisation of a holomorphic cylinder lifting a page (see [16, Theorem 3.9] and
its adaptation in the proof of Theorem 5.2 also in that thesis; it involves, among other

things, using energy estimates to reduce the problem to dimension 4, where intersection

theory may be used). If we choose a critical point of index 1 and a critical point of index

2n, there exists a unique (R-translation class of a) regular index 1 holomorphic cylinder in
the finite-energy foliation with asymptotics corresponding to these critical points, which

I call u0. (See [16] for the full details.)

We are now ready to obtain an application from knowledge of the SFT algebra of
ST ∗X ×	. Recall that I distinguish between model A (constructed in [16]) and model B

(constructed in this article), which give isotopic contact structures.

4.6. Proof of Theorem 1.5

Let (M0,ξ0) be a 5-dimensional contact manifold with Giroux torsion, and let i :
(GT,ξGT ) ↪→ (M0,ξ0) be a contact embedding. Consider the 5-dimensional model (M =
ST ∗X ×	,ξ), with k ≥ 3, where ξ = ker�ε is viewed as the contact structure induced

by a model B contact form �ε (called ξk in the introduction). The ε-parameter does

not change the isotopy class, and I will choose it suitably later. We can take a contact
form �0 for ξ0, such that it coincides with a model A contact form �GT on i(GT ) as

already described. Assume that (W ,dλ) is an exact cobordism with convex end (M0,ξ0)

and concave end (M ,ξ). Let J1 be a model B almost complex structure on the negative

half-symplectisation of (M ,ξ) (which is compatible with �ε). Also let J0 be a �0-
compatible almost complex structure on the positive half-symplectisation of (M0,ξ0),

which coincides with a model A almost complex structure on i(GT ) for which we have

the finite-energy foliation by holomorphic curves of R× i(GT ) already described.
By attaching small trivial symplectic cobordisms to W , we can assume that λ|M0 and

λ|M are positive and large constant multiples of �0 and �ε , respectively, where the

constant can be chosen ε-independent. Consider the Liouville completion Ŵ , obtained
from W by attaching one positive and one negative cylindrical end, and the natural

extension of λ to Ŵ . Choose a λ-compatible almost complex structure J , such that J
coincides with J0 and J1 on their respective ends and J is generic along the main level.

Consider also the compactification W
∞
, obtained by adding +∞ and −∞ to Ŵ , on

which we have extensions of both the symplectic form dλ and J (see [16] for more details

on this construction).

As I have already described, there exists a distinguished (R-translation class of a)
regular index 1 J0-holomorphic cylinder u0, lying in the upper levels of Ŵ . Let T be the

total action of its two positive ends. Recall that by the model B construction, there is an

action threshold Tε > 0 such that limε→0 Tε = +∞ and every �ε-closed orbit with action
less than Tε corresponds to a critical point in M or lies along the spine Y ×U . Observe

that this construction also holds if we multiply the contact form by a constant positive

number which is ε-independent. Take ε > 0 small enough so that Tε > T . By Lemma 3.4,
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having attached a suitable exact symplectic cobordism to the concave end of W prior to
taking the completion, we can assume that λ|M is a constant (ε-independent) multiple of

the model B contact form �ε corresponding to this particular ε > 0. By Stokes’ theorem,

the action of the Reeb orbits appearing in any building configuration arising as a limit
of a curve in the moduli space of u0 is bounded by Tε . Therefore, in what follows, I can

make use of the discussion in Section 4.3, from which I gather that whenever this cylinder

breaks in lower levels, the Reeb orbits obtained all correspond to critical points, and none

lies over the spine.
Denote by M the connected component containing u0 of the nodal compactification of

the space of finite-energy J -holomorphic curves in W
∞
. It is a 1-dimensional compact

manifold with boundary, having one boundary component corresponding to the projection
of u0 to M0.

Observe first that no element of M can break in an upper level. Indeed, by the

aforementioned uniqueness theorem [16, Theorem 3.9] (more precisely, its adaptation
as in the proof of [16, Theorem 5.2]), all of the upper components of a stable building

u ∈ ∂M lying in R×M0 have to correspond to flow-line cylinders of a Morse function

(which have nonnegative index). But then u can only consist of an index 1 cylinder in the

bottom end and a chain of index 0 cylinders on top of it, which are necessarily trivial.
Since u is stable, this configuration is not allowed unless u coincides with its bottom level,

but then u is nonbroken.

Similarly, if an element in M breaks with a nontrivial main-level component and
no lower level ones, then uniqueness gives that there is only one possible breaking

configuration. It consists of a single upper level, having an index 1 somewhere injective

flow-line cylinder, together with a trivial (index zero) cylinder, and a nontrivial somewhere
injective index 0 main-level component consisting of a cylinder with two positive ends,

glued along simply covered Reeb orbits corresponding to critical points of Morse index

1 and 3. This configuration has a cancelling evil twin, since the index 1 component does

(this is analogous to what we have already observed for model B), and it also consists of
somewhere injective components. Therefore, we can glue this configuration to a unique

cylinder. Then we obtain two 1-dimensional moduli spaces, each having an open end on

each twin configuration. We can then canonically identify them along these open ends
and obtain a new moduli space, which I still call M, for which we repeat this process of

gluing further open ends corresponding to twin configurations.

Assume that an element in M breaks in a lower level of W
∞
, corresponding to the

negative symplectisation of M . Since the cobordism is exact, there are no holomorphic

caps, so that all components of all possible breaking configurations are still cylinders. Then

I can argue similarly as before, but using an obstruction bundle. From the discussion

in Section 4.3, every configuration has an obstruction bundle and comes with a twin
configuration. Recall also that we are in the situation of Remark 3.17. We can choose finite

and sufficiently large gluing parameters such that any configuration glues to holomorphic

cylinders whose number is the algebraic count of zeroes of the section of the corresponding
obstruction bundle. This number is independent of the gluing parameters, and is the

opposite of what we would get if we were to glue starting from the twin configuration.

Since we know that the original configuration glues at least once, its twin will also.
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The rest of the argument goes as before. Observe that we have not needed an abstract
perturbation.

After these identifications, I will have constructed a compact 1-dimensional moduli

space which has only one boundary component, which is a contradiction. This finishes
the proof.

Acknowledgment I thank my PhD supervisor, Chris Wendl, for introducing me to this
project and for his support and patience throughout its duration. To Richard Siefring, for

very helpful conversations and for coauthoring [23, Appendix C]. To Janko Latschev and

Kai Cieliebak, for going through the long process of reading [23]. To Patrick Massot,
Sam Lisi, Michael Hutchings, Momchil Konstantinov and Zhengyi Zhou, for helpful

conversations/correspondence on different topics. To the anonymous referee, for careful

reading of previous versions and very detailed suggestions.

This research, forming part of my PhD thesis, was partly carried out in (and funded by)
University College London in the UK and the Berlin Mathematical School in Germany.

Appendix A. Superrigidity for punctured holomorphic curves

In this appendix, I will derive Theorem 1.10, a general result bearing some independent

interest. While I do not use it in this article, it will come as a by-product of Proposition A.1

and Theorem A.3.
For a holomorphic degree d branched cover ϕ : (Ṡ,j ) → (	̇,i) between punctured

Riemann surfaces Ṡ = S\�(S ) and 	̇ = 	\�(	), define by

κ(ϕ) =
∑

w∈�(S )

κw ≥ #�(S )

the total multiplicity of ϕ, where κw = Z (dwϕ)+1 is the multiplicity of ϕ at the puncture
w (where Z (dwϕ) is the vanishing order of dϕ at w of the unique extension of ϕ as a map

ϕ : S → 	, preserving punctures). Observe that

κ(ϕ) =
∑

z∈�(	)

⎛⎝ ∑
w∈ϕ−1(z )

κw

⎞⎠= d#�(	).

Therefore, d#�(	) ≥ #�(S ), with equality if and only if there is no branching at the

punctures. I will refer to the sum of the branching of ϕ at interior points of Ṡ with the

branching at the punctures as the total branching of ϕ.

Proposition A.1. Let v : (	̇,i) → (W ,J ) be a somewhere injective possibly punctured

holomorphic curve in a 4-dimensional symplectic cobordism, with index zero and with

χ(v) = 0 (where χ(v) := χ(	̇)). Assume that there exists a trivialisation τ for which
the asympotics of v have vanishing Conley–Zehnder index. Assume also that v satisfies

kerDN
v = 0. Then DN

u is also injective for any multiple cover u = v ◦ϕ of v , such that ϕ

has strictly positive total branching.

Remark A.2. Proposition A.1 does not apply (a priori) only to totally unbranched

curves, and the unpunctured case recovers Wendl’s results for the torus. It follows from

the proof that we can also assume χ(v) ≥ 0. However, there are no holomorphic planes
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as in the hypothesis, since then 0 = ind DN
v = χ(v)+2cτ

1(Nv ) = 1+2cτ
1(Nv ), but cτ

1(Nv )

is an integer. We would then only obtain a result for spheres, which is already shown in

[11] by a much shorter proof, where the injectivity of DN
v is automatic and the conclusion

holds for every multiple cover. Observe also that I have not assumed that J is generic.
For generic J , we can use Theorem A.3 to obtain the conclusion for every multiple cover.

By a small modification of the proof, we can drop the index zero condition as well as

the condition on χ(v), and impose instead that cτ
1(Nv ) = 0 for the given trivialisation τ .

However, then ind DN
v = χ(v), and if this is negative, then generically v does not exist.

We then only obtain a potentially interesting result for index 1 planes or index 2 spheres,

with cτ
1(Nv ) = μτ

CZ = 0 for some τ .

The proof follows by an adaptation of Hutchings’ magic trick [8], as used in [11,

Proposition 7.2] in the case of closed curves. I redo Wendl’s computation, and the

unpunctured case recovers Wendl’s results for the torus.
In the proof of Proposition A.1, I will use Siefring’s intersection pairing and the

adjunction formula for punctured curves. I refer to [21] (especially Theorem 4.4) for

the statement and details on the necessary definitions. In particular, the symbol σ(u)

denotes the spectral covering number of u. This is defined as the sum over all punctures

of the covering multiplicity of any extremal eigenfunction of the associated asymptotic

operators. Here, the positive (resp. negative) extremal eigenfunctions are defined as those

whose eigenvalue is the smallest (resp. largest) positive (resp. negative) eigenvalue. The
covering multiplicity is independent of the choice of eigenfunction (see [21, p. 59]). The

winding number of any extremal eigenfunction is referred to as an extremal winding

number.
Since the multiplicity of the eigenfunction divides that of the asymptotic orbit, we

have σ(u) = #�(u) whenever the asymptotics of u are simply covered. Also, the symbol

δ(u) denotes the algebraic count of double points and critical points of u. It vanishes if
and only if u is embedded. The symbol δ∞(u) is the algebraic count of ‘hidden double

points at infinity’. If different punctures of u asymptote different orbits, and all of them

are simply covered, then this number vanishes (see [21, Theorem 4.17] for the general

case).

Proof of Proposition A.1. As explained in, for example, [11, Appendix], an almost

complex structure JN can be constructed on the total space of the normal bundle π :
Nv → 	̇, such that there is a one-to-one correspondence between holomorphic curves

uη : (Ṡ,j ) → (Nv,JN ) and sections η ∈ kerDN
u along the holomorphic branched cover ϕ =

π ◦uη : (Ṡ,j ) → (	̇,i), where u = v ◦ϕ is a branched cover of v (and η is identified with

uη as maps).

Fix u = v ◦ϕ. I will assume nothing on χ(v) until the very end. Let d := deg(ϕ) ≥ 1.
I proceed by induction on d . The base case d = 1 holds by assumption, so take

d > 1; I assume that every branched cover u ′ of v with degree strictly less than d has

kerDN
u ′ = 0. Assume by contradiction that there exists a nonzero η ∈ kerDN

u , and take
the corresponding uη. We can view v as a JN -holomorphic embedding inside Nv (as

the zero section), and we have that uη is homologous to d [v ], where [v ] is a relative

homology class. Observe that v , as a holomorphic map to Nv , is embedded, and each
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of its asymptotics is distinct and simply covered, so that we get δ(v) = δ∞(v) = 0
and σ(v) = #�(v). Moreover, we can write uη = û ◦ψ , where û is somewhere injective

and ψ : (Ṡ,j ) → (Ṡ ′,j ′) is a branched cover. But then û is of the form û = u ′
η′ , where

u ′ = v ◦ϕ′, with ϕ′ = π ◦ û and η′ ∈ kerDu ′ , satisfying ϕ′ ◦ψ = ϕ, η = η′ ◦ψ . Then d =
deg(ϕ′)deg(ψ). If deg(ψ) > 1, then deg(ϕ′) < d , and by the induction hypothesis applied

to u ′, we have that η′ = 0 and so η = 0. Therefore, we can assume that uη is somewhere

injective.

Since the asymptotics of v have vanishing Conley–Zehnder index, their extremal
winding numbers also vanish. Therefore the extremal eigenfunctions are constant, so

that their covering multiplicity coincides with that of the corresponding asymptotic

orbit. If we denote by κ(uη) the sum of all the multiplicities of the asymptotics of
uη (which coincides with κ(u) := κ(ϕ)), we obtain that the spectral covering number

σ(uη) = κ(uη) = κ(u) = d#�(v).

We can then compute its Siefring self-intersection number:

uη ∗uη = 2(δ(uη)+ δ∞(uη))+ cτ
1(u∗

ηTNv )−χ(uη)+σ(uη)−#�(uη)

= 2(δ(uη)+ δ∞(uη))+dcτ
1(v∗TNv )−χ(uη)+d#�(v)−#�(u).

(29)

Moreover, Riemann and Hurwitz give

χ(uη) = χ(u) = dχ(v)−Z (dϕ). (30)

Identifying the normal bundle to v inside Nv with Nv itself, the adjunction formula then

produces

cτ
1(v∗TNv ) = χ(v)+ cτ

1(Nv ). (31)

Moreover, we have that

0 = indDN
v = χ(v)+2cτ

1(Nv ). (32)

Using (32) and the vanishing of the Conley–Zehnder indices, we obtain

uη ∗uη = d2v ∗ v
= d2(cτ

1(v∗TNv )−χ(v))

= d2cτ
1(Nv )

= −d2

2
χ(v).

(33)

Combining (29), (30), (31), (32) and (33), we get

0 ≤2(δ(uη)+ δ∞(uδ))

=− d2

2
χ(v)−d(χ(v)+ cτ

1(Nv ))+dχ(v)−Z (dϕ)+#�(u)−d#�(v)

=d(1−d)

2
χ(v)−Z (dϕ)+#�(u)−d#�(v).

(34)

If we assume that χ(v) = 0 (or χ(v) ≥ 0), this is negative, and we obtain a contradiction.
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In order to obtain Theorem 1.10, we need another result. Recall that a closed hyperbolic
Reeb orbit is one whose linearised return map does not have eigenvalues in the unit circle.

In dimension 3, if a closed Reeb orbit has even Conley–Zehnder index (in one and hence

every trivialisation), then it is hyperbolic.

Theorem A.3. For generic J , all index 0 punctured holomorphic curves in a 4-
dimensional symplectic cobordism, which are unbranched multiple covers, have zero Euler
characteristic and have all their asymptotics hyperbolic, are Fredholm regular.

(This theorem comes from a private communication from C. Wendl: January 2018.)

This is proved by the same arguments as in [11] (which only deals with closed curves),

and I will not include a proof. Note that Wendl’s article, which was withdrawn at some

point due to a gap in a lemma, has recently been fixed [18]. The main technicality has to
do with the failure of Petri’s condition in general (see [11] for a definition). Nevertheless, it

does hold for generic J . In the present situation, the assumptions in Theorem A.3 bypass

the need to consider these technicalities. Indeed, for a curve u as in Theorem A.3, the
normal Cauchy–Riemann operator DN

u is defined on a line bundle Nu whose adjusted first

Chern number is nonpositive: we have 2−2g −#� = 0, so that 2−2g −#�odd = #�even ,

and therefore

2c1(Nu,u) = ind(u)−2+2g +#�even = −#�odd ≤ 0.

This means either that kerDN
u = 0 or that every element in kerDN

u is nowhere vanishing.

Therefore Petri’s condition is vacuously satisfied.

With this said, [11, Theorem D] needs to be generalised to the setting of asymptotically
cylindrical curves in cobordisms. This is mostly a matter of putting it in the proper

functional-analytic setup for punctured curves, and almost nothing else changes. Since

all orbits are hyperbolic, Fredholm indices of multiple covers are related to indices of the

underlying somewhere injective curves via the same multiplicative relations (involving
the Riemann–Hurwitz formula) as in the closed case. In fact, the multiplicativity of the

Conley–Zehnder indices is all that is needed. With that in mind, the same dimension-

counting argument as in [11, Theorem B] works in the case of hyperbolic punctures.

Proof of superrigidity and Theorem 1.10. In the case where v is as in the hypotheses

of Theorem 1.10, for generic J we can assume it is immersed and regular. Since indDN
v = 0,

then kerDN
v = 0 by regularity, and so the hypotheses of Proposition A.1 are satisfied for

generic J . If we also assume that its totally unbranched covers satisfy the conclusion of
the proposition (which is also a generic condition by Theorem A.3), the result follows.

Appendix B. Lutz–Mori twists and Giroux torsion

This appendix is devoted to describing Lutz–Mori twists as defined in [16] and using

them in model A of [18], as described in the introduction. In the present case, we can
use cylindrical contact homology to distinguish the twisted model A contact structures

for different amounts of twisting – something which has been done already in [16,

Theorem 8.13] for very similar models, so I will not include any details (see [16, App. A]).
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B.1. The twisted contact structures

Recall that a hypersurface H ⊆ M in a contact manifold (M ,ξ) is a ξ -round hypersurface

modeled on (Y ,ξ0) if it is transverse to ξ and admits an orientation preserving

identification with S1×Y , for some contact manifold (Y ,ξ0), such that ξ ∩TH =TS1⊕ξ0.

This notion is defined in [16].
Take (α−,α+), a Liouville pair on Y 2n−1, and denote ξ± = kerα±. Consider the Giroux

2π l-torsion domain modeled on (Y ,α−,α+), which is the contact manifold

GT+
l := (Y × [0,2π l ]×S1,ξGT = kerλGT ),

where

λGT = 1+ cos(r)

2
α+ + 1− cos(r)

2
α− + sin(r)dθ,

both of whose boundary components are ξGT -round hypersurfaces modeled on (Y ,ξ+).

We can also consider the modified version given by

GT−
l := (Y × [π/2,2π l +π/2]×S1,ξGT = kerλGT ),

whose boundaries are now modeled on (Y ,ξ−).

For the model A version of the contact structure ξk in M = Y ×	 (in the same isotopy

class as my model B contact structures), we have that ξk = ξ± ⊕T	± over the regions
Y ×	±. Therefore, we obtain (k copies of) round hypersurfaces H± modeled on (Y ,ξ±),

corresponding respectively to the boundary components of Y × 	±. We can therefore

perform an l -fold Lutz–Mori twist along the H±. This can be done in two equivalent ways.
The first consists of cutting my model along each of the k copies of H− and gluing a copy

of GT−
l ; the second consists doing the same for H+, along which we glue GT+

l . This yields

a manifold which is diffeomorphic to M , with a contact structure on M which I denote ξ l
k .

The two ways are equivalent, since the contact structure ξk along the cylindrical region
MY (lying in between H− and H+) is itself isotopic to a ‘half’ Giroux torsion domain of

the form (Y × [π/2,2π ],ξGT ), as is easily checked. The contact structure ξ l
k is homotopic

as almost contact structures to the original contact structure ξk . Since ξ l
k has Giroux

torsion, Theorem 1.4 implies that it has algebraic 1-torsion (for l > 0), so that they are

indistinguishable from this invariant alone. Corollary 1.9 follows from Theorem 1.5. On

the other hand, one can use cylindrical contact homology to distinguish the ξ l
k [16].
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