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ANALYSIS ON SPARSE PARTS 
IN THE MAXIMAL IDEAL SPACE OF H00 

KEIJIIZUCHI 

ABSTRACT. Analysis on sparse parts of the Banach algebra of bounded analytic 
functions is given. It is proved that Sarason's theorem for QC-level sets cannot be gen­
eralized to general Douglas algebras. 

0. Introduction. Let D be the open unit disc and let H°° be the space of bounded 
analytic functions on D. With the supremum norm || • ||oo, H°° becomes a Banach algebra. 
We denote by L°° the space of bounded measurable functions on the unit circle dD with 
respect to the Lebesgue measure. By identifying a function in H°° with its boundary 
function, we may consider that H°° is an essentially supremum norm closed subalgebra 
of L°°. A norm closed subalgebra B with H°° C B C L°° is called a Douglas algebra. By 
Sarason [14], H°° + C is the smallest Douglas algebra, where C is the space of continuous 
functions on dD. We denote by M(B) the maximal ideal space of B with the weak*-
topology. Then we can consider that M(L°°) C M(B) C M(H°°) = M(H°° + Q UD, and 
M(L°°) becomes the Shilov boundary for every Douglas algebra B. We identify a function 
with its Gelfand transform. For a point £ in M(//°°), there is a representing measure JI^ on 
M(L°°); JM(L°°)/^MC

 = / ( 0 f° r every/ E H°°. We denote by supp/i^ the closed support 
set of /i£. The pseudo-hyperbolic metric p on M(H°°) is defined as follows; 

p(CO = sup{[/(Ol ; / e H°°, ll/Hoo < i,/(0 - 0}. 

The set P(Q = {£ £ M(H°°) ; p(£, 0 < 1} is called a Gleasonpart. If P(Q ^ {(}, in [9] 
Hoffman proved that there is a continuous one to one map LQ from (another) open unit 
disc A onto P{x) such that/ oL^G //°°(A) for every/ G //°°. To avoid the confusion, 
we use A as the domain of Hoffman's map L ,̂ and we define L°°(3A), (H°° + C)(A) and 
Af (fl°°(A)) as on D. 

A function <j> in H°° is called inner if \(j)\ = 1 on M(L°°). For a sequence {z„}„ in D 
with ££ii 1 — |zn| < oo, a function 

^) = nrTff^- zGD 

is called a Blaschke product and {z«}« is called the zero sequence of 1/;. Moreover if 

^ — Zn inf J] | ? _Zn \ > 0 and lim n 
* n:n^kl 1 - Z/iZifc 1 - ZnZk ' 
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806 K. IZUCHI 

then 0 is called interpolating and sparse respectively. Put 

Zk ~Zn W) = inf n 
k n:n^k 1 ~ ZnZk 

For/ G H°°, we denote by Z(f) the zero set off on M(fP°)\ Z(f) = {C G M(//°°) ; 
/(£) = 0}. For a subset £ of M (7/°°), we denote by cl E or £ the weak*-closure of E in 
M(H°°). If -0 is an interpolating Blaschke product with zeros {zn}«, then cl{zn}„ = Z(0) 
and this set is homeomorphic to the Cech compactification of the discrete set (see [8, 
p. 205]), and if C G Z(0) then P(Q ^ {(} [9, Theorem 5.5]. 

In this paper, we fix a sparse Blaschke product b and a point x in Z(b)\D. By [9, 
p. 107], there is a constant a with | a\ — 1, depending on b and x, such that (b o Lx)(w) — 
aw for wGA. For the sake of simplicity, in this paper we assume a — 1, that is, 

(b o Lx){w) — w for every w G A. 

By Budde [2], there is a continuous extension 

Lx:M(H°°(A))-^P{xj 

such that (ho LXJ = ho Lx on M^iA)) for every h G H°°, and Lx becomes a 
homeomorphic map. For each / G //°°(A), identifying D and À, / o b G H°° and 
if ob)o Lx(w) =fo(bo Lx)(w) — f(w) for w G A, so that we have if ob)oLx = f on A. 
Hence 

(#) (fob)oLx=f on M(H°°(A)). 

This means that 7/°°|p^r is the same space with //°°(A) via the map Lx. Put 

a - 4(M(L°°OA))) C p(xj. 

Then 3 becomes the Shilov boundary for the restriction algebra H°°\j^. For £ G P(x;), 
we denote by Â  the representing measure on 3 for #°° |^r . Put 

"sxnppnx = V G ^ ; / | supp^ G / / |supp/ix|-

Since supp^ is a weak peak set fovH°° [8, p. 207], H™ x is a Douglas algebra and 

M(H^) = {C G M(//°°) ; supp ̂  C supp /xx} U M(L°°\ 

and also ^ C M ^ J . 
We denote by / the set of inner functions <j> on D such that 0 o Lx is inner on A, that is, 

|0| = 1 on3.By (#), (Job)oLx = J on M(//°°(A)) for inner functions / on A. Since Job 
is an inner function (see [4, p. 442]), I o Lx coincides with the set of all inner functions 
on A. For a subset T of L°°, we denote by [T] the closed subalgebra of L°° generated by 
functions in T. Put 

B\ = tfCpp,.,'fi and B2 = [H% $ ; </> G / ] . 
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Then B\ and B2 are Douglas algebras, and 

^supp/i, CB\CB2C L°°. 

For a Douglas algebra B, put QC# — BHB, where 5 is the set of complex conjugate 
functions which are contained in B. For ( G M(L°°), the set 

{£ G M(L°°) ; / ( 0 = / ( 0 for every/ G QCfi} 

is called a QCB-level set. For a function g G L°°, we put 

NB(g) = cl[U{suppMc ; C G M(2?),s| 

When £ = //°° + C, we abbreviate as QC and #(g). 
In [15], Sarason proved that if/, g G L°° and either/|supp^ G //°°|supp^ or g|SupPA: G 

tf^lsupp/^ for each Ç G M(//°° + C), then/ |ô G Z/00^ or ^ | e G H°°\Q for each QC-level 
set Q. In [12], the author proved that under the same condition, N(f) D N(g) = 0, and 
gave several applications. 

Our purpose of this paper is to show that the above results cannot be generalized to 
the Douglas algebra B\, that is, there are two inner functions I and J, and a QCfl] -level 
set Q such that 

(a) | /(0| = 1 or |7(0| = 1 for every ( G M(fix)\ 
(b) both I\ Q and J\ Q are not constant; 
(c) NBl(J)nNBx(J)^t 

We prove this theorem in Section 4. Sections 1, 2 and 3 are preparations for proving 
our main theorem. In Section 1, we shall prove that if £ G M (H™ x)\P(x) then there 
is a Blaschke product \jj such that |V>(0| — 1 and ^P = 0 on P(x), and if <j> G I then 
I (j>\ — 1 on M(//^)

pp/ijr)\P(jc). As a consequence, 3 is the topological boundary of the set 
P(x) in M(H™pp^x). In Section 2, we study supp/i^ and supp Â  for £ G P(x). We prove 
that supp fiç = cl[|J{supp //̂  ; £ G supp A^}]. In Section 3, we study the Douglas algebra 
B2, and prove that Sarason and author's theorems are true for B2. 

1. Basic results. Budde [2] (see also [7, p. 5]) proved the following lemma. 

LEMMA 1. P(x) - {C G M ( / / - p m ) ; \b(Q\ < 1}. 

Hence P(x) is an open subset of M(H™ppfJlx). Using the idea of Gorkin [5, Theo­
rem 2.2], we can prove the following theorem. For the sake of completeness we give 
its proof. 

THEOREM 1. Let y be a point in M(H™ppfJlx)\P(x). Then there is a Blaschke product 
i[) such that |t/>(y)| = 1 and ^ = 0 on P(x). 

To prove Theorem 1, we use the following lemmas due to Hoffman [9]. For two sub­
sets Ei and E2 of M(H°°\ put p(EuE2) = inf{p«, 0 ; Ç G Eu£ G E2}. 
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LEMMA 2. Let <j> be an interpolating Blaschke product and 6((j>) > 6 > 0. Then there 

exist r = r(<5), 0 < r < 1, and À = À(<5), 0 < À < 1, swc/i that 

{C G M(//°°) ; |<KO| <r}c{Çe M(H°°) ; p(C,Z(</>)) < A}. 

We may take as r(6) —> 1 and À(5) —• 1 (5 —> 1). 

LEMMA 3. 77ie pseudo-hyperbolic metric p is lower semi-continuous on M(H°°) x 

M(H°°). 

For a Blaschke product -0 with zeros {zn } ^ t , a subproduct with zeros {zn }^Lk is called 

a ta// of 0. 

PROOF OF THEOREM 1. Since y ^ P(JC), there is an open subset U of M(H°°) such 

that}; G t /and & H P ( J C ) = 0. Then p(jc, £/) = l.Take<5n suchthatO < <5„ < 1,<5„ -> 1 

and n ^ i /"(<$«) > 0̂  where r(<5n) is a constant given in Lemma 2. By Lemma 3, there is 

an open subset Wn of M(H°°) such that i G W „ and X(6n) < p(Wn, Ù). Let bn be a sparse 

Blaschke subproduct of b with the zero sequence Wn Pi D Pi Z(&). Then x G Z(bn) C Wn 

by [8, p. 205]. Since b is sparse, by considering tails of bn, n = 1,2, . . . , we may assume 

that S(bn) > bn and 0 = n£Li bn is a Blaschke product. Since bn(x) = 0, 0 = 0 on P ( » . 

Since X(8n) < p(Z(bn), f7), by Lemma 2, |fcn| > r(<5n) on Û. Hence 

oo oo oo 

inf i(n *«)(z)| = »nf n \bn(z)\ > n KW. 
By Lemma 1, |&O0| = 1, so that |£„0>)| = 1. Since y 6 £/ = O n t / , 

CO OO 

l̂ (y)l = |(II*n)(y)|> inf |(n*n)w| 
n=k zeonu* n=k 

oo 

> r iKw->i (^-^oo). 
n=k 

To prove Theorem 2, we need a following lemma. 

LEMMA 4 [ 16]. For every inner function 1, there is an interpolating Blaschke product 

J such that {C G M(H°°) ; \J(Q\ = 1} = {Ç e M(H°°) ; | /(Q| = 1}. 

THEOREM 2. If<j> £ I, then \<j>\ = 1 on M(H™pp^\P(xj. 

PROOF. First we shall prove when </> is interpolating. To prove our assertion, suppose 

not. Then there is a point y in M(//^pp/Xjt)\P(jc) such that \</>(y)\ < 1. Then </> is not 

invertiblein/Z^pp^ and there i sapo in t ( inM(/ /^ p p M ) such that (j>(Q = 0. Here we have 

s u p p ^ C supp^y . By Theorem 1, there is a Blaschke product ijj such that \i^(y)\ = 1 

and i) = 0 on P(x). Since -0 = î Cy) on supp/x^, | ^ (0 l = 1» so that C G A f ( / ^ )\P(JC). 

Hence there is a subproduct <j>\ of </> such that </>i(Q = 0 and Z(</>0 n P(x) — 0 (see 

[10]). Since </) o L* is inner, </>i o Lx is also inner. Since P(x) = LJC(M(//0o(A))), </>I O LX 

does not vanish on M(//°°(A)). Therefore <f>\ o Lx = c for some constant c with |c| = 1, 
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that is, 0i = con P(x). Since c = <j>\{z) = 5M{L™)<t>\ d[ix, <j>\ = con supp//*. Since 
supp/i^ C supp/i^ C slippy, (f)\(Ç) — JM(L°°)^I à[i^ — c. This is a contradiction. 

Next suppose that </> is a general inner function in I. By Lemma 4, there is an inter­
polating Blaschke product / such that 

{< e m(H°°) ; | /(0| = 1} = {C G M(H°°) ; | # 0 | = 1}. 

Since </> £ I,\<f>\ = I on 3. Hence |/| = 1 on d and I £ I. By the first paragraph, |/| = 1 
on M(H™ppiiJ\P(x), so that |0| = 1 on MiH^^XPjx). 

The following theorem shows that d, not P(x)\P(x), is the topological boundary of 
W)inM(H™ppilx). 

THEOREM 3. d = P(x)n c\[M(H™ppilJ\P(x)]. 

PROOF. Let C e P(x)\d. Then C = tx(v) for some 77 G M(//00(A))\M(L0°(aA)). By 
[8, p. 179], there is an inner function J on A such that \J(r/)\ < 1. Since (J o b) o Lx — J, 
\(J o b)(Q\ < 1. Since Jo be I, by Theorem 2 \J o b\ = 1 on M(H™ppftJ\P~(xj, so that 
C^cl[M(//~p p^)\?W]. Hence 

dDW)ncW(H™ppiix)\Plxj]. 

To prove the converse inclusion, suppose that £ G 3 and £ ^ cl [ M ( i / ^ ) \ P ( j t ) ] . We 
shall show a contradiction. Here we have 

AWpp/*) = fr e M(H™ppJ ; supp/x, C supp/x J UM(L°°). 

Let y G M(H™ppflx) with supp /z-y C supp //£ and y ^ £. Since I otx is the set of all inner 
functions on A, 7 separates the points in P(x) [4, p. 428]. If y G P(x) then 0(y) ^ <£(£) 
for some <j> G I. Since | ^ (0 | = 1, 0 = </>(£) on supp/i^. Hence c/>(y) = (/>(£)• This 
contradiction implies that y $ P(x). Since £ ^ cl[M(H™pptJLx)\P(x)], £ is an isolated 
point in M(H™pp ). By Shilov's idempotent theorem, there is a function /* in H™pp^ 
such that /z(0 = 1 and h = 0 on M(//-p p^)\{£}. Since M(L°°) C M(/ / S ~ m ) \{£} , 
1 = KO — JÀf(L°°) h d[i^ = 0. This is the desired contradiction. 

2. Support sets. Let u be a complex valued bounded harmonic function on Z). By 
[1, Proposition 6], u can be extended continuously on M(//°°); we use the same symbol 
w, and 

(1) ii(0 = jM{Loo) u dfic for C G M(H°°). 

For v G L°°, the function v(z) = SM(L°°)
 vd[iz for z G D is harmonic, so that v(z) can be 

extended on M(H°°), and its extended function coincides with the original v on M(L°°). 
Therefore we identify a function in L°° with its harmonic extension on D. 

For each point rj G M(//°°(A)), we denote by ar] its representing measure on 
Af(L°°(dA)). Put £ = /^(r?). Since Lx is a homeomorphism fromAf(L°°(3A)) onto 3, there 
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is a probability measure À on 3 such that SdfdX — SM(L°°OA))/°£X doJ] for every/ G C(3), 
the space of continuous functions on 3. For/ G H°°, we have fofdX =fo Lx(rj) = f(Q. 
Hence À = Â , the representing measure on 3 for the point £, and supp Â  = 4 (supp av). 
Since a real bounded harmonic function v has the form v = log |g| for some invertible 
function g in H°° [8, p. 182], v o Lx is harmonic on A, and by (1) and (#), 

v(0 = (v oLx)(rj) = f voLxdav= fvd\^\ and 
JM(L°°(dA)) Jd 

(vob)oLx = log |(g o b) o 41 = log |g| = v. 

Hence 

(2) u(Q = jf w dXc for C G P « and u e L°° \ 

(3) (w O ft) o 4 = M on M(//°°(A)) for « G L°°OA). 

For ( G M(H°°), H°°(A) 3 f —• (f o b)(Q is a nonzero homomorphism, hence there 
is a point 77 in M(//°°(A)) such that/(r/) = (/ o b)(Q. We put 7/ = B(Q. By [4, p. 441], 
b: M(H°°) —» Af (iJ°°(A)) is a continuous map, and 

(4) (11 o 6)(0 = w(&(0) for C G M(#°°) and u G L°°(3A). 

By (3), b(Lx(rj)) = 77 for 77 G M(#°°(A)). Therefore fe = L"1 on /%*). We use this fact 
frequently. 

LEMMA 5. Let Ç G [M(//£pp^)\P(*)] U 3. TTien 4(£(supp/zc)) = Lx(b(Q) G 3. / / 
u e L°° and £ G 3, f/ierc (uoLx)ob = u(Q on supp /i^. 

PROOF. By Theorem 2, |</>(0l = 1 for 0 G J. If J is inner on A then / o b G /. 
Hence | /(£(0) | = 1- By [8, p. 179], b(Q G M(L°° (3A)) , SO that Lx(b(Q) G 3. Since 
inner functions separate the points in MiyL00(3A)) [4, p. 192], / (£(0) = JA/(L°°) ^ ° ^ <^c 
implies é(supp/i^) = b(Q. 

Suppose that £ G 3. Then by (4), [(wo4)ofc](supp/^) — w ( 4 (£(£)))• Sinceê = L71 

on P(x), w ( 4 (£(£))) — M(0» s o m a t (uo Lx)ob = u(Q on supp /i^. 

LEMMA 6. supp/ix = cl[lj{supp/i^ ; £ G 3}]. 

PROOF. Suppose not. Then there is an open and closed subset W of M(L°°) such that 
cl[U{supp/i£ ; £ G 3}] C W and supp/i* (£_ W. Then /^(W) < 1. We denote by \w the 
characteristic function for W. Since \w(0 — JM(L°°) Xwd^ç = 1 for ( G 3 by (1) and (2) 

l = JdXwd\x = Jma>)Xwdnx, 

so that //^(W) = 1. This is a contradiction. 
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COROLLARY 1. Let u G L°°. If U is constant on supp fi^ for every £ G 3, £/*£« « = 
(w o Lx)o b on supp /ix. 

PROOF. By Lemma 5,{uo Lx)ob — uon supp/x^ for every £ G 3. By Lemma 6, 
(uoLx)ob = uon supp /i*. 

For an open and closed subset U of 3, put 

& = {C G Af(L°°) ; Lx(b(Q) G £/} = {< G M(L°°) ; £(Q G ^ ( I / ) } . 

By the proof of Lemma 5, b(M(L°°j) C M(L°°(3A)) , SO that 0 is an open and closed 
subset of M(L°°). Also 3 = M(L°°) and (UH V)~ = &H V for open and closed subsets 
U and V. In this paper, 0 plays the essential part. 

LEMMA 7. W Xt/ = 0 orlon [M(H^x)\P(x)] U 3. 
(ii) ForÇe [M(H™pp^)\P(x)]Ud, X &(0 = 1 if and only if 1,(6(0) G tf 
(*">) Xf/ — Xu ond, that is, supp fiç C Û if and only (f£ G £//br £ G 3. 
f/vJForCGPW,Mc(&) = Ac(^). 

PROOF. Let C G [M(#^p p^\P(*)] U 3. By Lemma 5, Lx(£(supp/iC)) = 

Lx(b(Q) G 3. If 4 ( ^ ( 0 ) G Î/, then suppMc C & and Xû(0 = I. If 4 ( ^ ( 0 ) £ U, 
then supp ̂  Pi £/ = 0 and x# = 0. Hence we get (i) and (ii). 

Since b = L~l on P(xj9 Lx(b(0) = £ for £ G 3. By (i) and (ii), we have (iii). Let 

CGPW.By(iii),(l)and(2), 

xdW = fdxud\c = fdXûdXc = JM(LOO) XÛ M = /*c(0)-

The following proposition will be used several times in the rest. 

PROPOSITION 1. Let U be an open and closed subset ofd.IfE is a dense subset of 
U, then UC\ supp \ix = cl[|J{supp^ ; £ G E}]. 

PROOF. By Lemma 7 (iii), |J{supp/ie ; £ G U} C £?and U{SUPPM£ ; £ G 3\£/} C 
suppjix\Û. By Lemma 6, cl[|J{supp/i£ ; £ G £/}] = 0(1 supp//*. For each point £o in 
£/, there is a net {£ a } a in E such that £a -+ Co- Since SM(L™)fd^a —> SM(L^)fd^0 for 

/ G L 0 0 , 
supp/^0 C cl[U{suppMCa ; «}] C cl[U{supp/i^ ; £ G £}]. 

Therefore cl[|J{supp//c ; £ G £/}] = cl[|J{supp/iC ; £ G £}]. 
The following theorem gives the relation between supp ̂  and supp A .̂ 

THEOREM 4. Le* Ç G P(*). 77*éw 
(ï) supp/iC = cl[|J{supp/iC ; £ G suppAc}]; 

(7/j suppAc = {£ G 3 ; supp/i^ C supp^}. 

PROOF. Let £ G supp A .̂ To prove supp/x^ C supp/x^, suppose not. Since supp/x^ 
is a weak peak set for H°° [8, p. 207], there is a function h in if00 such that \\h\\oo = 1, 
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h = 1 on supp/i^ and |/i(£)| < 1- Since 1 = h(Q — fondX^ h = 1 on suppA^, so that 
h(0 — 1. This is a contradiction. Hence we have 

slippy D cl[|J{supp/i^ ; £ G suppA^}] and 

suppA^ C {£ € 3 ; supp/x^ C supp^} . 

(i) Let W be an arbitrary open and closed subset of M(L°°) such that 

W D cl[(J{supp/^ ; £ G supp Ac}]. 

Since xw(0 = JM(L-) Xwdfi^ = 1 for £ G supp Ac, by (1) and (2) we have 

*W = JmL00)XwdK = JdXwd\=l. 

Hence supp ^ C W, so that we get (i). 
(ii) Let £ G 3 such that supp/i^ C supp/i^. Let £/ be an arbitrary open and closed 

subset of 3 such that supp Â  C U. By (i) and Lemma 7 (iii), supp //̂  C £/. Hence 
supp/i^ C 0. By Lemma 7 (iii) again, £ G U. Consequently, £ G supp Ac. 

COROLLARY 2. For ( G P(X), LX (£(supp /ic)) = supp Ac. 

PROOF. Since b = L"1 on P(x), Lx(b(0) = £ for £ G 3. Then 

Lx(^(supp/i^)) = cl[|J{Lx(^(supp/i^)) ; £ G suppA^}] by Theorem 4(i) 

= cl[U{£*(£(0) » £ £ S U PP\}] by Lemma 5 
= suppA^. 

3. The Douglas algebra B2 = [H™pp^4> ; <t> € / ] . Put £0 = H™pp^Bx = 
[H™pp^b] and £2 = [Z&pp^, </>;(/> G / ] . By the Chang and Marshall theorem [3, 13], 
for every Douglas algebra B, 

M(B) = {C G M(//°°) ; | / (0 | = 1 for every inner/ with/ G B}. 
By Lemma 1, M(BX) = M(B0)\P(x), and by Theorem 2, M(£2) = [M(B0)\~P(xj] U3. Let 
QC# — BC\B and let C# be the C*-algebra generated by inner functions 7 with J G #. 
Then 

Q Q = {/" G 5 ; / is constant on supp /x̂  for each £ G Af(Z?)}. 

We denote by QC(A) the QC-functions on A. In this section, we study B2 mainly. 

PROPOSITION 2. QCB] = {f eB{ \f = qob on supp^/orsome <? G QC(A)}. 

PROOF. Let / G 5i such that/ = (7 o £ on supp//* for some g G QC(A). Let ( G 
M{BX). Then £ G [M(B0)\^W1 or C G P(*)\P(JC). If C ^ M(P0)\PW, then by Lemma 5 
g o fr(supp/^) = g(£(C))> so that q o bis constant on supp/x^. If £ G P(A;)\P(JC), there is 
a point 17 in M(//°°(A))\A with £ = 1̂ (77). By Corollary 2, supp 0^ = L^^supp Â ) = 
£(supp^). Since q is constant on suppcrr/, q o b is constant on supp/x^. Therefore/ G 

Let g G QCfîi. Then g is constant on supp fiy for each 3; G M(Pi ). Since 3 C M{B\ ), by 
Corollary 1, g = (g o 4 ) o bon supp ̂ . To prove go 4 G QC(A),letry G M(//°°(A))\A. 
Put £ = L^(^). Since g is constant on supp/i^, g o Lx is constant on ^(supp/iç). Since 
supp(T^ = £(suppnç), g o Lx is constant on suppar]. 
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PROPOSITION 3. (i) QQ 2 = {f £B2;f = ho bon supp fix for some h G L°°(3A)}. 
(ii) CBl = QQ2 . 

PROOF. In the same way as the proof of Proposition 2, we can get (i). By [4, p. 192], 
L°°(3A) is the C*-algebra generated by inner functions on A. Since J o b G / C CB2 for 
every inner function / , by (i) we can get (ii). 

REMARK 1. In the same way, we have 

CBX = {f £ B\ ; / = h o b on supp fix for some h G C(3A)}. 

And this is a restatement of the result in [7, Section 3]. 
For £ G 3, there is QC#2-level set Rç such that supp/x^ C R^. By Lemma 5, 

£(supp^) = L~{((;). Hence by Proposition 3, 

*e = {Cesupp/x*;4(£(0) = Ç}> 

and {/?£ ; £ G 3} is the partition of supp //* by QC#2-level sets. Of course R^ ^ R^2 if 
£i T̂  £2- In Section 4, we shall prove that supp/x^ CR^ for every £ G 3 (Corollary 5). 

For an inner function 7, we put 

£/7 = C 1 { £ G 3 ; | / ( 0 | < 1 } . 

Then Ui = Lx(c\{v € M(L°°(3A)) ; \I o Lx(r))\ < 1}). Since c\{r] G A^Z/^A)); | / O 

£a(^)| < 1} is an open and closed subset of MfL^SA)), £// is an open and closed subset 
of 3. 

THEOREM 5. Let I be an inner function with I $ B2. Then 
(i) NB2(I) = tJi H supp [ix; 

(ii) fori G â , ^ C NB2(1) or R^ DNB2(1) = 0. 

We need the following lemma which will be used also in Section 4. 

LEMMA 8. Let I be an interpolating Blashcke product and let U be an open and 
closed subset ofd. Then there is a factorization I — l\l2 such that 

(i) ifC G M(B2) and \lx(Q\ < 1 then supp/JC C 0; 
(ii) ifC, G M(B2) and \I2(Q\ < 1 then supp//^ C suppfdx\Û; 

(Hi) \I\\ = 1 on d\Uand \I2\ = 1 on U; 
(iv) \I\\ — \I\ on Uand \I2\ — \I\ on d\U. 

PROOF. By Lemma 7,Xo takes 0 or 1 on M(B2). Since Z(/) is a totally disconnected 
set, there is an open and closed subset W of Z(7) such that 

WHM(B2) = Z(l) n {C G M(B2) ; xo(0 = 1}. 

Let 11 be a subproduct of / with the zero sequence W H D Pi Z(I). Then Z(I\) — W 
(see [10]). Put 72 = / / / ] . Then Z(/2) = Z(I)\W. 
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(i) Let ( G M(B2) and \I\(Q\ < 1. Then there is a point (0 in Z(I\ ) such that supp /i^ C 
supp fiç. Here we have (0 £ M(B2), so that x#(<5o) = 1 anc i Xtf(0 > 0- Therefore XQ(0 = 
1, and supp /x̂  C £/. 

(ii) Let C G M(#2) and |/2(0l < 1- Suppose that supp^ ç£ supp/i^t/, that is, 
supp/xc H £/ ^ 0. Since x#(0 = 0 or 1, x#(0 = 1- Since |/2(0l < U there is a 
point (o inZ(/2) such that supp/x^ C supp^. Since x#(0 ~ 1» Xj/(Co) = 1- Therefore 
(o £ W. Since Z(/2) = Z(/)\ W, we have a contradiction. 

(iii) Suppose that \I\(Q\ < 1 for some £ e d\U. By (i), \o(0 = 1, SO that by 
Lemma 7 we have £ G £/. But this is a contradiction. Thus we get |/i | = 1 on d\U. Next 
suppose that | / 2(0 | < 1 f° r s o m e £ ^ ^- By (ii), x# (0 — 0. Since £ G £/, by Lemma 7 
we have x#(0 = 1- This contradiction shows that |/2| = 1 on U. 

(iv) By (iii), we have |/| = |/i | |/2| = |/i | on U and |/| = |/i | |/2| = |/2| on 3\£/. 

PROOF OF THEOREM 5. (i) By Lemma 4, we may assume that / is an interpolating 
Blaschke product. Since 7 $ #2, / $ / , so that |/| is not identically 1 on 3. Since {£ G 
3 ; \I(0\ < 1} is a dense subset of £//, by Proposition 1 we have 

fZ/nsupp/z* = cl[U{supp/ie ; £ G 3, |/(OI < 1}]. 

Hence Ûj Pi supp \ix C NBl(J). Let / = 7i/2 be a factorization in Lemma 8 for the open 
and closed subset Uj. Then |/2| = 1 on U\ and |/2| = |/| on d\Ui. Therefore |/2| = 1 on 3 
and I2 G I. By Theorem 2, |/2| = 1 on M(B2). By Lemma 8 (i), NB2(I) = NB2(I\) C Ûh 

Since NBl{T) C supp /xx, we get (i). 

(ii) Let £ G 3. Then R^ = {( G supp/x* ; Lx(b(Q) = £}. By the definition of £//, 
C/> H supp /x* = {C G supp /x* ; Lx(b(Q) G (7/}. Hence if £ ^ 17/ then #£ n £// = 0 and if 
£ G £//thenflc C Uh 

REMARK 2. By the above proof, for every open and closed subset U of 3 and £ G 3, 

Rç C & o r / ? c n # = 0 . 

The following is the main theorem in this section. 

THEOREM 6. Letf, g G L°° swc/z thatf\&upptH G //°°|suppMc tfrg|suppM. G H°°\supp^ 
for every £ G M(Z?2). TTiew 

(/) for every £ G 3, ̂  C W*2(f) orR^HNB2(f) = 0; 

(//) NB2(f)nNBl{g) = h 

PROOF. By [12, Lemma 2.2], there are sequences of inner functions {In}n and {Jk}k 
such that 

[ff°°,/] = [H°°Jn ; n = 1,2,...] and [H°°,g] = [H°°Jk ; * = 1,2,...]. 
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Then we have 
oo 

Nihtf) = cl[\J NBl(In)] 
n=l 

oo 

= cl[ (J Uinn supp //*] by Theorem 5 

oo 

= cl[|J{supp^ ; £ G (J (//„}] by Proposition 1 

oo 

= [cl [J UinY n supp//* by Proposition 1. 

Since cl \JT=\ Uin *
s a n °P e n anc* closed subset of 3, by Remark 2 we get (i). 

By our assumption, for n and ky \In(Q\ = 1 or |/*(0| — 1 f° r every £ G M(7?2). Then 

{£ e 3 ; |/„(0| < 1} n {̂  e 3 ; \Jk(0\ < 1} = 0. 

Since 3 = 4(Af(L°°(dA))) is a Stonian space, £//„ n U,k = 0, so that cl[(J£Li £//„] n 
clfUfc, t//J = 0- Hence 

OO OO 

NBlif) n;vfl2(g) = [ci (J uIny n [ci U uJk]~ n suPP ^ 

= [(ci U tf/,) n (ci U uJk)]~ n supp/x, 
k=\ 

REMARK 3. Let / and J be inner functions. In [11, Corollary 5], the author proved 
that [H°° + C,7] = [H°° + C, J] if and only if N(I) = N(J). Here we note that this fact 
is not true for the Douglas algebra B2• It is not difficult to see that if [#2,/] = [#2,*/], 
then NB2(1) = NB2(J). But the converse is not true. For, take a Blaschke product 7 such 
that / = 0 on P(x) (see Theorem 1). There is a Blaschke product J such that / = 0 on 
{C G M(H°° + C) ; 17(01 < 1}. Then [B2,l] C[B2Jl Since 7 = J = 0 on d, we have 

Ui — Uj = d. Since 3 = Af(L°°), by Theorem 5 we have NB2(I) = NB2(J) — supp \ix. 

4. The Douglas algebra B\ = [77^pp^, b\. In this section, we shall study the Dou­
glas algebra Bl = [//£pp/ix, b]. For/ G L°°' with |i/||oo < 1, put 

W ) = cl[U{supp//c ; C G M(77°° + Q, | / (0 | ^ 1}]. 

PROPOSITION 4. Le*/ G L°° WY/I WfW^ < 1. Pwr W = cl{£ G M(L°°) ; \f(Q\ < 1}. 

77œn M(f ) = WU W(f) U #(/). 

PROOF. M(f) D Wis trivial. Let £ G M(77°°+C) suchthat/|supp^ £ 7 7 ° % ^ ^ . Then 
1/(0| < 1, so that supp/iC C M{f). Hence #(/") C M(f). Also we have 7V(/) C M(f). 

To prove the converse inclusion, let £ G M(77°° + C) such that \f(0\ < 1- If/I supp ̂  ^ 
^°°|suPP^ or/|supp/i £ ^°°|supP^ then supp^ c N(f)UN(f). If/Upp^ £ #°°|supp^ 
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and/|SUpp^ G H°°\suvp^,f — c on supp/x^ for some constant c, because s u p p ^ is an 
antisymmetric set for//00 ([15, p. 463]). Since ]f(0\ < 1, |c| < 1, so that supp/i^ C W. 
Consequently M(f) CWU N(f) U N(f). 

REMARK 4. There are a function g in L°° and a QC-level set Q such that 11 g 11oo = 1 » 
Q £M{g) and QnM(g)^®. 

PROOF. By [8, p. 80], there is a continuous function g on DUdD such that g is analytic 
in D, |g| < 1 on some proper open arc J in 3D and \g\ = 1 on dD\J. By Proposition 4, 
M(g) = {< G M(L°°) ; x / (0 = !}• S i n c e XJ & QC, there is a QC-level set £ such that 
Q £ M(g) and Q H M(g) ^ 0. For/ G L°° with {{fW^ < 1, we put 

Ma(f) = cl[U{supp Ac ; C e P(Â\P(x), i/XOl < 1 IJ-

It is easy to see that Md(f) = Lx(Mif O £*)). 

THEOREM 7. Lef / be arc inner function. Then NB] (I) = cl[|J{supp ^ ; Ç G Md(/)}]. 

PROOF. Let £ G P(JC)\JP(JC) with |/(Q| < 1. By Theorem 4 (i), 

cl[ |J{supp^ ; £ £ supp A j j = supp//c c Wfll(7). 

Consequently we have 

cl[U{suppMc; £ G Ma(/)}] Ç A^(/). 

Next we shall prove the converse inclusion. We note that 

NBl(î)=NB2(î)Ucl[)J{supp^;CeP^)\P(xl\KO\ < 1}]. 

Since U\ C M^(/), we have 

NB2(Ï) = OIH supp \ix by Theorem 5 

= cl[|J{supp/i£ ; £ G £//}] by Proposition 1 

Ccl [U{supp^;eGMa(/ )}] . 

If C G P(xj\P(x) with | /(0| < 1, then 

supp^ = cl[|J{supp/x^ ; £ G supp A }̂] by Theorem 4 

Ccl [U{supp^;£GM ô ( / )} ] . 

Therefore we get7Vfil(7) C cl[U{supp/x^ ; £ G Af5(/)}]. 
For/ G L°°, put 

Nd(f) = cl[U{suppAc ;/|suppAc £ /F° | s u p p V C e W)}\ 

Then it is easy to see that N^(f) = Lx(N(f o L*)). 
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COROLLARY 3. Let I be an inner function. Then A^,(7) — NB2(I) U cl[|J{supp/i£ ; 

PROOF. Put W = cl{ri G M(L°°(3A)) ; |(/o L,)(r/)| < 1}. Then 

MB(l) = Lx(M(IoLxj) 

= LX(WU N(I o Lx) U N(I o Lx)) by Proposition 4 

= C//UWa(/). 

By Proposition 1, Theorems 5 and 7, we get our assertion. 

COROLLARY 4. (7) If I e I, then iix(NBl (/)) = 0. 

(ii) If / is inner and 7 ^ 7 , then px(NBl(lj) = ^X(NB2(T)) > 0. 

PROOF. By [11, Theorem 1], a0(#(7 o Lx)) = 0. Then Xx(Nd(I)) = a0(N(I o 4 ) ) = 
0. Let {7/n}w be a sequence of open and closed subsets of d such that Un D A (̂7) and 
AJC(£//I) —» 0. By Proposition 1, 7/„ D cl[|J{supp/iC ; £ G A^(7)}]. By Lemma 7 (iv), 
Mx(^) = A,(^) — 0, hence /ix(cl[(J{supp ^ ; £ G tfa(7)}]) = 0. If 7 G 7, then 
NB2(T) = 0. By Corollary 3, we get (i). 

Next let 7 be an inner function with 7 ^ 7 , then 

Hx{NBl (J)) = VX{NB2(Ï)) by Corollary 3 

= nAÛi) by Theorem 5 

= \x(JJj) by Lemma 7 

> 0 . 

PROPOSITION 5. Letf,g G L°° with ||/||oo < 1 and \\g\\oo < 1. Suppose that for each 
point Ç in M(H°° + Q, [f(Q\ = 1 or |g«)| = 1- Then for each QC-level set Qtf\Q = c or 
S\Q = c for some constant c, depending on Q, with \c\ = 1. 

PROOF. By our assumption and [ 12, Theorem 2.1], 

[N(f) U tf (ft] H [tf(s) U N(g)] = 0. 

Since N(f) consists of QC-level sets [12, Corollary 2.1], 

Q H [N(f) U N(f)] = 0 or g H [#($) U N(g)] = 0. 

Here we may assume that Q n [Af(g) U Af(g)] = 0. There is a function #i in QC such 
that qi\Q = 1 and q\ = 0 on /V(g) UxV(g). Then gq\ G QC, so that g\q = c\ for some 
constant c\. If |ci | = 1, this is our conclusion, so that we assume \c\ \ < 1. Then there 
is an open subset V of M(L°°) such that |g| < 1 on V and Q C V. Let qi G QC such 
that q2\Q = 1 and q2 = 0 on M(L°°)\V. If/42 £ QC, there is a point £ in M(77°° + Q 
such that/#21 slippy is not constant. Then supp/i^ C V and/ is not constant on supp/i^. 
Therefore \g(0\ < 1 a nd \f(0\ < 1» t m s contradicts our assumption. Hence/#2 G QC, 
so that/|g = C2. Since \g\Q\ < 1, by our assumption we have | Q | = 1. 

https://doi.org/10.4153/CJM-1992-048-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-048-3


818 K. IZUCHI 

LEMMA 9. Let I be an inner function, B be a Douglas algebra and let Q be a QC#-
level set. Then 

(i) ifI\Q is constant, then QnNB(î) = 0; 
(ii) ifI\Q is not constant, then there is a point £ in M(B) such that supp ̂ C f i and 

i(0 = o. 

PROOF. Let nB: M(B) —> M(QCB) be a natural continuous map such that n^l (Q is a 
QCVlevel set for ( G M(QCB). Then it is not difficult to see that NB(T) CTTB

1[TTB (Z(7) n 
M(B))). If q is a QC^-function with q = 0 on Z(7) H M(£), then 7g G Q Q . This means 
that TTB(Q) $ KB(Z(I) H M(#)) if and only if I\Q is constant. This implies our assertions. 

For £ G 3, there is a QC^-level set Q^ such that supp/Lî  C R^ C Q^. By Lemma 5, 
£(supp/i^) = T^CO- Let QA,£ be a QC(A)-level set containing the point L~l(Q. By 
Proposition 2, we have 

Q^ = {Cesupp/xx ;£(0 6j2A,c}. 

The following is a counterpart of Theorem 9. 

THEOREM 8. Lef / and J be inner functions such that I G I and for every £ G M(B\), 
|(/(0| = 1 0r 1*7(01 = 1- Suppose that {£ G 3 ; |7(£)| < 1} [5 a n °!P^rt and closed subset 
ofd. Then 

d) NBl(DnNB](J) = ®, 
(ii) for every QCB]-level set Q, I\Q or J\Q is constant. 

PROOF, (i) By our assumption, IoLx is inner and \(IoLx)(r])\ — 1 or \(JoLx)(rj)\ = 1 
for 7] GM((//°° + C)(A)).PutW= {rç G A ^ L ^ A ) ) ; |(7o4)(r/)| < l} , then Wis open 

and closed. By Proposition4, M(IoLx) = N(Io 4 ) and M(7 oLx) = WUN(J o 4 ) . By 
[12, Theorem 2.1], N(7 o Lx) D N(J o 4 ) = 0- By Proposition 5, for every QC(A)-level 
set (2A> 7 ° LX\QA = c or J o LX\QA = c for some constant c with |c| = 1. Hence by 
Lemma 9, QA D N(I o 4 ) = 0 or gA H W = 0. Since 7V(7 o 4 ) consists of QC(A)-level 
sets, N(I o 4 ) H W = 0. Consequently, M(IoLx)nM(JoLx) = 0andMa(7)nMô(7) = 0. 
Take an open and closed subset U of 3 such that M^(I) C £/ and U Pi Ma(7) = 0. Then 
by Lemma 7 and Theorem 7, A^, (7) C 0 and 7Vfil (7) C supp [ix\Û. Thus we get (i). 

(ii) Suppose that there is a QCfil -level set Q such that both I\ Q and 7| g are not constant. 
Since 7 G 7, by Corollary 1, (I o 4 ) ° b = 7 on supp /i*. Hence I o Lxis not constant on 
£(<2); here Z?(0 is a QC(A)-level set. By Lemma 9, there is a point £ in M(B\) such that 
supp^c C Q and 7(0 = 0. If Ç £ P(x), by Theorem 5, supp/xc CUj = b~\W). Then 
^ ( 0 H W ^ 0 and |7 o Lx\ ^ 1 on b(Q). If £ e P(x), then 7|SUpPAc is not constant, and 
so is 7 o 4|4-i(suppA(). By Corollary 2, ê(supp/xc) = L^^supp Ac), and 7 o 4 | ^ ( 0 is not 
constant. But this contradicts Proposition 5. 

The following is the main theorem of the paper. 

THEOREM 9. There are inner functions I and J, and a QCfil -level set Q such that 

d) Q£NBl(DandQr\NB]Cr)^<t); 
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(ii) either \I(Q\ = 1 or \J(Q\ = I for every Ç G M(BX); 
(iii)NBX(i)nNBX(])^$; 
(iv) both I\Q andJ\Q are not constant; 
(v) cl[u{supp/iC ; £ £ Lx(b(Q))}} CQ. 

PROOF. STEP 1. First let V̂i be an interpolating Blaschke product such that 

(5) sup{|^!(0| ; C E 3} < 1. 

The existence of -01 follows Theorem 1 and Lemma 4. If Z(/0i )C\P(x) ^ 0, by Theorem 3 
there is an open and closed subset W of Z(-0i) such that Z(/0i) n [M(Bo)\P(x)] — WH 
M (Bo). Then there is a subproduct Î//J of V̂ I such that Z(^\) — W. Since t̂ i /Vi does not 
vanish on M(B2) = [M(B0)\P(xj] U 3, |V>i/t/>{ | = 1 on 3. Hence Z(^î) H P(*) = 0 and 
sup{|V^i(0| ; £ £ 3} < 1. Therefore we may assume that 

(6) Z ( ^ i ) n p w = 0. 

We shall prove the existence of a sequence of interpolating Blaschke products {4>n}n 
such that %l)n is a subproduct of i/^-i and 

(7) l - i//i < inf{|vaOI ; £ e 3} < suP{|^(Ol ; £ G 3} < l. 

It is sufficient to prove that there is a subproduct \jjn of t/>i satisfying (7). 
For £ G 3, by (5) there is a point ^ in M(B\) D Z(^i) such that supp/x^ C supp/i^. 

Let S be a positive number such that r(<5) > 1 — 1 jn in Lemma 2. By [9, p. 82], there is 
a subproduct ipf of t/>i such that 

£(V>') > 5 and V>'(£) = 0. 

Then | ^ ( 0 | < 1. Since P (0 = {£}, p(£,Z(V>')) = 1. Hence by Lemma 2, 

1 - 1 / * < K * ) < | V / ( 0 | < 1 -

Take an open and closed subset Uç of 3 such that £ £ £7̂  and 

(8) l - i//i < inf{|v/(£')| ; £ e £/J < sup{|V>'(É')| ; £' e £/J < l. 

Applying Lemma 8 to I/J' and U^, there is a subproduct ^ of t/;' such that 

(9) | ^ | = |V>'I on t/c and | ^ | = 1 on d\U^. 

By (8) and (9), we have 

(10) 1 - \/n < inf{|^(£')| ; £' G t / J < sup{|^(£')| ; £' G tfc} < 1. 

Since 3 is compact, there is a finite sequence of points £i, £2» •••>£* in 3 such that 3 = 
Uj=i Uçj. Put 4>\ = ip^. By Lemma 8, take a subproduct (/>2 of t/̂ 2 such that \</>2\ = | V 2̂I 
on U^2\U^ and |</>2| = 1 on d\(U^2\U^). By induction, we can take a subproduct </>; of 
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V .̂ such that \<j>j\ = 1^1 on U^\(UU U • • • U U^) and \<j>j\ = 1 on d\[U^(U^ U • • • U 
U$ )]. By our construction and Lemma 8, Z(^) H Z((/>7) Pi M(B\) = 0 for / ^ 7, so that 
we may assume that </>, and </>7 have disjoint zero sequences. Put \j)n — n*=1 </>_/. Then -0n 

is a subproduct of V̂i and by (10) we get (7). 

STEP 2. Put Un = cl{£ G 3 ; l / ( w + l ) < Refe(0 < l / n } f o r n = 1,2,.... 
Applying Lemma 8 for each t/>n and £/„, we have a subproduct In of i/̂ n such that 

(11) |/n| = |-0n| on £/n and |/n| = 1 on d\Un. 

Since UnCMJk = 0 for n 7̂  fc, Z(/n)nZ(4)nM(Z?i) = 0, so that we may assume moreover 
that /„ and Ik have disjoint zero sequences. Since ipn is a subproduct of i/>n-i, for each /: 

00 

(12) JJ /„ is a subproduct of i[)k. 
n=k 

Put / = n^Li n̂, then / is an interpolating Blaschke subproduct of i/>i, so that by (6) 

(13) z(/)n?(*) = 0. 

By (7), (11) and (12), we have the following inequalities on Uk 

00 k—\ 

I'l = 111 /«||/*l|n !n\ > |V>*|2 > d - I/*)2 ; and |/| < |4 | = | ^ | < 1. 
n=k n—\ 

Hence 

(14) |/| < 1 on l X i Uk and lim sup{|/(0| ; £ G l/*} - • 1. 
k-^00 

Also we have 

00 k— 1 00 

l'I = IIKIIIKI > W > 1 - l/*on3\(U Uk) ; 
n=k n=\ k=\ 

therefore 
00 

(15) |/| = l o n 3 \ ( | J t / * ) . 
k=\ 

Hence t/7 = clflJSi tf*). 

STEP 3. First we study the function / o Lx on Af((#°° + C)(A)). Since L~\Uk) = 

cl{/7 G M ( L ° ° ( 3 A ) ) ; l /(ifc+l)<Rez(r/)< 1/it}, by (14) and (15) we have |/oLx | < 1 

on {77 G M(L°°(3A)) ; Re £(77) > 0} - U£i 4 _ 1 ( ^ ) ; \IoLx\ = 1 on {77 G M (L°°0A)) ; 

Re£(77) < 0} ; and |/ o Lx\ on 3A is continuous at every point 7/ G 3A with Re£(77) < 0. 

By (13), / o Lx is an outer function on A. Hence for every sequence {wn}n in A such 
that \wn — a\ —•» 0 for some a with |a | = 1 and Re a < 0, we have |(/ o Lx)(wn)\ —> 1. 
This means that 

(16) |/ o Lx(77)| = 1 for every 77 G M(//°°(A))\A with Re£(77) < 0. 
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Put 
V = L~\Ui) = cljr? G M ^ O A ) ) ; Rez(r/) > 0}. 

Then Uj and V are open and closed subsets of 3 and M^L00(3A)) respectively. By (16), 

N{IoLx) C V, so that by Proposition 4, M(/o4) = V. Since Md(I) = Lx(M(IoLx)) = Uu 

by Proposition 1 and Theorem 7, 

(17) #* , ( / )=&/H supp/z,, 

Since xv & QC(A), there is a QC(A)-level set QA such that QA tf_ V and gA n V ̂  0. Put 

G = {Cesupp/xx;£(OeGA}, 

then g is a QC5j-level set. Since £/> n supp/x* = £-1(V), g <£ #/ and Q H #, ^ 0. By 
(17) we get (i). 

By Marshall (see [4, p. 392]), there is an inner function q such that [7/°°(A), \y] = 

[H°°(A),ql that is, for r/ G M(//°°(A))\A, |xv(rç)| = 1 if and only if \q(r])\ = 1. If 

\Xv(r])\ < 1 for r] G M(//°°(A))\A, then Rez(r?) = 0. Hence by (16), 

\q(r,)\ - 1 or \(IoLx)(r])\ = 1 for r/ G M ^ A ) ) ^ . 

Put 
y = $ o fc G //°°. 

Then / G 7 and 7o Lx = 4 on M(#°°(A)). Hence by Theorem 2, |/ | = 1 on M(B{ )\P(*), 
and 

|7(0| = l o r | / ( 0 | = l f o r C G P W . 

Thus we get (ii). 
Since Xv|<2A is not constant, g|gA is not constant. By Lemma 9, QA C N(q). Since 

Md(J) = Md(J) = /Vd(J), 

NB](J) = cl[U{supPMC ; £ G Nd(J)}} by Theorem 7 

= cl[U{ supple ^ C G LX(N(J^TX))}} 

= [ U { S U P P ^ ; ^ 4 ( ^ ) ) } ] 

DC1[U{SUPP/XC;€G4(GA)}]. 

Since gA n V ^ 0, 4 ( G A ) H t/7 ^ 0. Since supp ̂  C &/ for £ G £//, by (17) NB] (J) n 
7V5i (J) = NBl (J) D #7 H supp fix ^ 0. Thus we get (iii). 

We have b(Q) — QA and J = q o b. Since Ç\QA is not constant, J is not constant on Q. 
We already proved Q Pi C/ ^ 0. We have 

Q = ^"1(GA)nsupp/xx 

= U{*"1W;»/eGA}nsupp/ix 
- U{^ ; C e 4(QA)}. 
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By Theorem 5, Q H NB2(J) = Q H Ûi ^ 0, so that R^ H NBl(I) ^ 0 for some £ G 4 ( 2 A ) -

By Lemma 9, there is a point £ in MiBi) such that 7(0 = 0 and supp ̂  C R^. Hence /| ^ 
is not constant, and I\Q is not constant. Thus we get (iv). 

Since supp /x̂  C /?£, we have 

cl[ |J{supp^ ;^GLX(GA)}] CO-

By our construction, \q(rj)\ = 1 or |(/ o LA-)(r])| = 1 for 77 G M ( / / ° ° ( À ) ) \ À . Since #|ÔA 

is not constant, by Proposition 5,1 o LX\QA is constant and \I o LX\QA\ = 1. Hence / is 
constant on cl[|J{supp^ ; £ G LJC(ÔA)}]- Therefore we get (v). 

COROLLARY 5. For every £ G 3, supp ^ c /?£. 

PROOF. By the same way as the construction of I in Theorem 9, we can find an 
interpolatingBlaschke product ip such that |i/>(0l — 1 a nd supp ̂  C L̂ /,. By Theorem 5, 
Rç Pi NB2(^) T̂  0. By Lemma 9, there is a point £ in M(#2) such that supp ^ C R^ and 
t/;(0 = 0. Then t/>|SUpp/zc is constant and i/j\Ri is not constant. 

By Theorem 9, we cannot expect to have fruitful properties of the Douglas algebra B\ 
as in [12]. 
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