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The Essential Spectrum of the Essentially
Isometric Operator

H. S. Mustafayev

Abstract. Let T be a contraction on a complex, separable, infinite dimensional Hilbert space and let
o(T) (resp. o.(T)) be its spectrum (resp. essential spectrum). We assume that T is an essentially
isometric operator; that is, Iy — T* T is compact. We show that if D\o(T) # @&, then for every f from

the disc-algebra
ae(f(T)) = f(oe(D)),

where D is the open unit disc. In addition, if T lies in the class Co. U C.g, then

ae(f(D) = f(a(T)NT),

where I' is the unit circle. Some related problems are also discussed.

1 Introduction

Let H be a complex, separable, infinite dimensional Hilbert space and let B(H) be
the algebra of all bounded linear operators on H. Throughout, o(T) denotes the
spectrum and R\(T) = (Mg — T)~! (X ¢ o(T)) the resolvent of T € B(H). We use
the notations ¢;(T) and o,(T) to denote the left and right spectra of T, respectively.
The unit circle in the complex plane will be denoted by I', whereas D indicates the
open unit disk. The disc-algebra and the algebra of all bounded analytic functions
on D are denoted by A(D) and H*® := H*°(D), respectively.

For T € B(H), the uniform operator topology closure of all polynomials taken
in T is denoted by Ar. Note that Ar is a commutative unital Banach algebra. The
Gelfand space of Ay can be identified with o4, (T), the spectrum of T with respect to
the algebra Ar. Since o(T) is a (closed) subset of 04, (T), for every A € o(T), there
exists a multiplicative functional ¢, on A such that ¢, (T) = A. By S we denote the
Gelfand transform of S € Ar. Here and in the sequel, 1nstead of S((bA)(— oA(S)),
where A € o(T), we use the notation S()\) Notice that \ — S(/\) is a continuous
function on o(T). It follows from the Shilov’s Theorem [6, Theorem 2.3.1] that if T
is a contraction, then 04, (T) N T" = o(T) N I, which is the unitary spectrum of T.

If T is a contraction on H, then it follows from the von Neumann inequality that
there exists a contractive algebra-homomorphism h: A(D) — Ar (with dense range)
such that h(1) = Iy and h(z) = T. We use the notation f(T) := h(f), f € A(D).
Thus we have || f(T)|| < ||fllco for all f € A(D). It is easy to check that h is an
isometry if and only if I' C o(T).
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A contraction T on H is said to be completely nonunitary (c.n.u.) if it has no proper
reducing subspace on which it acts as a unitary operator. If T is a c.n.u. contraction,
then f(T) (f € H*) can be defined by the Nagy—Foias functional calculus [9, Chap-
ter III]. We put H°(T) = {f(T) : f € H*}. A c.n.u. contraction T on H is called a
Co-contraction if there exists a nonzero function f € H* such that f(T) = 0. A con-
traction T on H is said to be of class Cy. (resp. C.g) if T"x — 0 (resp. T*"x — 0) for
every x € H. We put Cyyp = Cy. N C.g. As is known [9, Proposition 11.4.2], Cy C Cyp.
Recall that T € B(H) is said to be essentially isometric operator if Iy — T* T is compact.

By K(H), we will denote the ideal of compact operators on H. The quotient
algebra B(H),“K(H) is a C*-algebra called the Calkin algebra. Let m: B(H) —
B(H),/K(H) be the natural map. The essential spectrum o.(T) of T € B(H) is the
spectrum of 7(T) in the Calkin algebra. As is well known, o.(T) is a nonempty com-
pact subset of o(T'). Similarly, the left and right essential spectrum of T are defined by
01(T) := o7 (7(T)) and 0,,(T) := o, (w(T)). Recall that T is a (left, right) Fredholm
operator, if m(T) is (left, right) invertible in the Calkin algebra.

Assume that a contraction T on H is from the class Cyo. Moreover, assume that

dim(I — TT*)H = dim(I — T*T)H = 1.

According to the well-known model theorem of Nagy—Foias [9], T is unitary equiva-
lent to its model operator M,, = P,,S |k, acting on the model space K, := H> S ¢H?,
where ¢ is an inner function, Sf = zf is the shift operator on the Hardy space
H?, and P, is the orthogonal projection from H? onto K. It follows that for every
f € H*, the operator f(T) is unitary equivalent to

fMy) = Pof(S) [k, -

In [11, p. 162, Corollary 1] it was proved that for every f € A(D),

oo(f(T)) = f(oe(T)) = f(a(T)NT).

On the other hand, it follows from the Lipschitz-Moeller Theorem [11, III.1] that
o(T) N D = ¢~1(0) and therefore, D\ o(T) # @.

In this paper, we generalize this result in the following way. It is shown in Section
2 that if T is an essentially isometric contraction and D\ o(T) # @, then for every
f € A(D), we have the essential spectral mapping equality

JE(f(T)) = f(ge(T)) .
The asymptotic behavior of the orbits {T"S : n > 0} are considered in Section 3. We

show that if T'is an essentially isometric contraction from the class Cy. UC g, then for
every S € Ar,

lim ||T"S|| = sup |S(&)|= sup [S(E)].
oo £€0(T) €0, (T)AT
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As a corollary of this result, we obtain that if T is an essentially isometric contraction
from the class Cy. U C.g, then

0.(T) =0,.(T)NT =0c(T)NT.
In addition, if D\ o(T) # &, then for every f € A(D),

O’e(f(T)) = f(O'(T) OI‘) .

2 The Essential Spectral Mapping Theorem
The main result of this section is the following assertion.

Theorem 2.1 Let T be an essentially isometric contraction such that D\ o (T) # &.
Then for every f € A(D), we have

oe(f(T)) = f(o.(D)).

For the proof we need some preliminary results.

Let A be a C*-algebra with the unit element e and let S4 be the set of all pure states
on A. We know [10, Corollary V.23.3] that if a € A, then o(a) consists of all A € C
for which there exists f € Sy such that A = f(a) and f(a*a) = f(a*)f(a). Assume
that a*a = e. If X € oy(a), then we have

AP =T@f(a) = fla)f(a) = f(a"a) = f(e) = 1.

This shows that gy(a) C IT'. In particular, if a is a unitary element of A, then o;(a) =
o/(a) =0c(a) CT.

Let T be an essentially isometric operator on H. Since n(T)*n(T) = w(Iy), it
follows that 07,(T) = o;(7w(T)) C I'. Moreover, if T is an essentially unitary operator,
that is, if both Iy — T*T and Iy — TT* are compact, then 05.(T) = 0,.(T) = 0.(T) C
I'. Recall that an operator T € B(H) is said to be essentially normal if TT* — T*T
is compact. Similarly, we can see that if T is an essentially normal operator, then
Ule(T) = Jre(T) = Ue(T)~

Let T be an essentially isometric contraction on H and let V be the partial isometry
in its polar decomposition. From the identity

o0
V1i—z= 1+Zakzk
k=1
(the series is absolutely convergent on D and a; < 0, k = 1,2,...) we can write
o0
IT| = (T"T) = I+ Y ally — T"T) = Iy + K.

k=1

So, we have
T=V|T|=V(Uy+K)=V+VK
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(it can be seen that Iy — V*V is of finite rank). Recall that if T is invertible, then V is
unitary.

Now let T be an essentially isometric contraction on H such that D\ o(T) #
. Then T is essentially unitary (see for example, Proposition 3.4(f)) and therefore,
0.(T) C T'. Notice also that T is a Fredholm operator. Let Ay € D\ o (T). We know
[3, Proposition XI.3.4] that ind(T — Aly) is constant on the components of C\ o,(T).
It follows that

ind(T — My) = ind(T — M\Ilg) =0, VAeD.

In particular, we have indT = 0. Since T is a Fredholm operator, T has the form
T = S+ K, where S is invertible and K is compact. Notice also that S is essentially
unitary. As we already noted above, S = U + K, where U is unitary and K is compact.
Thus, we obtain that T is a compact perturbation of a unitary operator.

We call A € o(T) a normal eigenvalue of T € B(H) if it is an isolated point of o(T)
and if the corresponding Riesz projection has finite rank. We denote by ,,,(T) the
set of all normal eigenvalues of T. Notice that if N is a normal operator, then o,,,(N)
consists of all A € o(N) for which A is an isolated eigenvalue of N having finite
multiplicity. Consequently, we have 0.(N) = o(N)\ o,p(N) [3, Proposition XI.2.9].

Let T be an essentially isometric contraction such that D\ o (T) # &. As we have
seen above, T is a compact perturbation of a unitary operator; T = U + K, where U
is unitary and K is compact. By [4, Theorem 1.5.3],

J(T)\Unp(T) = U(U)\Unp(U)~
Consequently, we have
0(T) = 0.(U) = a(U)N\0ywp(U) = o(T)\oup(T).

Let C(I") be the space of all continuous functions on I'. Notice that if U is unitary
and f € C(I'), then f(U) is a normal operator. Moreover, the spectral mapping
property o(f(U)) = f(o(U)) holds.

However, we have the following result.

Lemma 2.2 IfU is a unitary operator on H, then for every f € C(I'),

a.(fU)) = f(aU)).

Proof Let f € C(I). If§ € 0.(U), then there exists a sequence {x, } of unit vectors
in H such that x, — 0 weakly and

lim ||[(U — &Ig)x,|| = 0.
n—o00

It follows that for an arbitrary trigonometric polynomial Q,

Jim [[(QIU) = Q(&)k)x|| = 0.
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This shows that Q(§) € ¢.(Q(U)). On the other hand, there exists a sequence of
trigonometric polynomials {Q,} such that Q, — f uniformly on I". Consequently,
Q,(U) — f(U) in the operator norm. Since Q,(&) € 0.(Q,(U)) and Q,(&) — f(§),
this clearly implies that f(£) € o.(f(U)).

By Ex we will denote the spectral measure of an arbitrary normal operator N.
Below, we will use the following fact [1, Proposition 2.8.1]: If N is normal, then all
accumulation points of o(N) belong to o.(N).

Now let A € o.(f(U)). Then either A is an accumulation of o(f(U)) or A is an
isolated eigenvalue of f(U) having infinite multiplicity. Since o(f(U)) = f(a(U)),
in the first case, there is a sequence of distinct points { 4, } in o(U) such that f(u,) —
A. We may assume that i, — p for some p € o(U). Then pp € 0.(U) and A = f(p).
Now assume that A is an isolated eigenvalue of o(f(U)) with infinite multiplicity.
If the set f~1(\) N o(U) is infinite, then there is a sequence of distinct points {/, }
in 0(U) such that f(u,) = A If p, — p, then p € 0,(U) and A = f(u). Hence,
we may assume that f~1(\) N o(U) is a finite set, say {/i1,. .., i1, }. Assume on the
contrary that y; ¢ o,(U) (i = 1,...,n). Then each p; is an isolated eigenvalue of
o(U) of finite multiplicity. Since

Efu{A} = Eu{m} + -+ Eu{pa},

it follows that \ is an eigenvalue of f(U) of finite multiplicity. This is a contradiction.
|

We are now able to prove the main result of this section.

Proof of Theorem 2.1 As we have seen above, T is a compact perturbation of a uni-
tary operator; T = U + K, where U is unitary and K is compact. Take f € A(D).
Then there exists a sequence of polynomials {P, } such that P, — f uniformly on D.
Consequently,

Pn(T) - Pn(U) — f(T) - f(U)

in the operator norm. Since P,(T) — P,(U) (n € N) is compact, it follows that
f(T) — f(U) is compact. Now, taking into account the preceding lemma, we can
write

Ue(f(T)) = Ue(f(U)) = f(ge(U)) = f(ae(T)) .

The proof is complete. u

3 Asymptotic Behavior of Essentially Isometric Contractions

Let T be an essentially isometric contraction and S € Ar. In this section, we study the
asymptotic behavior of the orbits {T"S : n > 0} in terms of the essential spectrum
of T. By {T}’, we will denote the commutant of T € B(H).

The main result of this section is the following theorem.

Theorem 3.1 If T is an essentially isometric contraction from the class Cy. UC .y, then
forevery S € Ar,

lim || TS| = sup [S(&)|= sup [S(€).
nroo £€0.(T) E€o,(T)NT
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For the proof we need some results.

Proposition 3.2 The following assertions hold:

(a) If T is a c.n.u. contraction, then for every K € {T} NK(H), lim,_, || T"K|| = 0.
(b) If T is in the class Cy., then for every K € K(H), lim,_, » ||T"K]| = 0.
(c) If T is in the class C.o, then for every K € K(H), lim,_, . ||[KT"|| = 0.

Proof (a) Asitis known [7, Lemma 3.3], if T is a c.n.u. contraction, then 7" — 0 in
the weak operator topology. If K € {T}' N K(H), then for every x € H, we have

lim |T"Kx|| = lim ||[KT"x|| = 0.
n—00 n— 00

Since the set {Kx : ||x|| < 1} is relatively compact, for a given € > 0, it has a finite
e-mesh, say {Kxy, ..., Kxx}, where ||| <1 =1,...,k). So, we have

IT"K|| < max{||T"Kx;||} +¢& (n € N).

It follows that lim,,—,, || T"K]|| = 0.
The proofs of (b) and (c) are similar. [ |

It easily follows from Proposition 3.2(a) that if T is a c.n.u. contraction and if
there exists a compact operator in { T}’ with zero kernel or dense range, then T is in
the class Cy. U C.o. Notice also that if H>*(T) N K(H) # {0}, then T is in the class
Coo- This fact can be derived from the dilation arguments of Nagy—Foias [9, p. 140].

The proof of the following proposition, being very easy, is omitted.

Proposition 3.3

(a) IfV is a nonunitary isometry on H, then oy(V) = T 0,(V) = 0(V) = D.
(b) IfV is an arbitrary isometry on H, then oy(V) = o,(V) NI = (V) NT.

Let Hy be the linear space of all weakly null sequences {x,} in H. Let us define a
semi-inner product on Hy by

<{xn}7 {)’n}> = Lim.(x, yu),

where Li.m. is a Banach limit. Let
E={{x,} € Hy: Lim.||x,|* =0}.

Then Hy,/E becomes a pre-Hilbert space with respect to the inner product defined
by

({xa} +E,{yn} + E) = Lim.(xy, yn).
Let H be the completion of Hy,/E with respect to the induced norm. Then H is a

Hilbert space. B
For a given T € B(H), define the operator T on Hy /E, by

T: {x,} +E s {Tx,} +E.
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Then we have
ITCxa} + B)| = (Lim. || Toal|?) * < || T (Lim.flal|?) * = [T} {260} + EI-

Since Hy,/E is dense in H, the operator T can be extended to the whole H which we
also denote by T. Clearly, || T|| < ||T]|.

The pair (H, T) (sometimes the operator 7~") will be called the limit operator asso-
ciated with T.

Proposition 3.4 Let T € B(H) and let (H , %) be the limit operator associated with
T. Then the following assertions hold:

(a) The mapping T — T is a contractive algebra-*-homomorphism.

(b) T is compact if and only if T = 0.

(©) 0i(T) C 01(T), 0:(T) C 04e(T), and o(T) C 0(T).

(d) If T is a contraction, then f(T) = f(TN"), Vf e AD).

(e) T is an essentially isometric (resp. essentially unitary, essentially normal) operator
if and only 1f7~" is an isometry (resp. unitary, normal).

(f) If T is an essentially isometric operator and if 01,(T) # T (or 0,.(T) # D), then T
is essentially unitary.

(g) Forevery T € B(H), ||=(T)|| < [|T] < ||

Proof The proofs of (a), (d), and (e) are straightforward.

(b) It is obvious that if T is compact, then T=01IT = 0, then for every
weakly null sequence {x,} in H, we have Li.m.|[Tx,||> = 0. Consequently, there is a
subsequence {x,, } of {x,} such that

lim || Tx,||* = lim ||Tx,, ||* = Lim.|Tx,|* = 0.
n—00 k— o0

It follows that lim,, o, || Tx,|| = 0, and therefore T is compact.

(o) If A ¢ 04(T), then A\Iy — T is a left Fredholm operator. So, there exists
S € B(H) such that S(AIy — T) — Iy € K(H). It follows from (a) and (b) that
§()\Iﬁ — f) = I. This shows that A ¢ O'](f). The proof of the second and third parts
of (¢) is similar.

(f) It follows from (c) that Ul(7~") C 01(T) and therefore al(f) # I'. By Proposi-
tion 3.3(a), Tis unitary and so TT* = I55. This means that Iy — TT* is compact.

(g) It suffices to show that ||w(T)|| < ||T||. We know [2, p. 94] that

|w(T)|| = sup{ Lim || Tx,|| : [[x4]| = 1 (n € N), x, — 0 weakly} .
n—o0

Therefore, for a given ¢ > 0, there exists a sequence {x, } in H such that ||x,| = 1
(n € N), x, — 0 weakly, and

lim || Tx,|| > ||7(T)|| — e.
n— 00
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Then there exists a subsequence {x,, } of {x,} such that

lim ||Tx,, || = Um ||Tx,|| > [|7(T)| — .
k— o0 n—00
On the other hand, we have
1T = sup{ (Lim.[|Tx,[?) *: Lim.[x,]|* = 1, x, — O weakly}.
AsLim.||x,,||* = 1 and x,, — 0 weakly, from the preceding identity we can write

IT)| > lim || Tx, | > |=(T)] —&.
k— o0

Since € was arbitrary, we obtain the required inequality. ]

Let T be an essentially isometric contraction such that D\o(T) # @. In [5,
Theorem 2.1] it was proved that if f € A(D) vanishes on o(T) N T, then f(T) is
compact. Notice that this result is an immediate consequence of Proposition 3.4.

Now we provide the proof of Theorem 3.1.

Proof of Theorem 3.1 LetS € Ar. For every £ € 0,(T), there exists a multiplicative
functional ¢¢ on At such that ¢¢(T) = &. Then we have

1S(6)] = [€"S(€)| = |pe(T"S)| < ||T"S|| (n € N).

It follows that
hm IT"S|| > sup |S(§)\
§€01(T)
To prove the opposite inequality, let ¢ > 0 be given. Then there exists f € A(D)
such that ||S—f(T)|| < e. This implies

(3.1) [T"SI| < [IT"f(T)]| +& (neN)

and

(3.2) sup |f(E)] < sup |S(E)] +e.
£€0,(T) £€01,(T)

Let T be the limit operator associated with T. It follows from Proposition 3.4(e),
(c) and Proposition 3.3(b) that T is an isometry, and o(T)NT C o (T). If T is
nonunitary, then we have O‘(T) NI =T,andso I’ = g,(T) = o(T) NTI. As we
already mentioned above, in that case the mapping f — f(T) from A(D) into A7 is
an isometry and therefore, there is nothing to prove. Consequently, we may assume
that T is unitary. We also have a(T) C 01.(T). Now, taking into account Proposition
3.4(g) and (d), we can write

l=(FTN) < IF DI =IFD) = sup [fE] < sup |-

ceo(T) §€a1(T)
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Therefore, there exists K. € K(H) such that

| f(T)+ K| < sup [f(&)+e.

§€01(T)

It follows that

IT"f(T) + T"K:|| < sup [f(§)| +¢
EGUIB(T)

and

IT"f(T)+ K.T"|| < sup |f(&)]+e(neN).
§€0u(T)

Since T € Cy. U C.q, by Proposition 3.2(b) and (c), either
lim ||T"K.|| =0or lim ||[K.T"|| = 0.
n—00 n—00

Letting n — oo in the preceding inequalities, we get

(3.3) lim [|[T"f(T)|| < sup [f(&)]+e.
neo £€01,(T)

Now, taking into account (3.1), (3.3), and (3.2), we can write

lim |T"S|| < lim ||T"f(D)||+e < sup |f(&)|+2e
n—00 n—o0 EG(T[E(T)

< sup |S(6)] + 3e.
fegle(T)

Since € was arbitrary, we obtain that

lim ||T"S]| < sup |§(§)\.
nmee £€a1(T)

Replacing 07,(T) by 0,.(T) N I" in the above proof, we can see that

lim | T"S| = sup [S(9)]. .
noo £€0(T)NT

We have the following result as a corollary.

Corollary 3.5 If T is an essentially isometric contraction of class Cy. U C.q, then

0.(T) =0,.(T)NT =0o(T)NT.

https://doi.org/10.4153/CMB-2012-016-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2012-016-1

154 H. S. Mustafayev

Proof In [8], it was proved that if T is an arbitrary contraction on a Hilbert space,
then for every S € Ar,

lim [|T"S[| = sup [S(¢)).
=00 ¢eo(T)NT

From this and from Theorem 3.1 we can write

sup |§(§)| = sup |§(£)\ = sup |§(§)|(S€AT).
£€01(T) €0 (T)NT cea(T)NT

It remains to show that if Q; and Q, are two closed subsets of I' and if for every
f € A(D),
sup [f(&)] = Sug LF(E,

§€EQ §€

then Q; = Q,. For this, it is enough to show that Q; C Q,. Assume that there exists
& € Qq, but &y ¢ Q,. If we take the function f(z) = %(1 + £oz), then it is easy to see
that sup;cq, [ f(€)] = 1, but supcq, [ (€] < 1. [ |

The next result is an immediate consequence of Theorem 2.1 and Corollary 3.5.

Corollary 3.6 Let T be an essentially isometric contraction such that D\o(T) # @.
If T is in the class Co. U C.q, then for every f € A(D),

o.(f(T)) = f(a(T)NT).

4 C,-contractions

Let T be an essentially normal operator. In this section, we investigate the prob-
lem when T turns out to be an essentially unitary operator in terms of some metric
conditions about T. For C;-contraction T, we provide some sufficient conditions to
have the equality 0.(T) = o(T). Recall that a contraction T on H is said to be a
C,-contraction if inf, || T"x|| > 0 for every x € H \ {0}.

The following result is of independent interest.

Proposition 4.1 Let T be a C,-contraction on H such that o(T) # D. If T is normal,
then it is unitary.

Proof As in the proof of [9, Proposition I1.5.3],
lim (T"x, T"y) (x,y € H)
n— 00

(by the polarization identity, this limit exists) defines a sesquilinear form on H.
Therefore, there exists Y € B(H) such that

lim (T"x, T"y) = (Yx, y).

n—0o0

It follows that
(Yx,x) > inf||T"x||* > 0 (x € H\ {0}).
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If we put X = Yz, then X is a positive operator and ||Xx|| = ||XTx||. Define the
operator V on XH by VXx = XTx. Since ||V Xx|| = || Xx|| and X has dense range, V
can be extended to the whole H, which we also denote by V. Then V' is an isometry
and VX = XT, where
1Xx]| = (lim || T"x[*)3.
n— o0

Let us show that o(V) C o(T). Assume that A ¢ o(T). Define the operator W
on XH, by WyXx = XRy(T)x (x € H). Then we have
IWaXad]| = [XRA(T)x|| = ( lim [ T"Ry(T)x?) * = ( lim [[R\(T)T"x[?) *

< RO Jim [ T"]%) * = [IRA(T)I}]Xx])

Since X has dense range, it follows that W) can be extended to the whole H, which
we also denote by W. Thus we have W)X = XR,(T). Consequently, we can write

(Mg — VIWAX = (Mg — V)XR\(T) = X(Mlg — T)RA\(T) = X,

which implies (Al — V)W, = Iy. Similarly, one can see that W)(AMy — V) = Iy.
Thus, A ¢ (V).

Since o(T) # D, we have 6(V) # D, and therefore V is unitary. Now let us
show that T = V. By the Fuglede—Putnam Theorem, V*X = XT*, which implies
XV = TX. Hence, we have

VX? = (VX)X = (XT)X = X(TX) = X(XV) = X?V.

Consequently, for every polynomial P, we can write VP(X?) = P(X?)V. Further, there
exists a sequence of polynomials {P,} such that P,(t) — /f uniformly on [0, ]|Y]|] .
As n — oo, from the identities

VP,(X?) = P,(X*)V,

we get VX = XV. Thus, we have XT = XV. Since X has zero kernel, finally we obtain
T=1V. [ |

Corollary 4.2 Let T be an essentially normal contraction on H such that o.(T) # D.

If

inf ing Lim { || T"x¢||: ]l = 1, xx — O weakly} >0,
Xkt k—o0

then T is essentially unitary.

Proof Let T be the limit operator associated with T. By Proposition 3.4(e) and (c),
T is normal and U(f) C 0,(T). So, we have O'(T) # D. On the other hand, the
above condition shows that T is a C;-contraction. Now it follows from the preceding
proposition that Tis unitary. This means that T is essentially unitary. ]

We conclude the paper with the following result.
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Theorem 4.3 Let T be a c.n.u. Cy-contraction on H such that T is invertible and
oo

1 T—"
Z og || I < oo.
1+ n?

n=1

Then o(T) = o.(T).

For the proof we need some preliminary facts.

Let w = {wy, }nez be a sequence of real numbers with w, > 1 and Wy < WywWp,
for all n,m € Z. We say then that w is a weight on Z. The Beurling algebra A,,(I") is
the set of all f € C(I") for which

£l =" [f(m)|w, < oo,

nel’

where f(n) is the n-th Fourier coefficient of f. As is well known, A,,(I") is a commu-
tative Banach algebra with respect to the pointwise multiplication. If

logw
DL
1+ n?

then w is called a nonquasianalytic weight. If w is a nonquasianalytic weight, then
the structure space of A,,(I") can be identified with I". Moreover, the algebra A, (T") is
(Shilov) regular [2, Theorem XII.5.1].

Let T be an invertible operator on H. We denote by Ay -1, the closure in the
uniform operator topology of all trigonometric polynomials in T and T~'. We call T
an w-nonquasianalytic operatorif there exists a nonquasianalytic weight w on Z such
that

IT"| = O(wy) (n € Z).

If T is an w-nonquasianalytic operator, then for every f € A, ('), we can define
f(T) € B(H) by
f(T) = fmT".

nc’z

Then the mapping f — f(T) of A, (') into Ay 7—: is a continuous algebra-homo-
morphism with its dense range. The standard Banach algebra techniques involves
that the structure space of A7 7—1 can be identified with the hull of the closed ideal

Ir:={feA,T): f(T)=0}.

It follows that o(T) C I'. Moreover, the spectral mapping property o(f(T)) =
f(o(T)) holds.

Proof of Theorem 3.1 Let (H , T) be the limit operator associated with T. In view of
Proposition 3.4(c), o(T) C o.(T) C o(T). Hence, it suffices to show that o(T) C
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o(T). Since T is a c.n.u. contraction, T" — 0 in the weak operator topology. Conse-
quently, we can define the linear operator J: H — H by

Jx ={T"x} +E (x € H).

I* =

(recall that E consists of all weakly null sequences {x,} in H such that Li.m.||x,

0), where
_ : n 2 %
el = (tim |77
Moreover, _ _
JTx ={T""'x} + E=T({T"x} + E) = T)x.
So, we have
(4.1) JT =TJ.

Notice that as T is a C;-contraction, ] is injective.
Let us define the weight w = (w,,),ez on Z by

1, n>o0;
W, =
||, n<o.

Then T is an w-nonquasianalytic operator. As the mapping T +— T is a contractive
algebra-homomorphism, T is also an w-nonquasianalytic operator. Now assume on
the contrary that there exists §, € o(T), but & ¢ O'(T). Let O be an open set such
that O’(T) C Oand & ¢ O. In view of the regularity of the algebra A, (I"), there
exists f € A, (I") such that f vanishes on O, but f(&) # 0. Let g € A, (I") be such
that g(§) = 1forall € € a(f) and g(¢) = 0 outside O. Since fg = 0, we have
f(T)g(T) = 0. By the spectral mapping property, g(T) is invertible and therefore
f(f) = 0. On the other hand, from the identity (4.1), we can write Jf(T) = f(7~")],
which implies that Jf(T) = 0. Since ] is injective, we obtain f(T) = 0. If ¢ € o(T),
then there exists a multiplicative functional ¢¢ on Ar -1 such that ¢¢(T) = & and
¢e(T~') = &', Consequently, we have f(&) = ¢¢(f(T)) = 0. It follows that f
vanishes on o(T). This contradicts (&) # 0. [ |
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