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ON RING PROPERTIES OF INJECTIVE HULLS 

BY 

N. C. LANG 

Let R be an associative ring and denote by R the injective hull of the right 
module RR. If R can be endowed with a ring multiplication which extends the 
existing module multiplication, we say that R is a ring and the statement that R 
is a ring will always mean in this sense 

It is known that Ê is a regular ring (in the sense of von Neumann) if and only 
if the singular ideal of R is zero. In this case, R=Q, the complete ring of quotients. 
The fact that R can be a ring properly containing Q was first shown by an example 
in [5] and at the end of this paper, a class of rings is given with the same property. 

The present paper is in two sections. In §1, we assume that R is a ring and 
determine some properties that the multiplication must possess. In particular, 
although this multiplication is not necessarily unique, we show that it is deter­
mined modulo the singular submodule and also up to the ring of quotients Q, 
which is always a subring of Ê. The singular submodule is moreover the Jacobson 
radical of R and necessary and sufficient conditions are found for R to be a local 
ring. 

In §2 some negative results are obtained in the case where R is commutative 
and a complete answer to the question (of when R is a ring) is given in the case 
where either R or its quotient ring is Artinian. Some of these results are generali­
zations of results obtained by Harui in [1]. In particular, Harui's condition that 
jR be in the centre of R is dropped. 

DEFINITIONS AND PRELIMINARIES. Unless otherwise stated, all modules con­
sidered are right unital modules over a ring R with identity. A submodule A of an 
jR-module M is said to be essential or large if, for any non-zero submodule B 
of M we have A n B^ (0). The singular submodule of an i?-module M is defined as 
ZR(M)={m eM I ra/=0 for some essential right ideal / of R}. In particular 
ZR(R) is a two-sided ideal of R. 

The following notation and remarks are as in Lambek, [2]. Let H=HomR(Ê, Ê). 
Then the map h->h(l) of H onto Ê is surjective and if N={h e H | /z(/)=0 for some 
essential right ideal of J of R} we have an additive isomorphism HIN^Ê[ZR(Ê). 
Since H/N is a regular ring, it follows that RjZR{È) can be made a ring with the 
same property. The complete ring of quotients Q can be defined as g=Hom i 2 (^ , J£) 
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The elements of Q are usually written on the right and we have the bimodule 

HRQ. The map q->lq is an embedding of Q into R as iÊ-modules. 
Finally, it has been shown by Osofsky in [5] that if R is a ring, then 1 is the two-

sided identity of Ê. 

§1. In this section we assume that R is a ring and denote the multiplication 
by o. Thus if P e Ê and r e R, we have P o r=rr. The first two propositions give 
some information about °. 

PROPOSITION 1. Iff,seÊ are represented respectively as h(l), h'{\) where 
h,h' EH then P o ,S=A[A'(l)]mod ZR(Ê). 

Proof. Let J={r e R | h'(r)eR}. Since JR is essential in Ê, it follows that / 
is an essential right ideal of R and for x e J, we have {/z(l) © /z'(l)—h[h'(l)]}x= 
h(l)oh'(x)-h[h'(x)]=h(l)h'(x)-h(l)h'(x)=0. This shows that foS-h[h'(l)] 
annihilates / and is therefore in ZR(È). 

PROPOSITION 2. ZR(È) is an ideal in Ê. 

Proof. Take z e ZR(R). Then zl=0 for some essential right ideal I of R and if 
PEÊ, (Po z ) /=0, so that P o ZEZR(R). NOW let J={r ER\rrEl}. Then / is 
essential and (z o P)J=z o PJ^zI=0. 

It follows that although the multiplication on R is not necessarily unique, the 
quotient structure RjZR(R) always carries the same multiplication as that in­
herited from HjN by the aforementioned isomorphism. 

The next observation shows that multiplication on R is further restricted by 
the fact that \Q is a subring. 

PROPOSITION 3. The multiplication on R extends module multiplication by 
elements of Q. 

PROPOSITION 3. The multiplication on R extends module multiplication by elements 

ofQ. 
Proof. Take P E A and q E Q. The module product Pq is just the image of r 

under q. Let h denote the element of H given by left multiplication by P. Then 
r o (lq)=h[(lq)] = [h(l)]q=fq. 

We now prove a result which increases further the importance of the singular 
submodule. 

THEOREM 1. ZR(Ê) is the Jacobson radical of R. 

Proof. Rad R^ZR(R) follows from the above results which show that R/ZR(È) 
is regular. 

Now take z EZR(R). Define z1 = {r E R | zr=0}. This is an essential right ideal 
of R. Then (1— z)1 is a right ideal of R andx ez*(l— z)1=>0=zx=x—zx=>x=0. 
It follows that (1 —z)1=0 since z1 is essential and since R is an essential submodule 
of R, the right annihilator of (1 —z) in Ê must be zero. Then the map r->(l — z) ° P 
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is an ^-isomorphism of $ onto (1 — z) oRso that the latter is an injective submodule 
and therefore a direct summand. But for xez1, we have x~(l—z)x so that 
z1^ (l— z) o R which is therefore essential as an i?-submodule of R. This means 
that (/— z) o Ê=R and hence there exists f e R such that (1— z ) o r = l , It follows 
that z is right quasi-regular (with inverse (1—r)) and so ZR(Ê), as a right quasi-
regular ideal, must be contained in Rad Ê. 

Theorem 1, together with an observation by Hans Starrer, reveals another 
special property of R. 

PROPOSITION 4. The Jacobson radical of R is contained in its singular ideal. 

Proof. Take zeZR(R). Then zl=0 for some essential right ideal / of R. It 
follows that z o (/o È)=(zl) o $ = 0 . But I<> R is clearly essential as a right ideal 
of Ê so that zeZÈ(R). 

The last result of this section is a typical consequence of the above propositions 
and is used later. 

THEOREM 2. Ê is local if and only if every non-trivial right ideal of R is essential. 

Proof. Every right ideal of R is essential if and only if R is indecomposable 
as an i?-module and it is shown in Matlis [3] that the latter is equivalent to H 
being a local ring. But JVis the Jacobson radical oî H so that His local if and only 
if HjN is a division ring, which is equivalent by above remarks to RJZR(R) being 
a division ring. The desired equivalence follows using Theorem 1. 

§2. In this section, unless otherwise stated, R is a commutative ring. In this case, 
there is no distinction between the left and right injective hulls and the module 
multiplication is commutative. That is, for f e R and r e R we have rr=rr. But 
we do not assume that r ° r=rr. As can be seen from [1], this assumption would 
greatly simplify some of the following proofs, but, although the writer knows of 
no examples of commutative rings R where R is a ring and does not contain R in 
the centre, nor does he know of a proof that it must be so. We therefore avoid the 
assumption. 

Before proving the next result, we remark that for r e R and r ER, the difference 
r o f - f o r annihilates the essential ideal X={x e R | rx e R}, so that r of—r °r e 
Z(Ê). 

LEMMA 1. If the socle of R is essential and Ê is a ring, then S is the right socle 
of Ê and is contained in its left socle. 

Proof. For xe Ê, the map x:R-+R defined by r-+xr is an iMiomomorphism 
and since S is essential as a right jR-submodule of Ê, the ideal x_ 15={r G JR | xr e S} 
is essential in R and therefore contains S. This shows that S is a left ideal of Ê. 

Now let x be an element of some homogeneous component H of R and suppose 
that there exists r e Ê such that fx=y $ H. Then left multiplication by r is an 
/^-isomorphism of xR onto yR, a contradiction. It follows that each homogeneous 
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component is a left ideal of Ê. Now take x,y e H. The map : xR-+yR defined by 
x-^-y is an .R-homomorphism from an ideal of R into R and is therefore induced 
by an element of k. That is, there exists F e R such that fx=y. This shows that 
each homogeneous component is a minimal left ideal in R and S is contained in 
the left socle of R. 

[We cannot conclude that 5=left socle of Ê since not assuming r © F=rF leaves 
open the possibility that a left ^-ideal may fail to be a left iÊ-module and hence 
may fail to intersect R.] 

Now take x G S such that xR is a minimal ideal of R. Then S=xR®A where A 
is an ideal in R and we can define a map: S-^S^Ê by x->x and a->0 for a e A. 
As before, this map is induced by an element n of R. Let F e Ê such that x o f e S. 
Then x © F=(nx) © r = « o x o F=n(x © r), so that x©r is an element of 5 not 
moved by «. It follows that x o f e xi£, which means that x o & n S=xR. Now 
take O ^ / e ^ o A We have 0^1 o R n S^x o R n 8=xR which is minimal. 
Then /o R n S~xR which implies that x elo & and it follows that x o $ is a 
minimal right it-ideal. In particular 5 ^ right socle of Â. We now prove that 
x o R=xR for x as above, giving the result that S is the right socle of R. Suppose 
that x is in the homogeneous component H. Then S=H@C and this is left ideal 
decomposition. Let B be a maximal sum of minimal left A ideals which are iso­
morphic to H as left ^-modules and which fails to intersect S. Then B@H®C 
is a direct sum of left it-ideals. Now for F e Ê, x ° f is in the left homogeneous 
component containing H, for this is a right i?-ideal. Then x o f=b+h+c in ob­
vious notation. Suppose that è = x © />—(A+c) is not zero. Then there exists r e R 
such that 0?£br=s e S and r o b=r o x © r—r © (A+c)=x o r o f— (h+c)r=x © 
(r © r+z)—(/z+c)r where zeZ(R). Then r © è = [ x © r— (A-f c]r=Z?r=5* since 
x © z = 0 by Theorem 1 and the fact that x is in the right socle of R. But the left 
ideal generated by b intersects S in zero. This contradiction means that b=0 and 
therefore that x © f e S. It follows by the above that x © F e xR. 

It is quite easy to see that no two homogeneous components of S can be iso­
morphic as left it-modules, so that c in the above proof is zero. 

COROLLARY 1. For R as in Lemma 1 we have, for F G Ê, FS=Q=>S © r = 0 . 

Proof. FS=0=>F eZR(R)=Rad R by Theorem 1 then S © F=0 by Lemma 1. 
We are now able to find sufficient conditions on a commutative ring that its 

injective hull cannot be made a ring. 

THEOREM 3. Let Rbe a ring with the following properties: 

(i) The socle SofR is large 
(ii) No homogeneous component of S is simple 

(iii) S is the sum of a finite number of minimal ideals. 

Then Ê cannot be made into a ring. 
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Proof. Suppose that R is a ring. Let S = 0 L i Hk where the Hk are homogeneous 
components and Hk=®x*R, a finite sum of at least two minimal ideals. Then the 
maps: S->S defined by x)-+xl and x\->0 for l^j or t^k are induced as before 
by elements u% of R. That is u1tjx

k
j=x\ and u%x\=0 for Ij&j or t^k, and it is clear 

that the difference u%—u% o wti annihilates 5 on the left. By Corollary 1 it follows 
that s o u%=s o u% o u% for all s e S. We express this fact as relation: 

oo4 = u% o u* mod ZB(-8) 
In the same way we obtain: 

pu%oU%~0modZR(Ê) for j * t. 

Now write x | = x and consider the element x o «*t for any y, f, k with yVf. We 
know from the proof of Lemma 1 that x © u%=xr=rx for some r çè J? and, using 
/? we get 0 = x o u% o u%=(rx) o u%=r o (x ° u%)=r2x. Since the annihilator of a 
minimal ideal is prime, we get 0=xr~x © w^. Now a gives x o u%=x o u% o w^=0 
for anyy, fc. But 2^ifc w^.= 1 mod ZR(R) which gives a contradiction. It follows that 
Ê cannot be made a ring. 

It will be seen later that commutativity is a necessary condition in Theorem 3. 
Suppose now that R=A®B, where A, B are ideals in R, which need not be com­

mutative for the moment. Consider ÂR. Let X={xe ÂR | xB=0} and Y= 
{yeÂR\ y A=0}. Then ÂR=X® Y and A c X. But 4̂ is essential as an i£-submodule 
of AR so that F=0 . That is ^4^ *s annihilated by 1?. Now consider AR as an >4-
module (ÂR)A and consider the diagram: 

in 

»A 

where CA, DA are ^-modules and / i s an ^4-homomorphism. Now make CA and 
Z>̂  into i^-modules by letting B annihilate them and do the same with (ÂR)A. 
Without specifying all the identifications involved, we can now say that / has 
become an iMiomomorphism into ÂR which therefore lifts giving finally an A-
homomorphism from DA into (ÂR)A. Since A is essential in (ÂR)A, it follows that 
(ÂR)A=ÂA. Furthermore, ÂA is a ring (extending multiplication by elements of A) 
if and only if ÂR is a ring (extending multiplication by R). Therefore, if ÂA and 
BB are rings, then so is Ê=ÂR@ÊR. Now suppose that Ê is a ring. Take âu â2 e ÂR. 
Then âx o â2=â+h where âeÂR and h e ÊR. It follows that BB=0. But B is a ring 
with identity b0 and hbQ=h. It follows that 5 = 0 and so ÂR is a subring of Ê. This 
makes it clear that ÂA is a ring. 

These remarks justify the following lemma: 

LEMMA 2. / /* i£=0Li Ai9 ring decomposition, then R is a ring if and only if each 
ÂiA is a ring. 

We can now give an answer to the general question in the case of commutative 
Artinian rings. 

6 
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THEOREM 4. If R is a commutative Artinian ring, then the following statements 
are equivalent. 

(i) Ê is a ring 
(ii) R is self infective 

(iiï) Every homogeneous component of S is simple. 

Proof. Write l = e H Yen where {eu • • • , en} is an orthogonal set of primi­
tive idempotents. Write ^=^fz- for z = 0 , . . . , « . Then i ^ = 0 L i ^% and the Ai 
are Artinian, local rings with identities et. Clearly, the socle of Ai is a homogeneous 
component of R for any / and if any such socle is non-simple, then Â{ is not a ring 
by Theorem 3 and therefore R is not a ring by Lemma 2. If, on the other hand, 
each At has a simple socle, then each Ai is self-injective by [3]. These remarks give 
the result. 

COROLLARY 2. Let R be a commutative ring whose complete quotient ring Q is 
Artinian. Then Ê is a ring if and only ifR=Q. 

Proof. By Proposition 3, R extends module multiplication by elements of Q if 
it is a ring and, as can be seen in [2], RQ = QQ. Since Q is commutative and Artinian, 
g is a ring if and only if Q=Q, by Theorem 4. Then R is a ring if and only if 
Ê=Q. 

The following example is due to Vlastimil Dlab and Claus M. Ringel. It shows a 
class of rings R with the property that Ê is a ring properly containing Q. 

EXAMPLE 1. Let A be a ring with identity e and the following properties: 

(i) A is local with Jacobson radical W. 
(ii) A is an algebra of finite dimension n over a field K. 

(iii) Wis a vector space direct summand of A and Ak=eK@W. 
(iv) The socle of A is simple. 

For a positive integer m, let R be the subring of Am consisting of all matrices 
which are sums of matrices of the following two forms : 

(a) scalar matrices with diagonal elements ke for some fixed k and zeros else­
where, 

(b) matrices with zeros everywhere except in the last column, where the first m—1 
entries are arbitrary elements of A and the (m, m)th entry is an element of W. 

An arbitrary element of R is therefore of the following form: 

\ke ax | 

am-l 
L . ke+wj 

where k e K, w e W and al9... , am_1 e A. 
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Now let MR=HomK(RK, K). This is an indecomposable right jR-module and 
since RR is projective, MR is injective. But R is a local ring with radical say W1, 
so that every indecomposable injective module is isomorphic to EiRjW1), the 
injective hull of the right i£-module RjW1. Since the right socle of R consists of 
m copies of R/W1, we have E(R) g*®?^ E^RIW1) where E^R/m^M for 
i = l , . . . , m. This makes it clear that E(R) has dimension m2n as a vector space 
over K and this is the dimension of Am over K. But R is essential as an i£-submodule 
of Am. This shows that Am=E(R). Since R is an Artinian local ring, however, it is 
equal to its complete ring of quotients. This example shows the necessity of com-
mutativity in Theorem 3. 

EXAMPLE 2. Let Z{J)) =Homz(ZP00, Zvao)9 where ZPao is the Priifer group for some 
prime p. Let R be the ring whose additive group is Z{p)@Z9a0®ZP(O with multi­
plication defined by: (z, ml9 m2)(z'9 m[9m£=(zz'9 zm^+z'm^ zm2+z'rn2) in the 
obvious notation. As in [6] it can be seen that R is a commutative ring with a large 
socle which is the sum of two minimal ideals, and that R is not Artinian. Since 
R satisfies the conditions of theorem 3, Ê is not a ring. 
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