Can. J. Math.Vol. 44 (4), 1992 pp. 805-823

ANALYSIS ON SPARSE PARTS
IN THE MAXIMAL IDEAL SPACE OF H*

KENI IZUCHI

ABSTRACT.  Analysis on sparse parts of the Banach algebra of bounded analytic
functions is given. It is proved that Sarason’s theorem for QC-level sets cannot be gen-
eralized to general Douglas algebras.

0. Introduction. Let D be the open unit disc and let H* be the space of bounded
analytic functions on D. With the supremum norm ||- ||, H* becomes a Banach algebra.
We denote by L™ the space of bounded measurable functions on the unit circle dD with
respect to the Lebesgue measure. By identifying a function in H* with its boundary
function, we may consider that H* is an essentially supremum norm closed subalgebra
of L*. A norm closed subalgebra B with H*® C B C L* is called a Douglas algebra. By
Sarason [14], H* +C is the smallest Douglas algebra, where C is the space of continuous
functions on dD. We denote by M(B) the maximal ideal space of B with the weak*-
topology. Then we can consider that M(L*°) C M(B) C M(H*) = M(H* + C)UD, and
M(L>) becomes the Shilov boundary for every Douglas algebra B. We identify a function
with its Gelfand transform. For a point { in M(H®), there is a representing measure ; on
M(L*); Juaeoyf dpe = f(Q) for every f € H™. We denote by supp p, the closed support
set of i¢. The pseudo-hyperbolic metric p on M(H*) is defined as follows;

p(G &) = sup{[f(©)] : f € H®, [Iflloo < 1.£(¢) = 0}.

The set P() = {€ € M(H™) ; p((, €) < 1} is called a Gleason part. If P(() # {C},in [9]
Hoffman proved that there is a continuous one to one map L. from (another) open unit
disc A onto P(x) such that f o L. € H(A) for every f € H*. To avoid the confusion,
we use A as the domain of Hoffman’s map L, and we define L>(9A), (H* + C)(A) and
M(H>(A)) as on D.

A function ¢ in H* is called inner if |¢| = 1 on M(L™). For a sequence {z,}, in D
with 02| 1 — |z,| < 00, a function

'lp(Z): 10—0[ —Zn 2— Zn

- z€D
n=1 |Zn| 1 =2z

is called a Blaschke product and {z, }, is called the zero sequence of 1. Moreover if

. g — I
inf JJ |2—>
k n:n#k 1 — Zuzi

>0and lim []

‘ Zk - Zn
k—o0 n:n#k

—| =1,
— Znlk
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then v is called interpolating and sparse respectively. Put

() = mf 1T

n: n;ékl 1 an.k

For f € H®, we denote by Z(f) the zero set of f on M(H™); Z(f) = {¢ € M(H*>) ;
f(¢) = 0}. For a subset E of M(H>), we denote by cl E or E the weak *-closure of E in
M(H®™). If 1 is an interpolating Blaschke product with zeros {z, }», then cl{z,}, = Z(3))
and this set is homeomorphic to the Cech compactification of the discrete set (see [8,
p. 205]), and if ¢ € Z(v)) then P() # {¢} [9, Theorem 5.5].

In this paper, we fix a sparse Blaschke product b and a point x in Z(b)\D. By [9,
p. 107], there is a constant « with || = 1, depending on b and x, such that (bo L, )(w) =
aw for w € A. For the sake of simplicity, in this paper we assume o = 1, that is,

(boL,)(w)=wforeveryw € A.
By Budde [2], there is a continuous extension
Le M(H®(8)) — P(x)

such that (ho L,y = ho LionM (HOO(A)) for every h € H®™, and L, becomes a
homeomorphic map. For each f € H*(A), identifying D and A, f o b € H*™ and
(fob)oLy(w)=fo(bolL,)(w)=f(w)forw € A, sothat we have (fob)o L, = f onA.
Hence

#) (fob)o L, = f on M(H®(A)).
This means that H°°|P—(x; is the same space with H>°(A) via the map Ly. Put
0 = L(M(L>@A))) C P().

Then d becomes the Shilov boundary for the restriction algebra H°°|P—()5. For ¢ € P(x),

we denote by A the representing measure on o for H*| P Put

Hoope = f € L% flsuppue € H[suppp, }-

Since supp px is a weak peak set for H* [8, p. 207], H, . is a Douglas algebra and

SUPP fix
M(Hg,, ) = {C € M(H™) ; supp p¢ C supp p} UM(L™),

and also P(x) C M(Hsolj’pp )

We denote by I the set of inner functions ¢ on D such that ¢ o L, is inner on A, that is,
|¢| = 10n9.By (#), Job)oL, =JonM (HOO(A)) for inner functions J on A. Since Jo b
is an inner function (see [4, p. 442]), I o [, coincides with the set of all inner functions
on A. For a subset I" of L™, we denote by [I'] the closed subalgebra of L*> generated by

functions in I". Put

[ SUpp fix ’b] and Bz [ suppu,’q; 5 ¢ € I]
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Then B; and B, are Douglas algebras, and

Hiippu, GBI C B C LY.
For a Douglas algebra B, put QCz = B N B, where B is the set of complex conjugate
functions which are contained in B. For { € M(L™), the set

{€€ M(L™) ; f(§) = f(Q) for every f € QCp}

is called a QCp-level set. For a function g € L™, we put

Np(g) = CI[U{SUPPNC ;C€E M(B)’glsuppug ¢ HoolSuppuc}]-

When B = H® + C, we abbreviate as QC and N(g).

In [15], Sarason proved that if f,g € L™ and either f/qpp,, € H°°|supp,tc or g|supwé €
H>|suppy, for each ¢ € M(H* + C), then f|p € H™|g or glg € H™|g for each QC-level
set Q. In [12], the author proved that under the same condition, N(f) N N(g) = §, and
gave several applications.

Our purpose of this paper is to show that the above results cannot be generalized to
the Douglas algebra By, that is, there are two inner functions / and J, and a QCp -level
set Q such that

(@) |I(©)| = 1or |[J()| = 1 for every { € M(B));

(b) both /]y and J|y are not constant;

(¢) N, (DN Np,(J) # 0.

We prove this theorem in Section 4. Sections 1, 2 and 3 are preparations for proving
our main theorem. In Section 1, we shall prove that if { € M(Hg’lj’pp ux)\F(x—) then there
is a Blaschke product 9 such that |({)] = 1 and ¢ = 0 on P(x), and if ¢ € I then
|6 = 1 on M(Hg,,,.)\P(x). As a consequence, d is the topological boundary of the set
P(x) in M(Hgy,,,, ). In Section 2, we study supp i and supp A; for ¢ € P(x). We prove
that supp p1c = cl{U{supp p¢ ; £ € supp A¢}]. In Section 3, we study the Douglas algebra
B;, and prove that Sarason and author’s theorems are true for B;.

1. Basic results. Budde [2] (see also [7, p. 5]) proved the following lemma.
LEMMA 1. P(x) = {C € M(H,,,); [bO)] < 1},

Hence P(x) is an open subset of M(H;’Sppu‘). Using the idea of Gorkin [5, Theo-
rem 2.2], we can prove the following theorem. For the sake of completeness we give

its proof.

THEOREM 1.  Let y be a point in M(Hg,, ux)\m. Then there is a Blaschke product
¥ such that |Y(y)| = 1 and ¢ = 0 on P(x).

To prove Theorem 1, we use the following lemmas due to Hoffman [9]. For two sub-
sets Ey and E, of M(H™), put p(E}, E;) = inf{p((,£) ; (€ E1, £ € Ex }.
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LEMMA?2. Let ¢ be an interpolating Blaschke product and 6(¢) > b > 0. Then there
existr = r(0), 0 <r<1,and A = \6), 0 < X < 1, such that

{Ce M(H™) ; |6(Q) < r} C {¢e MUH™) ; p(¢, Z(9)) < A}.
We may take as r(0) — 1 and \(6) — 1 (6 — 1).

LEMMA 3. The pseudo-hyperbolic metric p is lower semi-continuous on M(H*) X
M(H>).

For a Blaschke product ¢ with zeros {z,, o2 1» asubproduct with zeros {zn }no‘; . is called
a tail of 1.

PROOF OF THEOREM 1. Since y ¢ P(x), there is an open subset U of M(H*) such
that y € U and U N P(x) = 0. Then p(x, U) = 1. Take §, such that 0 < 6, < 1,8, — 1
and [172, r(6,) > 0, where r(6,,) is a constant given in Lemma 2. By Lemma 3, there is
an open subset W, of M(H*) such that x € W,, and A\(6,) < p(W,, U). Let b, be a sparse
Blaschke subproduct of » with the zero sequence W, N D N Z(b). Then x € Z(b,) C W,
by [8, p. 205]. Since b is sparse, by considering tails of b,,n = 1,2, ..., we may assume
that §(b,) > 8, and v = [1°°, by, is a Blaschke product. Since b,(x) = 0, ¥ = 0 on P(x).
Since A\(6,) < p(Z(b,,), U), by Lemma 2, |b,| > r(8,) on U. Hence

o]

BT Bn)(@] = int, TT x> T e

By Lemma 1, |b(y)| = 1, so that |,(y)| = 1. Sincey € U = DN U,

o)l = |( Hk” )o)| > inf |( nb,, )@)|

€DNU

> H r6,) — 1 (k— 00).
n=k

To prove Theorem 2, we need a following lemma.

LEMMA4[16]). Forevery innerfunctionl, there is an interpolating Blaschke product
J such that {¢ € M(H®) ; |[J(Q)| = 1} = {¢ € M(H™) ; [I({)| = 1}.

THEOREM 2. If ¢ € I, then |¢| = 1 on M(HZ,,, )\P(x).

PROOF.  First we shall prove when ¢ is interpolating. To prove our assertion, suppose
not. Then there is a point y in M(Hgy,,,, )\P(x) such that [¢(y)| < 1. Then ¢ is not
invertiblein Hgj,, , and there is a point ¢ in M(Hg,, , ) such that ¢(¢) = 0. Here we have
supp p¢c C supp sy. By Theorem 1, there is a Blaschke product 1 such that | (y)| = 1
and 1 = 0 on P(x). Since v = ¥(y) on supp iy, [Y({)| = 1, so that { € M(ngpp“()\F(—x_)‘
Hence there is a subproduct ¢; of ¢ such that ¢,(¢) = 0 and Z(¢;) N P(x) = O (see
[10]). Since ¢ o L, is inner, ¢, o L, is also inner. Since P(x) = I:x(M(HO‘)(A))), b 0L,
does not vanish on M (HOO(A)). Therefore ¢, o éx = ¢ for some constant ¢ with |¢| = 1,
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that is, ¢; = ¢ on P(x). Since ¢ = ¢1(z) = M=) ¢1dpy, ¢1 = c on supp p,. Since
supp ¢ C supp iy C Supp iy, ¢1(C) = Jyr=) ¢1 dpc = c. This is a contradiction.

Next suppose that ¢ is a general inner function in /. By Lemma 4, there is an inter-
polating Blaschke product / such that

{CemH®); [IQ] = 1} = {¢€ MH™) ; |6(Q)] = 1}.

Since ¢ € I,|¢| = 1 ond. Hence |I| = 1 ond and I € I. By the first paragraph,
on M(Hggpo, )\P(), so that | 6] = 1 on M(HZ,)\P@).
The following theorem shows that d, not P(x)\P(x), is the topological boundary of

P(x) in M(HZ,,,..)-

=1

THEOREM 3. 0 = P(x) Ncl[M(HSy,,,, ) \P(x)].

PROOE.  Let ¢ € P(x)\0. Then ¢ = Ly(n) for some 1) € M(H*(A))\M(L*(34)). By
[8, p. 179], there is an inner function J on A such that /()| < 1. Since (Jo b) o L, = J,
|(Job)(¢)| < 1.Since Job € I, by Theorem 2 |J o b| = 1 on M(HX  )\P(x), so that

¢ & ClIM(HS,,,)\P(x)]. Hence Supp s

d D P(x) Nel[M(Hy,,, )\P(X)].

To prove the converse inclusion, suppose that € d and & & cl[M(Hg,,,, ) \P(x)]. We
shall show a contradiction. Here we have

M(H;’lfppui) ={ye M(Hg,,,.) 5 supp p1y C supp pe } UM(L™).

Lety € M(Hgy,,,,.) with supp 1y, C supp pe and y # €. Since 1o L, is the set of all inner
functions on A, I separates the points in P(x) [4, p. 428]. If y € P(x) then ¢(y) # #(€)
for some ¢ € I. Since |¢(&)] = 1, ¢ = ¢(&) on supp pe. Hence ¢(y) = ¢(€). This
contradiction implies that y ¢ P(x). Since ¢ ¢ clIM(Hg,, “‘)\W], £ is an isolated
point in M(HG,, , ). By Shilov’s idempotent theorem, there is a function h in Hg,,
such that 2(§) = 1and h = 0 on M(Hg,,, )\{&}. Since M(L®) C M(HZ,,,)\{¢},
1 = (&) = Juu=)hdupe = 0. This is the desired contradiction.

2. Support sets. Let u be a complex valued bounded harmonic function on D. By
[1, Proposition 6], u can be extended continuously on M(H*); we use the same symbol
u, and

) u¢) = [

00
- duc for ¢ € M(H™).

For v € L™, the function w(z) = [y~ vdp, for z € D is harmonic, so that v(z) can be
extended on M(H™), and its extended function coincides with the original v on M(L*).
Therefore we identify a function in L* with its harmonic extension on D.

For each point n € M (H°°(A)), we denote by o, its representing measure on
M (Loo(aA)). Put{ = L(n). Since L, is a homeomorphism from M (Lo"(aA)) onto 9, there
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is a probability measure A on 0 such that f3 f dA = [yz(a)f© L. da, forevery f € C(9),
the space of continuous functions on d. For f € H®, we have [;fd\ =fo L(n) = f(©).
Hence A = ), the representing measure on d for the point ¢, and supp A = L.(suppa,).
Since a real bounded harmonic function v has the form v = log [g| for some invertible
function g in H* [8, p. 182],vo L is harmonic on A, and by (1) and (#),

WO = wolym = [

vol.do, = /vd/\< ; and
M(L>(3A)) 3

(vob)oL, =log|(gob)oL] =1log|g| =v.

Hence
Q) u(():/(;ud)\gforCET’(—xjandueLm;
3) (uob)oL,=uon M(HOO(A)) for u € L®(9A).

For { € M(H®), H>®(A) 5 f — (f o b)({) is a nonzero homomorphism, hence there
is a point 7 in M(HOO(A)) such that () = (f o b)((). We put = b(C). By [4, p. 441],
b:MH®) — M (H°°(A)) is a continuous map, and

) (o b)(Q) = u(b(Q)) for € M(H™) and u € L™ (9A).
By (3), E(I:x(n)) =nforn € M(HOO(A)). Therefore b = L' on P(x). We use this fact
frequently.

LEMMA 5. Let ¢ € [M(HS5,,,,)\P(¥)1U . Then Ly (b(supp o)) = Le(b(Q)) € 9. If
ueL®and € €0, then (uoLy)ob = u(€) on SUpP L.

PROOF. By Theorem 2, [¢(¢)] = 1 for ¢ € I.If J is inneron A thenJo b € I.
Hence [J(b(())| = 1. By [8, p. 179], b() € M(L*(3A)), so that L,(b(()) € 9. Since
inner functions separate the points in M(L°°(8A)) [4, p. 192], J(B(Q) = JmayJ o bdu

implies 13(supp He) = b(©).
Suppose that ¢ € 9. Then by (4), [(uoL,)ob)(supp p¢) = u(ﬁx(ﬁ(é))). Since b = L'
on P(x), u(Lx(B(€))) = u(€), so that (u o Ly) o b = u(€) on supp p¢.

LEMMA 6. supp i, = cl{U{supp p¢ ; £ € 9}].

PROOF.  Suppose not. Then there is an open and closed subset W of M(L>°) such that
cl{U{supp ¢ ; € € 9}] C W and supp e ¢ W. Then p (W) < 1. We denote by xw the
characteristic function for W. Since xw(§) = Juu=) xw due = 1 for € 0 by (1) and (2)

b= [xwdhe= [, xwdu

so that u,(W) = 1. This is a contradiction.
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COROLLARY 1. Let u € L™. If u is constant on supp ¢ for every § € 0, then u =
(uo ix) o b on supp piy.

PROOF. By Lemma 5, (uo L) o b = u on supp pe for every € € d. By Lemma 6,
(uoLy)ob=uon Supp fiy-
For an open and closed subset U of 9, put

U={¢e MIL™); L(b(Q)) € U} = {¢e MIL™) ; b©) € L7\ (W)}

By the proof of Lemma 5, E(M(L"O)) CcCM (LOO(BA)), so that U is an open and closed
subset of M(L™). Also d = M(L*®) and (U N V)~ = UN V for open and closed subsets
U and V. In this paper, U plays the essential part.

LEMMA 7. (i) xg = O or 1 on [M(Hg,,, )\P(x)]U0.

(ii) For { € [M(H3,p, )\P@] U0, x5(¢) = 1 if and only if L. (b)) € U.
(iii) Xy = Xv on 0, that is, supp e C U ifand only if € € U for € € 0.
(iv) For ¢ € PQ), p(0) = A (U).

PROOE. Let ¢ € [M(HS,,,)\P@)] U 0. By Lemma 5, L (b(suppp;)) =
L(b(Q) € 3. 1f L(b()) € U, then suppp; C U and x5(¢) = 1. If L(bQ)) ¢ U,

then supp ;N U = ) and x; = 0. Hence we get (i) and (ii).
Since b = L' on P(x), L.(b(¢)) = £ for £ € 0. By (i) and (ii), we have (iii). Let
¢ € P(x). By (iii), (1) and (2),

AU) = /8Xud)\g = /BXf/ dr; = /M(Lw) Xg dpe = p(U).
The following proposition will be used several times in the rest.
PROPOSITION 1. Let U be an open and closed subset of 0. If E is a dense subset of
U, then UM supp p1, = cl{U{supp ¢ ; £ € E}1.

PROOF. By Lemma 7 (iii), U{supp p¢ ; € € U} C U and U{suppp, ; £ € 0\U} C
supp p\U. By Lemma 6, cl[J{supp p1¢ ; £ € U}] = UM supp . For each point & in
U, there is a net {4 }q in E such that £, — &o. Since [y f dpte, — Suro)f dpg, for
fer=,

supp pte, C cl|[{supp e, ; a}] C cl[U{supp pe ; € € E} .

Therefore cl[U{supp pi¢ ; € € U}] = cllU{supp p¢ ; € € E}].
The following theorem gives the relation between supp i and supp A.
THEOREM 4. Let ¢ € P(x). Then
(i) supp p¢ = cl{U{supp ¢ ; & € supp Ac}l;
(ii) suppA. = {€ € 0 ; supp pg C supp pc}.

PROOF. Let { € supp A;. To prove supp pe C supp pi;, Suppose not. Since supp ¢
is a weak peak set for H* [8, p. 207], there is a function k in H* such that ||4|| = 1,
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h = 1 on supp ¢ and |h(§)| < 1. Since 1 = h({) = [yhdA;, h = 1 on supp X, so that
h(€) = 1. This is a contradiction. Hence we have
supp ¢ O cl[{supp ¢ : € € supp \;}] and
supp A C {€ € 9 ; supp e C supp fic}-
(i) Let W be an arbitrary open and closed subset of M(L*) such that

WD cl{U{supp pe 3 € € supp )‘C}]'
Since xw(§) = Smw~) xwdpe = 1 for £ € supp A¢, by (1) and (2) we have

W)= [ xwdpc= [ xwdi=1.

Hence supp p C W, so that we get (i).

(ii) Let £ € d such that supp e C supp pc. Let U be an arbitrary open and closed
subset of d such that supp A, C U. By (i) and Lemma 7 (iii), supp prc C U. Hence
supp pe C U. By Lemma 7 (iii) again, ¢ € U. Consequently, £ € supp A..

COROLLARY 2. For( € P(x), L, (5(supp ,uc)) = supp A¢.
PROOFE. Since b = L' on P(x), I:x(é(&)) = ¢ for € € 0. Then
ix(l;(supp ,uc)) =cl [U{L}(é(supp Hg)) ; € € supp )\4}] by Theorem 4(i)

= cl(U{I:x(l;(é)) ; € € supp ’\C}] by Lemma 5
= supp A¢.

3. The Douglas algebra B, = [Hy,, .6 : ¢ € . PutBy = Hyy,\ B =

[H;ﬁ’ppm, bland B, = [Hsol?ppux, ¢ ; ¢ € I]. By the Chang and Marshall theorem [3, 13],
for every Douglas algebra B,
M(B) = {¢ € M(H*™) ; |J({)| = 1 for every inner J with J € B}.

By Lemma 1, M(B;) = M(Bo)\P(x), and by Theorem 2, M(B,) = [M(By)\P(x)]U0. Let
QCz = BN B and let Cp be the C*-algebra generated by inner functions J with J € B.
Then

QCjp = {f € B ; f is constant on supp i for each { € M(B)}.

We denote by QC(A) the QC-functions on A. In this section, we study B, mainly.
PROPOSITION 2. QCp, = {f € B ; f = q o b on supp p for some g € QC(A)}.
PROOF. Letf € Bj such that f = g o b on supp p, for some g € QC(A). Let ¢ €

M(B)). Then ¢ € [M(Bp)\P(x)] or ¢ € P(x)\P(x). If { € M(By)\P(x), then by Lemma 5

q o b(supp ) = q(B(Q), so that g o b is constant on supp p.. If ¢ € P(x)\P(x), there is

a point 77 in M(HOO(A))\A with ¢ = L(n). By Corollary 2, suppo, = ﬁ;](supp ) =

b(supp ). Since q is constant on supp 0, g © b is constant on supp p.. Therefore f €

QCy,.

Let g € QCp, . Then g is constant on supp y, for each y € M(B). Since d C M(B)), by
Corollary 1, g = (go Ly)ob on supp pi,. To prove go L, € QC(A), let € M(H®(A))\A.
Put { = fo’?)- Since g is constant on supp i, g © L, is constant on b(supp ). Since
supp o, = b(supp pi¢), g © Ly is constant on supp o,,.
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PROPOSITION 3. (i) QCp, = {f € By ; f = h o b on supp i for some h € L™(dA)}.
(ii) Cp, = QCp,.
PROOF. In the same way as the proof of Proposition 2, we can get (i). By [4, p. 192],

L>®(dA) is the C*-algebra generated by inner functions on A. Since Jo b € I C Cs, for
every inner function J, by (i) we can get (ii).

REMARK 1. In the same way, we have
Cp, = {f € By ;f = hobon supp y, for some h € C(dA)}.

And this is a restatement of the result in [7, Section 3].
For £ € o, there is QCp,-level set R¢ such that suppue C R¢. By Lemma 5,
b(supp pe) = L;'(€). Hence by Proposition 3,

Re = {C € supp . 5 Le(B(O)) = €},
and {R; ; £ € 9} is the partition of supp yi, by QCp,-level sets. Of course R, # R, if
§1 # &. In Section 4, we shall prove that supp pe C R, for every £ € d (Corollary 5).
7(

For an inner function /, we put
U =c{€€0; I <1}

Then U; = Li(cl{n € M(L®(3A)); |I o L(n)| < 1}). Since cl{n € M(L®3A)); |1 o
I:x(n)| < 1} is an open and closed subset of M (L°°(8A)), U; is an open and closed subset
of 0.

THEOREM 5. Let I be an inner function with I € B,. Then

(i) Np,() = U; N supp pis;
(ii) for & € 0, Re C Np,(I) or R¢ N Np,(I) = 0.

We need the following lemma which will be used also in Section 4.

LEMMA 8. Let I be an interpolating Blashcke product and let U be an open and
closed subset of 0. Then there is a factorization I = I I, such that
(i) if( € M(By) and |1;(¢)| < 1 then supp u; C U;
(ii) if¢ € M(By) and |I(Q)| < 1 then supp pi; C supp pux\U;
(iii) |I;] = 1ond\U and |I,| = 1 on U;
(iv) |I;] = |I| on U and |L,| = |I| on 0\ U.

PROOF. By Lemma 7, x; takes O or 1 on M(B). Since Z(/) is a totally disconnected
set, there is an open and closed subset W of Z(I) such that

WNM(By) = Z(DN{¢ € M(B2) ; xp(Q) = 1}

Let I, be a subproduct of I with the zero sequence W M D M Z(I). Then Z(l;) = W
(see [10]). Put I, = I/I,. Then Z(I,) = Z(D\W.
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(i) Let ¢ € M(By) and |1,(¢)| < 1. Then there is a point {y in Z(I;) such that supp e, C
supp pic. Here we have §y € M(By), so that x 5(¢o) = 1 and x 5(¢) > 0. Therefore x ;(C) =
1, and supp p; C U.

(ii) Let ¢ € M(B,) and |1,(¢)| < 1. Suppose that supp ;. ¢ supp u\U, that is,
supppc MU # 0. Since x5(Q) = Oor 1, x5(Q) = 1. Since |L({)| < 1, there is a
point {y in Z(/>) such that supp p;, C supp pc. Since x5(Q) = 1, x(¢) = 1. Therefore
( € W. Since Z(I,) = Z(I)\W, we have a contradiction.

(iii) Suppose that |I;(§)] < 1 for some £ € 9\U. By (i), x5(§) = 1, so that by
Lemma 7 we have £ € U. But this is a contradiction. Thus we get |I;| = 1 on 0\ U. Next
suppose that |I(£)| < 1 for some £ € U. By (ii), x5(£) = 0. Since £ € U, by Lemma 7
we have x ;(£) = 1. This contradiction shows that || = 1 on U.

(IV) By (111), we have I[! = llll [12' = !Ill on U and II! = l]]l I[zl = |12| on 8\U

PROOF OF THEOREM 5. (i) By Lemma 4, we may assume that / is an interpolating
Blaschke product. Since I € By, I ¢ 1, so that |I| is not identically 1 on 0. Since {£ €
d; [I(€)| < 1} is a dense subset of Uj, by Proposition 1 we have

0y Nsupp e = cl[U{supp e 3 € € 0, [1(€)] < 1}].

Hence U, N supp px C NBz(i). Let I = I11; be a factorization in Lemma 8 for the open
and closed subset U;. Then || = 1 on U; and |I2| = |I| on 0\ U;. Therefore |I,| = 1 ond
and I, € I. By Theorem 2, |/;| = 1 on M(B). By Lemma 8 (i), Ng,(I) = Ng,(I)) C U,.
Since N, (I) C supp py, we get (i).

(i) Let & € 0. Then Re = {¢ € supp i, ; Le(B(()) = &}. By the definition of U},
U;Msupp e = {C € supp iy ; Lx(é(o) € U;}. Hence if € € Uy then Re N Uy = () and if
£ € Usthen R, C U).

REMARK 2. By the above proof, for every open and closed subset U of d and £ € 0,
ReCUorR:NU=0.

The following is the main theorem in this section.

THEOREM 6. Letf, g € L™ such that f|suppu. € H®|suppyuc 07 &lsupppc € H™|suppy
for every ( € M(B5). Then

(i) forevery £ € 9, R C Ng,(f) or Re N\ Ng,(f) = 0;
(ii) Np,(f) Na,(g) = 0.

PROOF. By [12, Lemma 2.2], there are sequences of inner functions {1, }, and {J; }x
such that

[H®,f]1 = [H®,I,;n=1,2,...] and [H®,g] = [H®,J, ; k= 1,2,...].
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Then we have

3

Na,(f) = [Q N, (I)]

n=1

g I

= cl[ U U, Nsupp ,ux] by Theorem 5

n=1

= cl[U{supp pes€e U U,n}] by Proposition 1
n=1
=[cl|J Ui, ]” Nsuppu, by Proposition 1.
n=1

Since cl ;2 Uy, is an open and closed subset of d, by Remark 2 we get (i).
By our assumption, for n and k, |1,(¢)| = 1 or |J;({)| = 1 for every { € M(B;). Then

{6€d;|L©] < 1yN{E€d; U <1} =0.

Since d = L,(M(L®(3A))) is a Stonian space, U;, N U;, = 0, so that cl[U2, U;,1 N
(U2, U] = 0. Hence
Ui

Np,(f) N Ng,(g) = [cl 2 ]N N [cl kfj Uy, ]N M supp fix
=1

U;n) N (cl Ej U,k)]wﬂsupppx
k=1
= Q.

REMARK 3. Let I and J be inner functions. In [11, Corollary 5], the author proved
that [H® + C,I] = [H® + C,J] if and only if N(I) = N(J). Here we note that this fact
is not true for the Douglas algebra B,. It is not difficult to see that if [B,,I] = [B,,J],
then Np,(I) = Np,(J). But the converse is not true. For, take a Blaschke product / such
that I = 0 on P(x) (see Theorem 1). There is a Blaschke product J such that J/ = 0 on
{¢ € M(H*® + C) ; [I({)] < 1}. Then [B,,1] g[Bz,j]. Since I = J = 0 on 9, we have

U; = U; = 9. Since d= M(L*), by Theorem 5 we have Ngz(i) = NBZ(J) = Supp fix-

4. The Douglas algebra B, = [Hg;, . b]. In this section, we shall study the Dou-

glas algebra By = [Hgy,,,. . bl. For f € L* with |||l < 1, put

M(f) = el H{supp ¢ ; ¢ € M(H® + O), |f Q)] # 1}].

PROPOSITION 4. Let f € L*® with ||f||oo < 1. Put W = cl{¢ € M(L®) ; |f(¢)| < 1}.
Then M(f) = WU N(f) U N(f).

PROOF.  M(f) D Wistrivial. Let { € M(H*™+C) such that f [supp,,. & H>|suppy,,- Then
[f(©)] < 1, so that supp ;. C M(f). Hence N(f) C M(f). Also we have N(f) C M(f).

To prove the converse inclusion, let § € M(H> +C) such that [f(£)| < 1. If flsuppu, &
H>[supp e OF Flsuppe & H lsuppy then supp pre C NGE) UNE). If flsuppye € H lsuppy
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and -f_‘SUPPNE € H*|wpp ue»f = c on supp ug for some constant ¢, because supp ¢ is an
antisymmetric set for H® ([15, p. 463]). Since |[f(£)| < 1, |¢| < 1, so that supp e C W.
Consequently M(f) C W U N() U N(f).

REMARK 4. There are a function g in L and a QC-level set Q such that ||g||o = 1,
Q ¢ M(g) and QN M(g) # 0.

PROOF. By [8, p. 80], there is a continuous function g on DUJD such that g is analytic
in D, |g| < 1 on some proper open arc J in D and |g| = 1 on dD\J. By Proposition 4,
M(g) = {¢ € M(L™®) ; x,() = 1}. Since x; & QC, there is a QC-level set Q such that
O ¢ M(g)and QNM(g) # (. For f € L™ with ||f||oo < 1, we put

My(f) = cl[Ufsupp X; ; ¢ € PG)\P(), [F(Q)] < 1}].
It is easy to see that M(f) = Li(M(f o Ly)).
THEOREM 7. Let I be an inner function. Then NBI(i) = cl{U{supp pe s €€ My(D)}].
PROOF. Let ¢ € P(x)\P(x) with |I({)| < 1. By Theorem 4 (i),
cl[U{supp e ; € € supp Ac}| = supp e C N, (D).
Consequently we have
cl[U{supp pe : € € My(D}] € N, (D).
Next we shall prove the converse inclusion. We note that
Ng, (D) = Np,(D U cl[U{supp 1¢ ; ¢ € P)\P(), |1Q)] < 1}].
Since U; C My(I), we have

Np,(I) = U;Nsupp py by Theorem 5
= cl[U{supppf ;€€ U,}} by Proposition 1
C cl[U{supp pe s € € Ma(l)}].

If ¢ € P(x)\P(x) with |I({)| < 1, then

supp i = cl [U{supp pe 3 € € supp )‘C}] by Theorem 4
C cl[Ufsupppe : € € MyD}].

Therefore we get N, (1) C cl[U{supp i ; £ € My(D}].
For f € L™, put

Na(f) = C][U{Supp)‘ﬁ ;flsuppA< ¢ Hw.supme € %}]

Then it is easy to see that N;(f) = L, (N(f o LX)).
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COROLLARY 3. Let I be an inner function. Then Ng,(I) = Np,(I) U cl[J{supp He s
£ € Ny(D}l.

PROOE.  Put W = cl{n € M(L®(A)) ; |(I o L)(n)| < 1}. Then
My(h) = L(M(I o L))
= L(WUNU o Ly)UNU o L,)) by Proposition 4
= Uy UNy(D).
By Proposition 1, Theorems 5 and 7, we get our assertion.
COROLLARY 4. (i) If I € 1, then i (Ng, (D)) = 0.
(i) If I is inner and 7 ¢ 1, then 11,(Np, (1)) = pix(N3,(1)) > 0.

PROOF. By [11, Theorem 1],09(N(/ o Ly)) = 0.Then A (Ny(1)) = ao(N(I o L)) =
0. Let {U,}. be a sequence of open and closed subsets of d such that U, D Nj(I) and
A(Un) — 0. By Proposition 1, U, D cl[U{supp p¢ ; £ € Ny(])}]. By Lemma 7 (iv),
1e(Up) = A\(U,) — 0, hence px(cl{U{supp e ; € € Ny(D}]) = 0.1f I € 1, then
NBZ(T) = (). By Corollary 3, we get (i).

Next let I be an inner function with I & I, then

UX(NB,(i)) = Nx(NBz(i)) by Corollary 3
= (U;) by Theorem 5
= A\(U;) byLemma 7
> 0.

PROPOSITION 5. Let f,g € L™ with||f]lc < 1 and ||g|lco < 1. Suppose that for each

point§ in M(H® + C), [f({)] = 1 or |g({)| = 1. Then for each QC-level set Q, f|gp = c or
glo = c for some constant c, depending on Q, with |c| = 1.

PROOE. By our assumption and [12, Theorem 2.1],
IN(YUNDININ@UN@)] = 0.
Since N(f) consists of QC-level sets [12, Corollary 2.1],
ONINEHUNGH] = Dor QN[N UN@)] = 0.

Here we may assume that Q M [N(g) UN(g)] = (. There is a function ¢; in QC such
that g1|o = 1 and g; = 0 on N(g) UN(g). Then ggq; € QC, so that g|p = ¢; for some
constant c,. If |c;| = 1, this is our conclusion, so that we assume |c;| < 1. Then there
is an open subset V of M(L>) such that |g| < 1 on Vand Q C V. Let ¢ € QC such
that 2o = 1 and g2 = 0 on M(L®)\V. If fg, & QC, there is a point £ in M(H*® + C)
such that fg>|supp,, is not constant. Then supp ¢ C V and f is not constant on supp .
Therefore |g(£)] < 1 and |f(£)| < 1; this contradicts our assumption. Hence fg, € QC,
so that f|p = c,. Since |g|g| < 1, by our assumption we have |c;| = 1.
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LEMMA 9. Let I be an inner function, B be a Douglas algebra and let Q be a QCpg-
level set. Then
(i) ifl|g is constant, then Q N Ng(I) = 0;
(ii) if I|g is not constant, then there is a point ¢ in M(B) such that supp . C Q and
1) =

PROOF. Let mz: M(B) — M(QCj) be a natural continuous map such that 7' ({) is a
QCjp-level set for ¢ € M(QCp). Then it is not difficult to see that Ng(I) C wgl (7r3 (Z(I) N
M(B))). If q is a QCp-function with ¢ = 0 on Z(I) N M(B), then Iq € QCj. This means
that 75(Q) & 75 (Z(I) N M(B)) if and only if /] is constant. This implies our assertions.

For ¢ € 0, there is a QCp, -level set Q¢ such that supp e C R¢ C Q¢. By Lemma 5,
13(supp pe) = I:;'({). Let Oa¢ be a QC(A)-level set containing the point I:;‘(&). By
Proposition 2, we have

Q¢ = {C € supp s 5 B(Q) € Oac}-
The following is a counterpart of Theorem 9.

THEOREM 8. Let [ and J be inner functions such that [ € I and for every ( € M(B)),
[((©)| = Lor |J(©Q)| = 1. Suppose that {£ € 9 ; |J(§)| < 1} is an open and closed subset
of 0. Then

(i) Np, ()N Np,(J) = 0,
(ii) for every QCg -level set Q, 1| or J|g is constant.

PROOF. (i) By our assumption, Iof,, isinnerand |(IoL,)(n)| = 1 or|(JoL)(n)| = 1
forn € M((H*®+C)(4)).Put W = {5 € M(L*@4)) ; |(JoL)(n)| < 1}, then W is open
and closed. By Proposition4, M(Io L,) = N(Io L) and M(J o L) = WUN(J o L,). By
[12, Theorem 2.1], N(I o ix) NN o ﬁx) = (. By Proposition 5, for every QC(A)-level
set Qp, [0 Ly]g, = corJol,p, = cforsome constant ¢ with |c| = 1. Hence by
Lemma 9, Qs NN(I o Ly) = § or Qo "W = . Since N(I o L,) consists of QC(A)-level
sets, N(I o Ly) MW = 0. Consequently, M(Io L) \M(J o Ly) = @ and My(H)NM,(J) = 0.
Take an open and closed subset U of d such that My(I) C U and U N\ M3(J) = (). Then
by Lemma 7 and Theorem 7, Np, (1) C U and Np,(J) C supp u,\U. Thus we get (i).

(ii) Suppose that there is a QCBl -level set Q such that both /| and J| are not constant.
Since I € I, by Corollary 1, (o Ly)ob = Ion supp 11, Hence I o L, is not constant on
b(Q), here b(Q) is a QC(A)-level set. By Lemma 9, there is a point ¢ in M(B;) such that
supp uc C Q and J({) = 0. If ¢ ¢ P(x), by Theorem S, supp u; C Uy = b~ '(W). Then
Q) NW # Dand |J o L] # 1 on b(Q). I ¢ € P(x), then Jgpp 5, is not constant, and
soisJo Lxli;l(suppm. By Corollary 2, b(supp p¢) = L' (supp A), and J o L[4, 1s not
constant. But this contradicts Proposition 5.

The following is the main theorem of the paper.

THEOREM 9.  There are inner functions I and J, and a QCg, -level set Q) such that

(i) Q ¢ Ny, (D) and Q "N, (1) # 0;

https://doi.org/10.4153/CJM-1992-048-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1992-048-3

ANALYSIS ON SPARSE PARTS 819

(ii) either |I(Q)| = 1 or |J({)| = 1 for every { € M(B));
(iii) Ngi(D) "\Npi(J) # 0;
(iv) both1|g and J|o are not constant;

(v) el[U{supppc s € € L(b(@)}] c 0
PROOF. STEP 1. First let ¢; be an interpolating Blaschke product such that

(5) sup{|Y1(§)] ;£ € 9} < 1.

The existence of ¥, follows Theorem 1 and Lemma 4. If Z(; )NP(x) # 0, by Theorem 3
there is an open and closed subset W of Z(1);) such that Z();) N [M(Bo)\P—(xS] =Wn
M(By). Then there is a subproduct 1] of v such that Z(y)}) = W. Since ¢, /4| does not
vanish on M(By) = [M(By)\P(x)] U9, |¢1/4}] = 1 on 9. Hence Z(y}) N P(x) = P and
sup{|Y1(€)| ; £ € 0} < 1. Therefore we may assume that

(6) Z(p) N P(x) = 0.

We shall prove the existence of a sequence of interpolating Blaschke products {v, },
such that 1), is a subproduct of 1,,_; and

(7 1—1/n <inf{|[yu(§)] ; £ € I} <sup{[yn(§)|; § €9} < 1.

It is sufficient to prove that there is a subproduct v, of v, satisfying (7).

For ¢ € 0, by (5) there is a point { in M(B;) N Z(3;) such that supp e, C supp pe.
Let § be a positive number such that /(§) > 1 — 1/n in Lemma 2. By [9, p. 82], there is
a subproduct 1/’ of 1 such that

8(y) > 6 and ¥/(¢) = 0.
Then |¢/(€)| < 1. Since P(§) = {¢}, p(£,Z(¥)) = 1. Hence by Lemma 2,
1=1/n<r@® <[P < L.
Take an open and closed subset Uy of d such that £ € U, and
®) I—1/n<inf{|[v/(€"]; € € Ug} <sup{|9/(€)] : §' € Ue} < 1.

Applying Lemma 8 to ¢/ and Uy, there is a subproduct v, of ¢/’ such that

9) [e| = |¢'| on Ug and || = 1 on 0\ U.

By (8) and (9), we have

(10) = 1/n <inf{|[$(£)] s €' € Uc} < supf|ve(€)] ; §' € Ue} < 1.

Since d is compact, there is a finite sequence of points &;, &3, ..., &, in d such that d =

UJ’»‘:l U, Put ¢; = 1¢,. By Lemma 8, take a subproduct ¢ of ¢, such that |¢s| = [,
on Ug,\Ug, and |¢,| = 1 on 0\(Ug,\Ug,). By induction, we can take a subproduct ¢; of
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e, such that |¢;| = |vg | on Ug \(Ug, U---U Uy, ) and |¢;| = 1 on d\[Ug \(Ug, U+ - -U
Ug,_,)]. By our construction and Lemma 8, Z(¢;) N Z(¢;) " M(B)) = () for i # j, so that
we may assume that ¢; and ¢; have disjoint zero sequences. Put v, = Hj’-‘:I ¢;. Then v,
is a subproduct of 1; and by (10) we get (7).

STEP 2. Put U, = cl{€ € 0 ; 1/(n+1) < Reb(¢) < I/n}forn = 1,2,....
Applying Lemma 8 for each v, and U,,, we have a subproduct I, of 1, such that

(11) |1,| = || on U, and |1,| = 1 on 0\ U,.
Since U,NU; = @ forn # k, Z(I,)NZ(I;)\M(B;) = {, so that we may assume moreover

that 1, and I; have disjoint zero sequences. Since 1), is a subproduct of 1,1, for each k

[e 0]
(12) I1 1. is a subproduct of 1.
n=k

Put I = [I;2, I,,, then I is an interpolating Blaschke subproduct of 1;, so that by (6)

(13) Z(HNP(x) = 0.
By (7), (11) and (12), we have the following inequalities on Uy

00 k—1 5 5

) = |T] I|| | TT 2| = [l > (0= 1/0)% 5 and 1] < [L] = [vy] < 1.

n=k n=1
Hence
(14) |7l < 1onlUZ, Uy and klim sup{|1(§)| ; £ € Uy} — L.

—00

Also we have

00 k—1 00
1 = [ TL |11 1] > |l = 1 = 1/kond\(U Uy) :
n=k n=1 k=1

therefore
(15) 1l = 1ond\(U U).
k=1

Hence U; = (U2, Up).

STEP 3. First we study the function / o L, on M((H°0 + C)(A)). Since L '(Uy) =
cl{n € M(L®@8)) : 1/(k+1) < Rez(n) < 1/k}, by (14) and (15) we have [Io L, < 1
on {77 € M(LOO(BA)) ; Rez(n) > 0} = U, L "(Uy); [IoL,| = 10on {n € M(LO"(BA)) ;
Re2(n) < O} ;and |1 o L,| on dA is continuous at every point € dA with Re 2(r)) < 0.

By (13), I o L, is an outer function on A. Hence for every sequence {w,}, in A such
that |w,, — | — 0 for some « with |a| = 1 and Re a < 0, we have |(/ o L)(w,)| — 1.
This means that

(16) o Ly(1)| = 1 for every n € M(H(A))\A with Re#(n) < 0.
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Put

V=L;'(U) = cl{n € M(L™()) ; Re(n) > 0}.
Then Uy and V are open and closed subsets of d and M (L°°(8A)) respectively. By (16),
NI o L) C V, so that by Proposition4, M(IoLy) = V. Since My(I) = L.(M(IoLy)) = Uy,
by Proposition 1 and Theorem 7,
(17) N, (D) = U N supp ps,
Since xy & QC(A), there is a QC(A)-level set Qa such that Qn ¢ V and Q, NV # (. Put

Q = {¢ € supp x5 bQ) € O},

then Q is a QCp,-level set. Since Uy Nsupp p, = b='(V), @ ¢ Uy and QN T; # 0. By
(17) we get (i).

By Marshall (see [4, p. 392]), there is an inner function ¢ such that [H*(A), xy] =
[H(A),g), that is, for n € M(H®(A))\A, [xv(n)| = 1 if and only if |g(n)| = 1. If
Ixv(m| < 1 forn € M(H®(A))\A, then Re 2(n) = 0. Hence by (16),

lg(m] = 1 or [T o Lo(p)| = 1 forn € M(H*(A))\A.

Put
J=gqobe H™.
ThenJ € I and JoL, = g on M(H*(A)). Hence by Theorem 2, |J| = 1 on M(B1)\P(x),
and
[J(O)] = 1or |[I(Q)| = 1for( € P(x).
Thus we get (ii).

Since xv|g, is not constant, g|g, is not constant. By Lemma 9, Q5 C N(g). Since
My(J) = My(J) = Ny(J),
Np,(J) = cl[U{supp pe s € € Na(f)}] by Theorem 7
= o[Ufsupp g : € € L(NT o L))
= [Ufsupp pe : € € L(N@)}]
S cl[U{supp e ; € € Lu(Qa)}].
Since Qs NV # 0, L.(Qa) N Uy # . Since supp pe C U for € € Uy, by (17) Ng, (/)N
Ng,(I) = Np,(J)y N U; N supp p, # 0. Thus we get (iii).
We have 5(Q) = Qp and J = g o b. Since g|g, is not constant, J is not constant on Q.
We already proved Q N U; # (). We have
Q = b™"(Qa) N supp i
= U{B"' () s m € Qa} Nisupp
=U{Re s € € L@}
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By Theorem 5, Q N Ng,(I) = QN U; # 0, so that R; N Np,(I) # 0 for some & € Li(Qy).
By Lemma 9, there is a point { in M(B,) such that /({) = 0 and supp yc C R¢. Hence /|,
is not constant, and /| is not constant. Thus we get (iv).

Since supp pe C R¢, we have

cl{Ufsupp e ; € € L(@}] C Q.

By our construction, |g(n)| = 1 or [(I o L)(n)| = 1 forn € M(H”(A))\A. Since ¢lg,
is not constant, by Proposition 5, I o L,|¢, is constant and |/ o L,|o,| = 1. Hence I is
constant on cl[| {supp pi¢ ; £ € ix(QA)}]. Therefore we get (v).

COROLLARY 5. For every £ € 0, supp ¢ CRe.
)l

PROOF. By the same way as the construction of / in Theorem 9, we can find an
interpolating Blaschke product ¢ such that [{(¢)| = 1 and supp ¢ C U,. By Theorem 5,
R: ONB2(1/—)) # (. By Lemma 9, there is a point ¢ in M(B,) such that supp He C Re and
Y(¢) = 0. Then |supp,, is constant and ¥|g, is not constant.

By Theorem 9, we cannot expect to have fruitful properties of the Douglas algebra B,
as in [12].
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