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The Essential Spectrum of the Essentially
Isometric Operator
H. S. Mustafayev

Abstract. Let T be a contraction on a complex, separable, infinite dimensional Hilbert space and let
σ(T) (resp. σe(T)) be its spectrum (resp. essential spectrum). We assume that T is an essentially
isometric operator; that is, IH−T∗T is compact. We show that if D\σ(T) 6= ∅, then for every f from
the disc-algebra

σe
(

f (T)
)

= f
(
σe(T)

)
,

where D is the open unit disc. In addition, if T lies in the class C0· ∪C·0, then

σe
(

f (T)
)

= f
(
σ(T) ∩ Γ

)
,

where Γ is the unit circle. Some related problems are also discussed.

1 Introduction

Let H be a complex, separable, infinite dimensional Hilbert space and let B(H) be
the algebra of all bounded linear operators on H. Throughout, σ(T) denotes the
spectrum and Rλ(T) = (λIH − T)−1 (λ /∈ σ(T)) the resolvent of T ∈ B(H). We use
the notations σl(T) and σr(T) to denote the left and right spectra of T, respectively.
The unit circle in the complex plane will be denoted by Γ, whereas D indicates the
open unit disk. The disc-algebra and the algebra of all bounded analytic functions
on D are denoted by A(D) and H∞ := H∞(D), respectively.

For T ∈ B(H), the uniform operator topology closure of all polynomials taken
in T is denoted by AT . Note that AT is a commutative unital Banach algebra. The
Gelfand space of AT can be identified with σAT (T), the spectrum of T with respect to
the algebra AT . Since σ(T) is a (closed) subset of σAT (T), for every λ ∈ σ(T), there
exists a multiplicative functional φλ on AT such that φλ(T) = λ. By Ŝ we denote the
Gelfand transform of S ∈ AT . Here and in the sequel, instead of Ŝ(φλ)(= φλ(S)),
where λ ∈ σ(T), we use the notation Ŝ(λ). Notice that λ 7→ Ŝ(λ) is a continuous
function on σ(T). It follows from the Shilov’s Theorem [6, Theorem 2.3.1] that if T
is a contraction, then σAT (T) ∩ Γ = σ(T) ∩ Γ, which is the unitary spectrum of T.

If T is a contraction on H, then it follows from the von Neumann inequality that
there exists a contractive algebra-homomorphism h : A(D)→ AT (with dense range)
such that h(1) = IH and h(z) = T. We use the notation f (T) := h( f ), f ∈ A(D).
Thus we have ‖ f (T)‖ ≤ ‖ f ‖∞ for all f ∈ A(D). It is easy to check that h is an
isometry if and only if Γ ⊂ σ(T).
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A contraction T on H is said to be completely nonunitary (c.n.u.) if it has no proper
reducing subspace on which it acts as a unitary operator. If T is a c.n.u. contraction,
then f (T) ( f ∈ H∞) can be defined by the Nagy–Foias functional calculus [9, Chap-
ter III]. We put H∞(T) = { f (T) : f ∈ H∞}. A c.n.u. contraction T on H is called a
C0-contraction if there exists a nonzero function f ∈ H∞ such that f (T) = 0. A con-
traction T on H is said to be of class C0· (resp. C·0) if Tnx → 0 (resp. T∗nx → 0) for
every x ∈ H. We put C00 = C0· ∩C·0. As is known [9, Proposition II.4.2], C0 ⊂ C00.
Recall that T ∈ B(H) is said to be essentially isometric operator if IH−T∗T is compact.

By K(H), we will denote the ideal of compact operators on H. The quotient
algebra B(H)�K(H) is a C∗-algebra called the Calkin algebra. Let π : B(H) →
B(H)�K(H) be the natural map. The essential spectrum σe(T) of T ∈ B(H) is the
spectrum of π(T) in the Calkin algebra. As is well known, σe(T) is a nonempty com-
pact subset of σ(T). Similarly, the left and right essential spectrum of T are defined by
σle(T) := σl (π(T)) and σre(T) := σr (π(T)). Recall that T is a (left, right) Fredholm
operator, if π(T) is (left, right) invertible in the Calkin algebra.

Assume that a contraction T on H is from the class C00. Moreover, assume that

dim(I − TT∗)H = dim(I − T∗T)H = 1.

According to the well-known model theorem of Nagy–Foias [9], T is unitary equiva-
lent to its model operator Mϕ = PϕS |Kϕ

acting on the model space Kϕ := H2	ϕH2,
where ϕ is an inner function, S f = z f is the shift operator on the Hardy space
H2, and Pϕ is the orthogonal projection from H2 onto Kϕ. It follows that for every
f ∈ H∞, the operator f (T) is unitary equivalent to

f (Mϕ) = Pϕ f (S) |Kϕ
.

In [11, p. 162, Corollary 1] it was proved that for every f ∈ A(D),

σe

(
f (T)

)
= f

(
σe(T)

)
= f

(
σ(T) ∩ Γ

)
.

On the other hand, it follows from the Lipschitz-Moeller Theorem [11, III.1] that
σ(T) ∩ D = ϕ−1(0) and therefore, D�σ(T) 6= ∅.

In this paper, we generalize this result in the following way. It is shown in Section
2 that if T is an essentially isometric contraction and D�σ(T) 6= ∅, then for every
f ∈ A(D), we have the essential spectral mapping equality

σe

(
f (T)

)
= f

(
σe(T)

)
.

The asymptotic behavior of the orbits {TnS : n ≥ 0} are considered in Section 3. We
show that if T is an essentially isometric contraction from the class C0·∪C·0, then for
every S ∈ AT ,

lim
n→∞

‖TnS‖ = sup
ξ∈σle(T)

|Ŝ(ξ)| = sup
ξ∈σre(T)∩Γ

|Ŝ(ξ)|.
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As a corollary of this result, we obtain that if T is an essentially isometric contraction
from the class C0· ∪C·0, then

σle(T) = σre(T) ∩ Γ = σ(T) ∩ Γ.

In addition, if D�σ(T) 6= ∅, then for every f ∈ A(D),

σe

(
f (T)

)
= f

(
σ(T) ∩ Γ

)
.

2 The Essential Spectral Mapping Theorem

The main result of this section is the following assertion.

Theorem 2.1 Let T be an essentially isometric contraction such that D�σ(T) 6= ∅.
Then for every f ∈ A(D), we have

σe

(
f (T)

)
= f

(
σe(T)

)
.

For the proof we need some preliminary results.
Let A be a C∗-algebra with the unit element e and let SA be the set of all pure states

on A. We know [10, Corollary V.23.3] that if a ∈ A, then σl(a) consists of all λ ∈ C
for which there exists f ∈ SA such that λ = f (a) and f (a∗a) = f (a∗) f (a). Assume
that a∗a = e. If λ ∈ σl(a), then we have

|λ|2 = f (a) f (a) = f (a∗) f (a) = f (a∗a) = f (e) = 1.

This shows that σl(a) ⊂ Γ. In particular, if a is a unitary element of A, then σl(a) =
σr(a) = σ(a) ⊂ Γ.

Let T be an essentially isometric operator on H. Since π(T)∗π(T) = π(IH), it
follows that σle(T) = σl(π(T)) ⊂ Γ. Moreover, if T is an essentially unitary operator,
that is, if both IH−T∗T and IH−TT∗ are compact, then σle(T) = σre(T) = σe(T) ⊂
Γ. Recall that an operator T ∈ B(H) is said to be essentially normal if TT∗ − T∗T
is compact. Similarly, we can see that if T is an essentially normal operator, then
σle(T) = σre(T) = σe(T).

Let T be an essentially isometric contraction on H and let V be the partial isometry
in its polar decomposition. From the identity

√
1− z = 1 +

∞∑
k=1

akzk

(the series is absolutely convergent on D and ak < 0, k = 1, 2, . . . ) we can write

|T| = (T∗T)
1
2 = IH +

∞∑
k=1

ak(IH − T∗T)k = IH + K.

So, we have
T = V |T| = V (IH + K) = V + V K
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(it can be seen that IH −V ∗V is of finite rank). Recall that if T is invertible, then V is
unitary.

Now let T be an essentially isometric contraction on H such that D�σ(T) 6=
∅. Then T is essentially unitary (see for example, Proposition 3.4(f)) and therefore,
σe(T) ⊂ Γ. Notice also that T is a Fredholm operator. Let λ0 ∈ D�σ(T). We know
[3, Proposition XI.3.4] that ind(T−λIH) is constant on the components of C�σe(T).
It follows that

ind(T − λIH) = ind(T − λ0IH) = 0, ∀λ ∈ D.

In particular, we have indT = 0. Since T is a Fredholm operator, T has the form
T = S + K, where S is invertible and K is compact. Notice also that S is essentially
unitary. As we already noted above, S = U + K,where U is unitary and K is compact.
Thus, we obtain that T is a compact perturbation of a unitary operator.

We call λ ∈ σ(T) a normal eigenvalue of T ∈ B(H) if it is an isolated point of σ(T)
and if the corresponding Riesz projection has finite rank. We denote by σnp(T) the
set of all normal eigenvalues of T. Notice that if N is a normal operator, then σnp(N)
consists of all λ ∈ σ(N) for which λ is an isolated eigenvalue of N having finite
multiplicity. Consequently, we have σe(N) = σ(N)�σnp(N) [3, Proposition XI.2.9].

Let T be an essentially isometric contraction such that D�σ(T) 6= ∅. As we have
seen above, T is a compact perturbation of a unitary operator; T = U + K, where U
is unitary and K is compact. By [4, Theorem I.5.3],

σ(T)�σnp(T) = σ(U )�σnp(U ).

Consequently, we have

σe(T) = σe(U ) = σ(U )�σnp(U ) = σ(T)�σnp(T).

Let C(Γ) be the space of all continuous functions on Γ. Notice that if U is unitary
and f ∈ C(Γ), then f (U ) is a normal operator. Moreover, the spectral mapping
property σ( f (U )) = f (σ(U )) holds.

However, we have the following result.

Lemma 2.2 If U is a unitary operator on H, then for every f ∈ C(Γ),

σe

(
f (U )

)
= f

(
σe(U )

)
.

Proof Let f ∈ C(Γ). If ξ ∈ σe(U ), then there exists a sequence {xn} of unit vectors
in H such that xn → 0 weakly and

lim
n→∞

‖(U − ξIH)xn‖ = 0.

It follows that for an arbitrary trigonometric polynomial Q,

lim
n→∞

‖(Q(U )− Q(ξ)IH)xn‖ = 0.
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This shows that Q(ξ) ∈ σe(Q(U )). On the other hand, there exists a sequence of
trigonometric polynomials {Qn} such that Qn → f uniformly on Γ. Consequently,
Qn(U )→ f (U ) in the operator norm. Since Qn(ξ) ∈ σe(Qn(U )) and Qn(ξ)→ f (ξ),
this clearly implies that f (ξ) ∈ σe( f (U )).

By EN we will denote the spectral measure of an arbitrary normal operator N.
Below, we will use the following fact [1, Proposition 2.8.1]: If N is normal, then all
accumulation points of σ(N) belong to σe(N).

Now let λ ∈ σe( f (U )). Then either λ is an accumulation of σ( f (U )) or λ is an
isolated eigenvalue of f (U ) having infinite multiplicity. Since σ( f (U )) = f (σ(U )),
in the first case, there is a sequence of distinct points {µn} in σ(U ) such that f (µn)→
λ.We may assume that µn → µ for some µ ∈ σ(U ). Then µ ∈ σe(U ) and λ = f (µ).
Now assume that λ is an isolated eigenvalue of σ( f (U )) with infinite multiplicity.
If the set f−1(λ) ∩ σ(U ) is infinite, then there is a sequence of distinct points {µn}
in σ(U ) such that f (µn) = λ. If µn → µ, then µ ∈ σe(U ) and λ = f (µ). Hence,
we may assume that f−1(λ) ∩ σ(U ) is a finite set, say {µ1, . . . , µn}. Assume on the
contrary that µi /∈ σe(U ) (i = 1, . . . , n). Then each µi is an isolated eigenvalue of
σ(U ) of finite multiplicity. Since

E f (U ){λ} = EU{µ1} + · · · + EU{µn},

it follows that λ is an eigenvalue of f (U ) of finite multiplicity. This is a contradiction.

We are now able to prove the main result of this section.

Proof of Theorem 2.1 As we have seen above, T is a compact perturbation of a uni-
tary operator; T = U + K, where U is unitary and K is compact. Take f ∈ A(D).
Then there exists a sequence of polynomials {Pn} such that Pn → f uniformly on D.
Consequently,

Pn(T)− Pn(U )→ f (T)− f (U )

in the operator norm. Since Pn(T) − Pn(U ) (n ∈ N) is compact, it follows that
f (T) − f (U ) is compact. Now, taking into account the preceding lemma, we can
write

σe

(
f (T)

)
= σe

(
f (U )

)
= f

(
σe(U )

)
= f

(
σe(T)

)
.

The proof is complete.

3 Asymptotic Behavior of Essentially Isometric Contractions

Let T be an essentially isometric contraction and S ∈ AT . In this section, we study the
asymptotic behavior of the orbits {TnS : n ≥ 0} in terms of the essential spectrum
of T. By {T} ′, we will denote the commutant of T ∈ B(H).

The main result of this section is the following theorem.

Theorem 3.1 If T is an essentially isometric contraction from the class C0· ∪C·0, then
for every S ∈ AT ,

lim
n→∞

‖TnS‖ = sup
ξ∈σle(T)

|Ŝ(ξ)| = sup
ξ∈σre(T)∩Γ

|Ŝ(ξ)|.
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For the proof we need some results.

Proposition 3.2 The following assertions hold:

(a) If T is a c.n.u. contraction, then for every K ∈ {T} ′ ∩K(H), limn→∞ ‖TnK‖ = 0.
(b) If T is in the class C0·, then for every K ∈ K(H), limn→∞ ‖TnK‖ = 0.
(c) If T is in the class C·0, then for every K ∈ K(H), limn→∞ ‖KTn‖ = 0.

Proof (a) As it is known [7, Lemma 3.3], if T is a c.n.u. contraction, then Tn → 0 in
the weak operator topology. If K ∈ {T} ′ ∩ K(H), then for every x ∈ H, we have

lim
n→∞

‖TnKx‖ = lim
n→∞

‖KTnx‖ = 0.

Since the set {Kx : ‖x‖ ≤ 1} is relatively compact, for a given ε > 0, it has a finite
ε-mesh, say {Kx1, . . . ,Kxk}, where ‖xi‖ ≤ 1 (i = 1, . . . , k). So, we have

‖TnK‖ ≤ max
i
{‖TnKxi‖} + ε (n ∈ N).

It follows that limn→∞ ‖TnK‖ = 0.
The proofs of (b) and (c) are similar.

It easily follows from Proposition 3.2(a) that if T is a c.n.u. contraction and if
there exists a compact operator in {T} ′ with zero kernel or dense range, then T is in
the class C0· ∪ C·0. Notice also that if H∞(T) ∩ K(H) 6= {0}, then T is in the class
C00. This fact can be derived from the dilation arguments of Nagy–Foias [9, p. 140].

The proof of the following proposition, being very easy, is omitted.

Proposition 3.3

(a) If V is a nonunitary isometry on H, then σl(V ) = Γ; σr(V ) = σ(V ) = D.
(b) If V is an arbitrary isometry on H, then σl(V ) = σr(V ) ∩ Γ = σ(V ) ∩ Γ.

Let H0 be the linear space of all weakly null sequences {xn} in H. Let us define a
semi-inner product on H0 by〈

{xn}, {yn}
〉

= l.i.m.〈xn, yn〉,

where l.i.m. is a Banach limit. Let

E =
{
{xn} ∈ H0 : l.i.m.‖xn‖2 = 0

}
.

Then H0�E becomes a pre-Hilbert space with respect to the inner product defined
by 〈

{xn} + E, {yn} + E
〉

= l.i.m.〈xn, yn〉.

Let H̃ be the completion of H0�E with respect to the induced norm. Then H̃ is a
Hilbert space.

For a given T ∈ B(H), define the operator T̃ on H0�E, by

T̃ : {xn} + E 7→ {Txn} + E.
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Then we have

‖T̃({xn} + E)‖ =
(

l.i.m.‖Txn‖2
) 1

2 ≤ ‖T‖
(

l.i.m.‖xn‖2
) 1

2 = ‖T‖‖{xn} + E‖.

Since H0�E is dense in H̃, the operator T̃ can be extended to the whole H̃ which we
also denote by T̃. Clearly, ‖T̃‖ ≤ ‖T‖.

The pair (H̃, T̃) (sometimes the operator T̃) will be called the limit operator asso-
ciated with T.

Proposition 3.4 Let T ∈ B(H) and let (H̃, T̃) be the limit operator associated with
T. Then the following assertions hold:

(a) The mapping T 7→ T̃ is a contractive algebra-∗-homomorphism.
(b) T is compact if and only if T̃ = 0.
(c) σl(T̃) ⊂ σle(T), σr(T̃) ⊂ σre(T), and σ(T̃) ⊂ σe(T).
(d) If T is a contraction, then f̃ (T) = f (T̃), ∀ f ∈ A(D).
(e) T is an essentially isometric (resp. essentially unitary, essentially normal) operator

if and only if T̃ is an isometry (resp. unitary, normal).
(f) If T is an essentially isometric operator and if σle(T) 6= Γ (or σre(T) 6= D), then T

is essentially unitary.
(g) For every T ∈ B(H), ‖π(T)‖ ≤ ‖T̃‖ ≤ ‖T‖.

Proof The proofs of (a), (d), and (e) are straightforward.

(b) It is obvious that if T is compact, then T̃ = 0. If T̃ = 0, then for every
weakly null sequence {xn} in H, we have l.i.m.‖Txn‖2 = 0. Consequently, there is a
subsequence {xnk} of {xn} such that

lim
n→∞
‖Txn‖2 = lim

k→∞
‖Txnk‖2 = l.i.m.‖Txnk‖2 = 0.

It follows that limn→∞ ‖Txn‖ = 0, and therefore T is compact.
(c) If λ /∈ σle(T), then λIH − T is a left Fredholm operator. So, there exists

S ∈ B(H) such that S(λIH − T) − IH ∈ K(H). It follows from (a) and (b) that
S̃(λIH̃− T̃) = IH̃ . This shows that λ /∈ σl(T̃). The proof of the second and third parts
of (c) is similar.

(f) It follows from (c) that σl(T̃) ⊂ σle(T) and therefore σl(T̃) 6= Γ. By Proposi-
tion 3.3(a), T̃ is unitary and so T̃T̃∗ = IH̃ . This means that IH − TT∗ is compact.

(g) It suffices to show that ‖π(T)‖ ≤ ‖T̃‖. We know [2, p. 94] that

‖π(T)‖ = sup
{

lim
n→∞
‖Txn‖ : ‖xn‖ = 1 (n ∈ N), xn → 0 weakly

}
.

Therefore, for a given ε > 0, there exists a sequence {xn} in H such that ‖xn‖ = 1
(n ∈ N), xn → 0 weakly, and

lim
n→∞
‖Txn‖ ≥ ‖π(T)‖ − ε.
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Then there exists a subsequence {xnk} of {xn} such that

lim
k→∞

‖Txnk‖ = lim
n→∞
‖Txn‖ ≥ ‖π(T)‖ − ε.

On the other hand, we have

‖T̃‖ = sup
{(

l.i.m.‖Txn‖2
) 1

2 : l.i.m.‖xn‖2 = 1, xn → 0 weakly
}
.

As l.i.m.‖xnk‖2 = 1 and xnk → 0 weakly, from the preceding identity we can write

‖T̃‖ ≥ lim
k→∞

‖Txnk‖ ≥ ‖π(T)‖ − ε.

Since ε was arbitrary, we obtain the required inequality.

Let T be an essentially isometric contraction such that D�σ(T) 6= ∅. In [5,
Theorem 2.1] it was proved that if f ∈ A(D) vanishes on σ(T) ∩ Γ, then f (T) is
compact. Notice that this result is an immediate consequence of Proposition 3.4.

Now we provide the proof of Theorem 3.1.

Proof of Theorem 3.1 Let S ∈ AT . For every ξ ∈ σle(T), there exists a multiplicative
functional φξ on AT such that φξ(T) = ξ. Then we have

|Ŝ(ξ)| = |ξnŜ(ξ)| = |φξ(TnS)| ≤ ‖TnS‖ (n ∈ N).

It follows that
lim

n→∞
‖TnS‖ ≥ sup

ξ∈σle(T)
|Ŝ(ξ)|.

To prove the opposite inequality, let ε > 0 be given. Then there exists f ∈ A(D)
such that ‖S− f (T)‖ ≤ ε. This implies

‖TnS‖ ≤ ‖Tn f (T)‖ + ε (n ∈ N)(3.1)

and

sup
ξ∈σle(T)

| f (ξ)| ≤ sup
ξ∈σle(T)

|Ŝ(ξ)| + ε.(3.2)

Let T̃ be the limit operator associated with T. It follows from Proposition 3.4(e),
(c) and Proposition 3.3(b) that T̃ is an isometry, and σ(T̃) ∩ Γ ⊂ σle(T). If T̃ is
nonunitary, then we have σ(T̃) ∩ Γ = Γ, and so Γ = σle(T) = σ(T) ∩ Γ. As we
already mentioned above, in that case the mapping f 7→ f (T) from A(D) into AT is
an isometry and therefore, there is nothing to prove. Consequently, we may assume
that T̃ is unitary. We also have σ(T̃) ⊂ σle(T). Now, taking into account Proposition
3.4(g) and (d), we can write

‖π( f (T))‖ ≤ ‖ f̃ (T)‖ = ‖ f (T̃)‖ = sup
ξ∈σ(T̃)

| f (ξ)| ≤ sup
ξ∈σle(T)

| f (ξ)|.
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Therefore, there exists Kε ∈ K(H) such that

‖ f (T) + Kε‖ ≤ sup
ξ∈σle(T)

| f (ξ)| + ε.

It follows that

‖Tn f (T) + TnKε‖ ≤ sup
ξ∈σle(T)

| f (ξ)| + ε

and

‖Tn f (T) + KεT
n‖ ≤ sup

ξ∈σle(T)
| f (ξ)| + ε (n ∈ N).

Since T ∈ C0· ∪C·0, by Proposition 3.2(b) and (c), either

lim
n→∞

‖TnKε‖ = 0 or lim
n→∞

‖KεT
n‖ = 0.

Letting n→∞ in the preceding inequalities, we get

(3.3) lim
n→∞

‖Tn f (T)‖ ≤ sup
ξ∈σle(T)

| f (ξ)| + ε.

Now, taking into account (3.1), (3.3), and (3.2), we can write

lim
n→∞

‖TnS‖ ≤ lim
n→∞

‖Tn f (T)‖ + ε ≤ sup
ξ∈σle(T)

| f (ξ)| + 2ε

≤ sup
ξ∈σle(T)

|Ŝ(ξ)| + 3ε.

Since ε was arbitrary, we obtain that

lim
n→∞

‖TnS‖ ≤ sup
ξ∈σle(T)

|Ŝ(ξ)|.

Replacing σle(T) by σre(T) ∩ Γ in the above proof, we can see that

lim
n→∞

‖TnS‖ = sup
ξ∈σre(T)∩Γ

|Ŝ(ξ)|.

We have the following result as a corollary.

Corollary 3.5 If T is an essentially isometric contraction of class C0· ∪C·0, then

σle(T) = σre(T) ∩ Γ = σ(T) ∩ Γ.
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Proof In [8], it was proved that if T is an arbitrary contraction on a Hilbert space,
then for every S ∈ AT ,

lim
n→∞

‖TnS‖ = sup
ξ∈σ(T)∩Γ

|Ŝ(ξ)|.

From this and from Theorem 3.1 we can write

sup
ξ∈σle(T)

|Ŝ(ξ)| = sup
ξ∈σre(T)∩Γ

|Ŝ(ξ)| = sup
ξ∈σ(T)∩Γ

|Ŝ(ξ)| (S ∈ AT).

It remains to show that if Q1 and Q2 are two closed subsets of Γ and if for every
f ∈ A(D),

sup
ξ∈Q1

| f (ξ)| = sup
ξ∈Q2

| f (ξ)|,

then Q1 = Q2. For this, it is enough to show that Q1 ⊂ Q2. Assume that there exists
ξ0 ∈ Q1, but ξ0 /∈ Q2. If we take the function f (z) = 1

2 (1 + ξ0z), then it is easy to see
that supξ∈Q1

| f (ξ)| = 1, but supξ∈Q2
| f (ξ)| < 1.

The next result is an immediate consequence of Theorem 2.1 and Corollary 3.5.

Corollary 3.6 Let T be an essentially isometric contraction such that D�σ(T) 6= ∅.
If T is in the class C0· ∪C·0, then for every f ∈ A(D),

σe

(
f (T)

)
= f

(
σ(T) ∩ Γ

)
.

4 C1-contractions

Let T be an essentially normal operator. In this section, we investigate the prob-
lem when T turns out to be an essentially unitary operator in terms of some metric
conditions about T. For C1-contraction T, we provide some sufficient conditions to
have the equality σe(T) = σ(T). Recall that a contraction T on H is said to be a
C1-contraction if infn‖Tnx‖ > 0 for every x ∈ H \ {0}.

The following result is of independent interest.

Proposition 4.1 Let T be a C1-contraction on H such that σ(T) 6= D. If T is normal,
then it is unitary.

Proof As in the proof of [9, Proposition II.5.3],

lim
n→∞
〈Tnx,Tn y〉 (x, y ∈ H)

(by the polarization identity, this limit exists) defines a sesquilinear form on H.
Therefore, there exists Y ∈ B(H) such that

lim
n→∞
〈Tnx,Tn y〉 = 〈Y x, y〉.

It follows that
〈Y x, x〉 ≥ inf

n
‖Tnx‖2 > 0

(
x ∈ H \ {0}

)
.
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If we put X = Y
1
2 , then X is a positive operator and ‖Xx‖ = ‖XTx‖. Define the

operator V on XH by V Xx = XTx. Since ‖V Xx‖ = ‖Xx‖ and X has dense range, V
can be extended to the whole H, which we also denote by V. Then V is an isometry
and V X = XT, where

‖Xx‖ = ( lim
n→∞

‖Tnx‖2)
1
2 .

Let us show that σ(V ) ⊂ σ(T). Assume that λ /∈ σ(T). Define the operator Wλ

on XH, by WλXx = XRλ(T)x (x ∈ H). Then we have

‖WλXx‖ = ‖XRλ(T)x‖ =
(

lim
n→∞

‖TnRλ(T)x‖2
) 1

2 =
(

lim
n→∞

‖Rλ(T)Tnx‖2
) 1

2

≤ ‖Rλ(T)‖
(

lim
n→∞

‖Tnx‖2
) 1

2 = ‖Rλ(T)‖‖Xx‖.

Since X has dense range, it follows that Wλ can be extended to the whole H, which
we also denote by Wλ. Thus we have WλX = XRλ(T). Consequently, we can write

(λIH −V )WλX = (λIH −V )XRλ(T) = X(λIH − T)Rλ(T) = X,

which implies (λIH − V )Wλ = IH . Similarly, one can see that Wλ(λIH − V ) = IH .
Thus, λ /∈ σ(V ).

Since σ(T) 6= D, we have σ(V ) 6= D, and therefore V is unitary. Now let us
show that T = V. By the Fuglede–Putnam Theorem, V ∗X = XT∗, which implies
XV = TX. Hence, we have

V X2 = (V X)X = (XT)X = X(TX) = X(XV ) = X2V.

Consequently, for every polynomial P,we can write V P(X2) = P(X2)V. Further, there
exists a sequence of polynomials {Pn} such that Pn(t)→

√
t uniformly on

[
0, ‖Y‖

]
.

As n→∞, from the identities

V Pn(X2) = Pn(X2)V,

we get V X = XV. Thus, we have XT = XV. Since X has zero kernel, finally we obtain
T = V.

Corollary 4.2 Let T be an essentially normal contraction on H such that σe(T) 6= D.
If

inf
n

inf
{xk}

lim
k→∞

{
‖Tnxk‖ : ‖xk‖ = 1, xk → 0 weakly

}
> 0,

then T is essentially unitary.

Proof Let T̃ be the limit operator associated with T. By Proposition 3.4(e) and (c),
T̃ is normal and σ(T̃) ⊂ σe(T). So, we have σ(T̃) 6= D. On the other hand, the
above condition shows that T̃ is a C1-contraction. Now it follows from the preceding
proposition that T̃ is unitary. This means that T is essentially unitary.

We conclude the paper with the following result.
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Theorem 4.3 Let T be a c.n.u. C1-contraction on H such that T is invertible and

∞∑
n=1

log ‖T−n‖
1 + n2

<∞.

Then σ(T) = σe(T).

For the proof we need some preliminary facts.
Let ω = {ωn}n∈Z be a sequence of real numbers with ωn ≥ 1 and ωn+m ≤ ωnωm,

for all n,m ∈ Z. We say then that ω is a weight on Z. The Beurling algebra Aω(Γ) is
the set of all f ∈ C(Γ) for which

‖ f ‖ω =
∑
n∈Z

| f̂ (n)|ωn <∞,

where f̂ (n) is the n-th Fourier coefficient of f . As is well known, Aω(Γ) is a commu-
tative Banach algebra with respect to the pointwise multiplication. If

∑
n∈Z

logωn

1 + n2
<∞,

then ω is called a nonquasianalytic weight. If ω is a nonquasianalytic weight, then
the structure space of Aω(Γ) can be identified with Γ.Moreover, the algebra Aω(Γ) is
(Shilov) regular [2, Theorem XII.5.1].

Let T be an invertible operator on H. We denote by AT,T−1 , the closure in the
uniform operator topology of all trigonometric polynomials in T and T−1.We call T
an ω-nonquasianalytic operatorif there exists a nonquasianalytic weight ω on Z such
that

‖Tn‖ = O(ωn) (n ∈ Z).

If T is an ω-nonquasianalytic operator, then for every f ∈ Aω(Γ), we can define
f (T) ∈ B(H) by

f (T) =
∑
n∈Z

f̂ (n)Tn.

Then the mapping f 7→ f (T) of Aω(Γ) into AT,T−1 is a continuous algebra-homo-
morphism with its dense range. The standard Banach algebra techniques involves
that the structure space of AT,T−1 can be identified with the hull of the closed ideal

IT :=
{

f ∈ Aω(Γ) : f (T) = 0
}
.

It follows that σ(T) ⊂ Γ. Moreover, the spectral mapping property σ( f (T)) =
f (σ(T)) holds.

Proof of Theorem 3.1 Let (H̃, T̃) be the limit operator associated with T. In view of
Proposition 3.4(c), σ(T̃) ⊂ σe(T) ⊂ σ(T). Hence, it suffices to show that σ(T) ⊂
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σ(T̃). Since T is a c.n.u. contraction, Tn → 0 in the weak operator topology. Conse-
quently, we can define the linear operator J : H → H̃ by

Jx = {Tnx} + E (x ∈ H).

(recall that E consists of all weakly null sequences {xn} in H such that l.i.m.‖xn‖2 =
0), where

‖ Jx‖ =
(

lim
n→∞

‖Tnx‖2
) 1

2 .

Moreover,
JTx = {Tn+1x} + E = T̃

(
{Tnx} + E

)
= T̃ Jx.

So, we have

(4.1) JT = T̃ J.

Notice that as T is a C1-contraction, J is injective.
Let us define the weight ω = (ωn)n∈Z on Z by

ωn =

{
1, n ≥ 0;

‖Tn‖, n < 0.

Then T is an ω-nonquasianalytic operator. As the mapping T 7→ T̃ is a contractive
algebra-homomorphism, T̃ is also an ω-nonquasianalytic operator. Now assume on
the contrary that there exists ξ0 ∈ σ(T), but ξ0 /∈ σ(T̃). Let O be an open set such
that σ(T̃) ⊂ O and ξ0 /∈ O. In view of the regularity of the algebra Aω(Γ), there
exists f ∈ Aω(Γ) such that f vanishes on O, but f (ξ0) 6= 0. Let g ∈ Aω(Γ) be such
that g(ξ) = 1 for all ξ ∈ σ(T̃) and g(ξ) = 0 outside O. Since f g = 0, we have
f (T̃)g(T̃) = 0. By the spectral mapping property, g(T̃) is invertible and therefore
f (T̃) = 0. On the other hand, from the identity (4.1), we can write J f (T) = f (T̃) J,
which implies that J f (T) = 0. Since J is injective, we obtain f (T) = 0. If ξ ∈ σ(T),
then there exists a multiplicative functional φξ on AT,T−1 such that φξ(T) = ξ and
φξ(T−1) = ξ−1. Consequently, we have f (ξ) = φξ( f (T)) = 0. It follows that f
vanishes on σ(T). This contradicts f (ξ0) 6= 0.
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