
664 Book reviews

systems are embracing the idea that efficient computation is not necessarily anathema to

correctness. The decision procedures shown here fall in an interesting gray area: they are

fully justified (usually by semantic, model-theoretic arguments, unlike the more syntactic style

frequently adopted elsewhere) as well as type-safe, but not fully proven to be correct. In most

cases, the results of the algorithms are easy to formally verify, and thus provable correctness

is not strictly necessary.

Each chapter of this book very carefully covers the necessary theory and motivates a

systematic development of the algorithms which make the theory practical. Reading the

whole book amply justifies this choice of topics, and presents a solid holistic picture of

what is covered. One can’t help but wish for the author to write a follow-up treatise on

higher-order logic in the same vein, seeing the author’s HOL Light is a rather successful

proof assistant based on higher-order logic. To this day, Harrison still holds the record for

the largest percentage of the Top 100 mathematical theorems1.

It would be easy to imagine using this book for several courses on logic, theorem proving,

and decision procedures, from an introductory course to several Master’s level advanced

courses. There is in fact so much material here that one could probably create a whole

stream (say of 4 courses) in an undergraduate curriculum for specializing in mechanized

mathematics. Any researcher who wants to learn how simple theorem proving systems are

built would greatly benefit from reading this book. This deserved praise comes with a

caveat: implementing “real” systems is a significantly more subtle business than the elegant

development of the varied algorithms presented here. This is not so much a criticism of the

book itself, but a warning to readers who might feel they have learned so much from

this book (and they will undoubtedly learn a lot from it), that they are essentially an expert

in the topic, which would certainly not be the case.

Seen as a textbook for a variety of courses which could be taught in mathematics, logic

and computing, at the advanced undergraduate as well as at the beginning graduate level,

this monograph excels. This reviewer unreservedly recommends it for this purpose. Seen as

a wonderful tutorial for a researcher in functional programming to learn the practice (and

theory) of applicable mathematical logic and the design of reasoning procedures, this is surely

the most approachable such text. But the reader should be well aware that while some subtle

issues are well-covered, others (like deeper issues regarding syntax and semantics, intensional

and extensional reasoning, trustability of decision procedures written outside of a logic, the

fine line between deduction and computation) which are crucial for a deep understanding of

the modern issues facing mechanized mathematics, cannot be covered in a textbook at this

level. So why even bother to mention that in a review? Mostly because this book is such a

pleasure to read, and covers such a wealth of fascinating and diverse material, that it is very

easy to lose sight of the fact that this is not a comprehensive research monograph. So, please,

go read it and enjoy!

JACQUES CARETTE

carette@mcmaster.ca

How to think about algorithms, by Jeff Edmonds, Cambridge University

Press, ISBN 0521614104

doi:10.1017/S0956796811000177

How to Think About Algorithms (HTTAA) is a textbook written by Professor Jeff Edmonds

to teach students what is the best approach to think about algorithms abstractly. The

1 http://www.cs.ru.nl/~freek/100/

https://doi.org/10.1017/S0956796811000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000177


Book reviews 665

intended objective is that after reading the book the reader should be able to use the tools

presented in the book to tackle new algorithmic problems with confidence. When writing

the book, the author explicitly avoided the creation of yet another dictionary-like algorithms

book. His style is to present the constituent parts of computing and from then on to build

incrementally the steps required for the creation of all the well-known algorithms. This

textbook is the companion for the mid-graduate course Design and analysis of algorithms that

he teaches at the York University, Canada. Supporting slides for the course are available at

http://www.cse.yorku.ca/∼jeff/courses/3101/

When reading the book these slides are helpful since they illustrate how the algorithms

work in a visual way and so the reader has no need to run the algorithms in her head.

The book is divided into 4 parts, iterative algorithms, recursion, optimisation problems

and an appendix with some mathematical addendum aimed mainly at providing the required

background for the formal evaluation of the algorithms’ complexity. Each part has its own

chapters but contrary to other books on algorithms, chapters are not arranged around a family

of algorithms. Instead they are grouped around fundamental properties or constituent parts

of each computational metaphor. Take for instance the iterative part, there are chapters about

the loop invariant in an iterative algorithm, about types of iterative algorithms according to

how they consume input or produce output, and gradually the author begins the explanation

of abstract data types, search algorithms and sorting. Sure, in this book you are going to

find all the algorithms you are used to in a book of its kind, but they are not arranged in

a reference like fashion. They emerge as examples to support the main point of the text in

the form of grayed boxes or auxiliary exercises. Here, algorithms themselves are a by-product

of the theory expressed in the chapter pages and their only purpose is to illustrate the true

objective, namely to learn the constituent blocks when designing algorithms. For instance, the

binary search algorithm is presented when discussing the meta-heuristic narrowing the search

space with its own properties for the loop invariant in an iterative algorithm. First we see the

general concepts, and then we are shown a practical example on how to apply those concepts.

Given that this is a textbook, the main objective is that the reader should be able to

master the presented material. To that end, when a subsection with new material ends you

find a couple of exercises to hone the ideas. Similarly when a chapter ends, there are more

exercises covering all the material in the chapter. At the end of the book, solutions to selected

exercises are provided where the reader can test whether the required comprehension has

been achieved. As it was said before, there are times when well-known algorithms in the

literature are presented as examples in grayed boxes within the text as a complement for

the proposed exercises. This emphasizes the idea that the methods are general enough and

that concrete algorithms are no more than instantiations of those general concepts. The only

concern about the presentation is that sometimes isn’t clear where the author is aiming at

and the text becomes too verbose. This is related to the fact that in almost every paragraph

or two there is a text caption that introduces what comes next. This results in an impression

of lack of cohesive writing that hides somehow the argumentative thread of the text.

For the functional programmer this book can be helpful in her bookshelf. Although its

point of view is the imperative one, its approach can be reused in a functional environment,

the programmer only has to translate the core ideas to the functional way of doing things. The

abstract data types and the algorithms included in its pages are those common in a imperative

environment but the main point in this book is the emphasis put in the computational aspects

of the algorithms. Sure, it is difficult to translate the loop invariant concept into a functional

language but the underlying idea is not to lose track of what is going on and this can also be

accomplished when processing a list in a functional language. The core ideas and philosophy

can be applied without any problem.

All in all this is a great book to learn how to design and create new algorithms. The author

teaches you how to think about algorithms step by step, building the necessary knowledge

and illustrating the process with common algorithms. The book is not the usual showcase

of algorithms written in pseudo-code but anyway all the algorithms that are supposed to

https://doi.org/10.1017/S0956796811000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000177


666 Book reviews

be in an introductory book are in this one too. At times the prose is a little bit verbose,

and the inexperienced reader can get lost because she doesn’t know how the author is

developing the point or what is the objective in the explanation, but the novel approach and

the pedagogical freshness compensate those little deficiencies. This is a good book that the

reader will appreciate in the first and subsequent reads, and it will make better developers

and programmers.

TONI CEBRIÁN

cebrian@tid.es

https://doi.org/10.1017/S0956796811000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000177



