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Abstract

Earlier work of the author exploiting the role of partition lattices and their Mobius functions in the
theory of cumulants, k-statistics and their generalisations is extended to multiply-indexed arrays of
random variables. The natural generalisations of cumulants and k-statistics to this context are shown
to include components of variance and the associated linear combinations of mean-squares which are
used to estimate them. Expressions for the generalised cumulants of arrays built up as sums of
independent arrays of effects as in anova models are derived in terms of the generalized cumulants of
the effects. The special case of degree two, covering the unbiased estimation of components of
variance, is discussed in some detail.
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1. Introduction

In two earlier papers with the same general title we have attempted to show that
the recognition and exploitation of the partition lattices underlying the definitions
of cumulants, k-statistics and their generalisations leads to more efficient and
more general proofs of the main results. The aim of the present paper is to extend
this work to multi-indexed arrays. We will find that most of the formulae of the
earlier papers remain valid in the more general context, and the material we
present forms the foundation for later papers in this series which deal with the
asymptotics of variance component estimation and the computation of variances
and covariances of variance component estimates.
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The extension of Fisher’s k-statistics and Tukey’s polykays to samples from
finite doubly-indexed populations was first given by Hooke (1956a, b) in two
papers which developed the theory of the relevant symmetric functions and
applied it to the estimation of variance components. The generalised k-statistics
Hooke defined were christened bipolykays. At around the same time there was a
vigorous development of the theory of randomisation analyses of experimental
designs using derived linear models and finite population framework. The initial
work in this area is found in Kempthorne (1952), and it continued in a series of
papers and Iowa theses by Wilk (1955), Wilk and Kempthorne (1956, 1957),
Zyskind (1958, 1963), Throckmorton (1961), White (1963, 1975), Dayhoff (1964a,
1964b, 1966), Carney (1967, 1968, 1970) and Kinney (1971, 1976). There were
also close links between this theory and that of Cornfield and Tukey (1956) on
anova models, and important unpublished work by Fairfield-Smith (1955).

As their primary interest was in the interpretation and validity of anova models
and analyses, the early Iowa work concentrated upon first and second-degree
expressions, whilst progressively generalising the underlying index set until the
balanced complete populations or response structures were elucidated by Zyskind
and Throckmorton. In this context certain key expressions emerged which were
termed cap-sigmas by the lowa school and canonical variance components by
Fairfield-Smith; and Zyskind (1958) conjectured that these expressions should
coincide with suitably generalised polykays of degree 2. Dayhoff (1964a, b)
provided the generalisation and proved Zyskind’s conjecture, whilst it was left to
Carney (1967) to extend Hooke’s work to arbitrary balanced complete response
structures with a view to calculating the variances and covariances of estimated
components of variance.

All of the work summarised so far took place in a finite population framework,
with all random variables being obtained as suitably defined random samples.
Furthermore, a number of the key results of Dayhoff (1964a, b, 1966) and Carney
(1967, 1968) made use of an artifice known as “random cross labelling” (see
White (1966, Section 5) for the detailed definition), whilst the practice well known
to workers with cumulants of keeping all random variables distinct for maximum
generality and simplicity was rarely adopted. As a consequence, whilst all the
ingredients necessary for a complete and general presentation of the theory of
generalised cumulants and k-statistics over arbitrary balanced complete response
structures were present in the Iowa work, they have yet to be put together and
studied in a manner wholly consistent with and generalising the single-index
theory. This'is the task of the present paper, and we turn now to a description of
its contents.

We consider multiply-indexed arrays of indeterminates and random variables
with an arbitrary system of nesting on the indices where we mean, loosely
speaking, that an index i is nested within an index i, (equivalently, i, nests i ) if i,
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is only meaningful within the levels of i ,. The basic index setis I =[I{I,:p € P}
where I, = {1,2,...,np}, n, finite or infinite, p € P, with elements i = (i,:p€e
P), The relevant structure on the index set can be elucidated via a distributive
lattice of commuting uniform equivalence relations (Speed and Bailey (1982)) or
the generalised wreath product of the symmetric groups on the components I,
p € P, relative to the partially ordered set (P, <), where we write g < p (p = ¢q)
if i, nests i ; see Bailey et al. (1983) for this construction. When one or more of
the sets I, is infinite, we restrict ourselves to the permutations of finite support,
i.e. the finitary permutations, and form the restricted generalised wreath product,
which simply means that whenever a set of maps into a group is defined by the
construction, we consider only those maps which send all but finitely many points
of their domain to the identity. It is through the action of this (restricted)
generalised wreath product group G = GW(I) of (restricted) symmetric groups
that we recognise our context as coinciding with the Iowa school’s balanced
complete population structures.

Our first set of results in Section 2 give the definition of certain generalised
symmetric functions, adapting the approach Doubilet (1972) used with the
classical symmetric functions to our more general situation where the inde-
terminates are labelled by I and our symmetry is defined by G = GW(I). In that
section generalised k-statistics (more precisely, their coefficients) are defined, and
the interrelations between them and the natural analogues of (augmented) mono-
mial and power sum symmetric functions are derived. The formulae of Section 2
from paper II in this series continue to hold. This is also true for the basic facts
concerning products of our generalised k-statistics, which are given in Section 3.

The next step is to give general definitions of generalised moments and
cumulants which reduce to the appropriate finite and infinite population parame-
ters. This is done in Section 4 below and the associated results concerning the
unbiased estimates of these parameters are reviewed. All of this is exactly as with
singly-indexed arrays, and the final two sections consider some results unique to
our multi-indexed context, these being ones where the associated anova-type
linear models play a role. In Section 5 we obtain expressions for the generalised
cumulants of arrays which can be represented as linear models built up from
independent components, whilst Section 6 discusses the second order theory and
presents a more general version of Dayhoff’s (1964b) equivalence theorem. We
close with some remarks on the contents of later papers in this series.

2. More generalised k-statistics

We must preface our discussion of more generalised k-statistics with some
results generalising the corresponding ones in Section 2 of (II). Any map A:
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m — [1I{n,:p € P} gives rise to further maps 4,: m — n,, p € P, by composi-
tion with the coordinate projections, and we can thus define a map p — ¢"(p) by
the formula ¢"( p) = A g>pker h . Clearly ¢" € Hom(P, #(m)), the lattice of all
order-preserving maps from P into #(m). Now let us consider # € Hom( P, #(m))
and write

0,={hel™¢"=n}.

The following lemma is proved in Praeger et al. (1985).

LemMaA 2.1. (i) {@,: 7 € Hom(P, #(m))} is a partition of [[{n ,:p € P}™
(i) 0, is GW(D-invariant, # € Hom( P, #(m)).
(iii) GW(I) acts transitively on 0, 1 € Hom(P, 2 (m)).

It follows from this lemma that our symmetric functions will be labelled by
elements of the lattice Hom(P, #(m)) for a given order m. This result is
essentially in Carney (1968, Section 7) where the notion of admissible |P}-fold
ordered partition of weight m introduced there in Definition 7.2 corresponds to
an element of Hom(P, #(m)). We now need to state certain results concerning
the Mobius function of this lattice and the analogues of the decreasing powers
(n),, o6 € #(m), which played such a crucial role in our earlier discussion of
generalised k-statistics. As before these numbers give the cardinalities of the
orbits, i.e. |0, = (n),.

The following lemma is proved in Speed (1984) and may be used to obtain the
Mbbius function of Hom( P, #(m)).

LEMMA 2.2. Let P and Q be arbitrary posets with Mobius and zeta functions p p,
Ro, $p and §, respectively. Then the Mobius function p of Hom(P, Q) is given by

@) w(e9) = T1 {ke(e(p) 4() TT to(¥(p). ()}

pEP P>p

The roles of the normal and descending powers n° and (n), corresponding to
o € P(m) are taken here by the function n° and (n),, 0 € Hom(P, #(m)), where

. - b
n’i= n n;(”) = 1_[ np(c'(p)),
PEP peP

and

(n)o = l_I (np)(U(P)’/\(U(q)iq>P})
pEP

and we are using the notation (k) , ,, = L,u(p, 0)§(0, 1)k p, 7 € P(m), k € N.
The following result is essentially in Carney (1967, V B Section 2), although a
proof in our current framework can be found in Speed (1984).
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LEMMA 2.3. In the lattice Hom( P, (m)) we have

n? = %f(w, ¥)(n)y;  (n)e=Xn(e,¥)n'.
¥

Now that we have organised the combinatorial preliminaries, it is a quite
straightforward task to generalise the notions introduced in (II) to the present
situation.

The coefficient tensors which are our more generalised k-statistics (which
include poly-bi-kays and bi-polykays etc.) are defined using the basis {8':i € I}
where §' = ® 8’», iel &% denotmg the n, X 1 basis vector of the kind
introduced in (II) For h: m — 1 with ¢* € Hom(P #(m)) we define & just as
before, viz

h=6"0g ... @ §him,

and, again as before, we define 4,, R, and F, for = € Hom(P, #(m)) by
A, =T h, abbreviated (n),(m); and R, =X _h, abbreviated [7]; the
generalised k-statistic in this context being F, = ¥ u(s, 7)(n),'4,, abbreviated

(7).

PROPOSITION 2.1. The transition matrices M(A, R), M(F, A), M(F, R) and
their inverses are given by exactly the same formulae as in Proposition 2.1 of (I1I)
interpreted in Hom( P, (m)).

Now let us suppose that x = (x;(/}:/ € m, i € I) is an array of indeterminates.
As before we can view x as an array (x;:{ € I) of m-tuple indeterminates labelled
by I, or as an array (x(1),...,x(m)) of [1,cpn y-tuple indeterminates (indexed
lexicographically) labelled by m. With this second view in mind we define
x=x(1)® --- ® x(m) and the associated generalised symmetric functions a, =
[4,]x]), s, =[R,|x], and k, = [F,|x]. By their construction each of these poly-
nomials is seen to be invariant under GW(I). At times we will write k(7), a(w),
k.  a(m)etc. wheres = |P|

A remark on the relation between our notation and that of earlier workers
seems to be in order although we refer to the papers concerned for general
definition of their notation. For the singly nested structure P = | 3 and m = 2 we
have three sets of coefficients labelled by pairs #(1), #(2) from #£(2) with
7(1) > 7(2), and some of these are tabulated below with their analogues from
Carney (1968). It would take too much space to give the corresponding notations
from Dayhoff (1964a, b) and Hooke (1956a, b) but these are not difficult to relate
to those given below. In Table 1, (1), #(2) may be 12 or 1|2 whilst !, a® may be
11 or 10, subject to the constraints arising from the nesting.

https://doi.org/10.1017/51446788700027154 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027154

166 T. P. Speed [6]

Present paper * Camey'

(i) augmented monomial symmetric: symmetric sum: |a* /a
coeffi‘cients: A7)
function: a, ) .,

2
|

(i1) scaled version of (1): symmetric mean: {a*/a*)
coefficients:
1

1),7(2)) =
(m(1),7(2)) (71) 2y(72) (r@.my

function:k, (2

A'ﬂ(l)ﬂr(2)

a
(n1) ny(n2) (r @1y m(1),7(2)

(ii1) power sum symmetric: unrestricted sum: [o' /a*]
coefficients: [7(1), 7(2)] = R, 1.2
function: s, .2

@iv) k-statistics: polykay: (o' /a?)
coefficients: (7(1), 7(2)) = F, ) -2
function: k4, .2
*Here #(1) and 7 (2) are partitions of 2 = {1,2} with #(1) > =(2). fo' and a® are
ordered partitions of weight 2 (see Carney (1968) for details) subject to &' > aZ.
TABLE 1

ExaMPLE 2.1. P = | }, m = 2. The lattice Hom( P, 2) has three elements 1 — 12,
2-12;1 12,2 » 1|2and 1 - 1|2, 2 — 2|2 which we write (12,12), (12,1{2)
and (1|2, 1]2) respectively; see Figure 1.

(12 ,12)
1 .
Hom (I L P(2)) (12,112)
(112, 112)
Figure 1
These correspond to the pairs (ij, if), (i, ') with j* # j, and (i, ij") with i’ # i
(but not necessarily j* # j). We will use (x,;, y;;) in this case instead of
(x,-liz(l), xiliz(z))'
With this notation we readily find that
1 . .
= —_— iJ i
(12,12) o Yéi® 8y,

1

”1"2("2 -~ 1)

(12,112) = Y8/ e s
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summed over all i, j and j’ # j, whilst

B S
ni(ny — 1)n3
is summed over all J, i’ # i, j and j’. The corresponding expressions [12,12],
[12,1|2] and [1]|2,1|2] are simply obtained by omitting the inequality constraints
on the indices. Thus we can use the Mobius function of the lattice in Figure 1 to
derive

(112,1)2) = Y 87 ® 87

(12,12) =(12,12) — {12,1)2)

o l12,12] + nlnz(jz gy (02.112] - [12,12])
_ m{[lz,lz] - niz[lz,uz]}.

Substituting an array {(x;;, y;,):(i, j)) € n; X n,} of indeterminates and sim-
plifying, we obtain

k(12,12) = [ (12,12)|x @ y]

- l(nl )<[ [12,12]|x ® y] —;1;[ [12,112]}x ®Y]}
i FE nEE R

- mz———l) Z ?(x,.j = x,)(¥; = »)

where x; = n3'L x,; and similarly for y,. If we put x =y we get the familiar
within groups mean square in a singly-nested anova decomposition, a connection
which will be fully explained later.

Similarly it would be found that

(12,112) =(12,1}2) — (1]2,1]2)

m{[lz,uz] —[12,12]}

_m_l_T{[uz 112} - [12,112])
1

_ 1 1 1 }
= —[12,12] + + 12,142
nn,(n, — 1)[ ] nan{nZ -1 ny(n,—1) [ 2]

———l(nz .y [1]2,1)2]
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whence
k(12,1)2) = Tnz—ﬁzz’%
o1 i S5 T
"t A DT T T

Although it is not obvious, and there is no general theory covering such simplifi-
cations, it is not hard to show that this does simplify to

1 n
k(12,112) = {2 — )

D DI )0, )

1(”

When x = y this is seen to be the usual linear combination of the between and
within mean squares from the anova which unbiasedly estimates the between
groups variance component under the usual additive linear model.
Now let us consider m = 3. In this case the lattice Hom(P, #(3)) has 12
elements (7(1), #(2)) with #(1), 7 (2) € £(3) satisfying #(1) > 7(2); see Figure 2.
Referring to Figure 2 to calculate the values of the Mobius function, we expand
(123, 123) as follows:

(123,123) =(123,123) — (123,1]23) — (123,2|13)
—{123,3]12) + 2{123,12|3|)

1
[123,123] —

nn, n1n2( 2

! {[123,1)23] —[123,123]}

— 2 similar terms
1

”1”2(”2 - 1)(”2 -

2) {[123,142)3] —[123,1]23] —[123,2]13]

—[123,3]12] + 2[123,123]}

n,

" m(n, - )(n, - 2)

{[123,123] - L[123, 1/23] — —1—[123,2'13]
n, n,

1 2
- —[123,3)12} + —2[123,1|2,3]}.
n, ns
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(123,123)

(3112.3/12)

Hom(I;; P3)) 111213, 1213)

Figure 2

Evaluating this for an array ((x,;, y,;, z;;): (i, j) € ny X n,) and simplifying we
find that the symmetric function (which, following Tukey we might term the
within class (cross) skewmulance) has the form

n no Ny
k(123,123) = : { Z Z (xi'_xi.)(yi‘_yi )(zi'_zi.)}'
n(n, — 1)(n, — 2) Pl / Y
Once more we remark that no general theory of such simplications exists
although the expression clearly has an intuitively reasonable form and will relate
in a natural way to a linear model for the array of which the details will be
explained in Section 5 below.

3. Products of more generalised k-statistics

One of the great benefits of formulating our results in terms of the lattices
P(m) and Hom(P, #(m)) is the fact that most proofs generalise immediately.
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Just as with Proposition 2.1 above we have an analogue of Proposition 3.1 of (II).
The notation is that of Section 3 of (II) and we simply define restrictions
coordinatewise, e.g. for p € Hom( P, #(m)) we define p " m; tobe p - p(p) N
m;,p < P.

PROPOSITION 3.1. For 6, € Hom(P, #(m,)),...,0, € Hom(P, #(m,)) we have

(6)® -~ ®(s,) = Xe(o; 0y,...,0,)(0)

where the sum is over all 6 € Hom( P, #(m)) and

r

(0501 00) = ¥ (n),[1L M%)

p=0 i=1 (n)an:

PrROOF. This can be proved exactly as Proposition 3.1 of (II).

Another advantage of working with the full lattice Hom( P, (m)) rather than
the sub-structure which arises when one or more of the m indeterminates is
identified is that we get the following proposition. It was almost but not quite
evident in the work of Hooke (1956a,b) who studied the case P =13, but only
ever used a single array of indeterminates.

PropPOSITION 3.2. (Crossing Rule). If P is a set of pairwise incomparable
elements, then for any ¢, € Hom(P, #(m,)),...,0, € Hom(P, #(m,)), and 6 €
Hom( P, #(m)) we have

c(o;0,,...,0,) = pn c(o(p); 0,(p),...,0.(p)).

€P

ProOF. Under the hypotheses of the proposition, Hom( P, #(m)) = 2(m)'"!
and its Mobius function is just a product of Mobius functions of #(m). Thus
(n), =I1,ep(n,)q,) and the result follows.

ExampPLE 3.1. Suppose that we wish to compute (12,12) ® (34,3|4) in
Hom(;s, #(4)). By the preceding proposition the following formalism is justified;
see Section 3 of (II) for the single-index results used.

(12,12) ®(34,3]4) = ((12) ® (34), (12) ®(3]4))

= (.%(1234) +(12]34) + {(13/24) + (14]23)},

n, -1
nl{(mm) +(12413)} + ---

1 1
= 1 (1234,123]4) + ——(1234,124]3) + — (12|34, 123|4) + etc.
nn, nn, n,
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It would be very good indeed if there was a product formula generalising
Proposition 3.2 to arbitrary posets P which expresses the coefficient ¢(o; 04,...,0,)
in some way as a product of “one-factor” c-coefficients, but one of the big
disappointments of this work was the realisation that no such formula exists. We
illustrate this with the simplest non-crossed structure.

ExaMPLE 3.2. The coefficient c((13]24, 13|24); (12, 1|2), (34, 3|4)) of
(13]24,13|24) in the expansion of (12,1|2) ® (34, 3|4) turns out to be
1 1 _ nmn, — 1

niny(ny — 1) mn3(ny; —1)  nmni(n, —1(n, - 1)

which is clearly not of product form.

The only thing that remains is the tabulation of product expansions. At the
moment we have only done this for the products 7 ® ¢ where =w,0 €
Hom( P, #(2)) and where P is

D GER SEETIN s B &

2 , @2 ;, 23 , 3
3

The results will be reported in a later paper in this series in which the variances
and covariances of the usual unbiased estimates of components of variance are
discussed. See also Section 6 below.

4. More generalised moments and cumulants

We now extend the definitions and results of Section 4 of (II) to apply to
random arrays X = (X;:i € I) = (X(/):! € m) whose moments of order m are
invariant under the action of G = GW() on 1=TI{n »:P € P}. Note that
Definition 4.1 of (II) applies here without change. A good deal of the material in
this section is a direct extension of corresponding material in (II) and so we pass
over that very quickly, dwelling only on those aspects which are specific to the
more general framework: linear models, linear decompositions and the theory of
variance components for complete balanced response structures.

Just as we saw in (II) there are two main ways in which random arrays X with
GW-invariant moments arise: through independence, and through symmetric
random sampling. The analogues here of the iid arrays of (II) are those arrays
which are built up as sums of mutually independent arrays or, somewhat more
precisely, as sums from sets of arrays whose elements are mutually independent
between and have symmetric moments within sets. We discuss such arrays in
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detail below. The notion of the m-symmetric random sampling distribution
associated with an array X = (X K= I) of real numbers is defined here in
essentially the same way as in (II) Section 4 where we had I =n and I = N,
n < N. In the present framework we suppose that the population array X is
indexed by I = [{N,:p € P}, where n, < N, for each p € P. Now every m-
tuple (iy,...,i,,) € I"™ belongs to a unique orbit, &, say, # € Hom(P, #(m)) of

GW() acting on I™, and we denote 7 by «[i,...,i,] (not to be confused with
w( p), the image of p € P under 7). Similarly we can define »[1,,...,1,,] for every
m-tuple (I,,...,1,) € I™, and with these preliminaries we say that the array X
has m-invariant inclusion probabilities (under GW) if for every m-tuple
(iys---5i,,) € I™we have
(4.1)

i i 2 ity il = 7l L. 0] = 7,
pr(X, = X,,...X, =%, )={ (N), " "

0 otherwise.

In other words, we ask for uniform distribution over the orbits of GW(I).
Although it was not formalised to this extent, it is essentially this type of
probability model that underlies all of the work of the Iowa school beginning with
Kempthorne (1952), through to Carney (1967) and beyond, i.e. their randomisa-
tion analyses view the observed array X as a sample from a finite population X;
similarly with Hooke (1956a, b), Cornfield and Tukey (1956) and others.

ExaMpLE 4.1. Suppose that P =12 and that we let m = 2, writing

((X:> Y;;):(i, j) € r X ¢) for the sampled array and ((X’,J, f’,J):(I, J)eR X0
for the population array. The independent sampling of r rows from the R and ¢
columns from the C in the population, and then using the rc cells so defined
clearly satisfies (4.1). As an illustration, let us note that such a procedure would
clearly imply that when j # j’:

1
pr(Xij =X, Xy = X,,)={ RC(C-1)
0 otherwise.

r=1, J+J,

Furthermore w(ij, ij’) = (12,1]2) and for this 7, (N), = RC(C — 1).

The definitions of the generalised moments vy, and generalised cumulant f, of
order m of an array X with GW-invariant moments are exact analogues of those
given in Definition 4.2 of (II) except that here 6 € Hom(P, #(m)) and we make
use of a map h: m > I =II{n,:p € P} with ¢" = 6. We will not repeat the
details. The specialised forms y, and f, take when X is defined by a linear model
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with independent components will be derived below. For completeness we state
the following analogue of Proposition 4.1 of (II).

ProPOSITION 4.1. If X is a random array with GW(1)-invariant moments of order
m, then

E{X} = ZYGAG = prRp
o p
where the sums are over Hom( P, ##(m)).

How are we to interpret these (more) generalised moments and cumulants? For
|P} = 1 we have already partially answered this question, but what about arbi-
trary P? We will see below that for P arbitrary and m = 2, the generalised
cumulants are in fact the components of variance known as canonical (see
Fairfield-Smith (1955)) or cap-sigmas, the latter term being used by the Iowa
school. When the array X is built up from independent arrays of effects in linear
models, these generalised cumulants will turn out to be sums of products of
cumulants of the component effects. It is not clear how useful the generalised
cumulants are beyond m = 4; even for m < 4 their expressions can be quite
complex.

Without further ado we state the generalised forms of Propositions 4.2 and 4.3
of (I) in a single result. The proof is identical to that of the earlier ones, whilst
the notation is that of Section 3 above.

PROPOSITION 4.2 Let X be a random array with GW-invariant moments of order
m. Then for all 6 € Hom( P, #(m)) we have

E{(n)s'a,} = v, E{k)}=1.

If X has GW-invariant moments of order 2m, then (n),'a, and k, have minimum
variance amongst all polynomials of degree m in X,(I):1 € m, i €1 which are
unbiased estimators of v, and f_ respectively.

5. Linear models for random arrays

It is known from the theory associated with the analysis of variance (see e.g.
Speed (1986)) that any random array X = (X;:i € I) with GW(I)-invariant
moments of order 2 can be decomposed as follows:

(5.1) X=X e&la)

a€ F(P)

where
(i) F(P) is the distributive lattice of all filters (= dual ideals) of P, which is
anti-isomorphic with Hom( P, £(2));
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(ii) elements of the random array (¢,(a):i € I) depend on i only through i,,
p Ea,iecela)=¢(a)ifi,=j,,p € a; and

(iii) for each pair i, j € 1 and a # b € F(P), ¢;(a) is uncorrelated with ¢,(b).
Furthermore, if n » = 0, then we also have the conclusion:

(iv) for each a € F(P) and pair i, j € I which differ over q, ¢;,(a) and ¢;(a) are
uncorrelated and have equal variance.

Equation (5.1) is the spectral or principal components decomposition of X
resulting from the form of its covariance matrix. Bearing in mind the fact that
zero correlation implies independence under normality, it is not surprising that
many writers have built up random arrays X in the manner described in (1) to (iv)
from component effects (¢;(a)), but replacing zero correlation by independence.
We will now derive expressions for the generalised moments and cumulants of
such synthesized arrays X in terms of those of the component arrays, a € F(P).
It will be convenient to suppose that the single random variable ¢,( & ) is constant,
i say, and that all the other £’s have mean zero. Our main result will follow a
sequence of three lemmas, each generalising a similar result in Hooke (1956a)
where the case P = ! ? was studied.

The first lemma gives the generalised moments and cumulants y*(7) and f *(7)
of X in terms of those of similarly indexed arrays Y and Z, where we suppose that
the arrays Y and Z are independent and that X, = Y, + Z,, i € 1. It generalises
the corollary to Proposition 4.2 of (I) and Theorem 4 of Hooke (1956a). Here
= (7(p):p € P) € Hom(P, #(m)).

LEMMA 5.1. (1) Y¥(0) = Z,cu ¥ (0 N s)Y%(0 N s), s’ = m\ s;
(i) fX(7) = Zp0-. f T(P)f X(0),
the second sum being over all pairs p,e6 € Hom(P, P(m)) for which ploc =1
(componentwise), and including the empty partition for which the f’s take the
conventional value 1.

PrOOF. For any h: m — I with ¢* = o we have

[l;lnxh(l)(l) = 11—[ {Yh(l)(l) + Zh([)(l)}

€em
= Z I_I Yh(k)(k) 1—[ Zh(l)(l)
sCm kEs les’

and so (i) is an immediate consequence of the independence of Y and Z.
To prove (ii) we make use of (i) and write y¥(o N 5) as follows:

r(ens)=Yim 00s)f¥(m),
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the sum being over all # € Hom(P, #(s)), with a similar expression holding for
v4(o N s’). Then we can expand

f¥(r) = Lu(o,7)v*(o)
=2 X u(e, )y (e ns)y*(ons’)

o sCm

=2 X LXu(o,7)(mons)(p,0ns)f (m)f*(p)

g sCm 7 p

= L ZX{Zk(e, (I, o)1 (1) 1%(p))

sCm 7 p [

since {(m,0 N s){(p, 0 N ") = {(=|p, 0). The last expression simplifies to

> X X8(xle, )M (m)f%(p),

sCm 7 P
the inner sums being over all # € Hom(P, #(s)) and p € Hom(P, #(s’)). But
this is just (ii) with the interpretation given to the empty partition of s = &.

A more general version of this lemma is proved in exactly the same way. We
state it as a corollary to the above, supposing that U, V,... and W are similarly
indexed arrays which are mutually independent, and that X, = U, + V, + --- +
W,ielL

COROLLARY. fX(7) = Z, .. 1o=:f A7) (p) -+ f¥(0), the sum being over all
T, p,...,0 (including empty ones) for which w|p| - -+ |6 = 7.

‘Our next lemma concerns arrays X = (X;:i € I) indexed by I = [1{n,:p € P}
for which the indices i,, p & a play no role, a C P being a fixed filter of P. It
generalises Theorem 5 of Hooke (1956a). For our later work it is convenient to
suppose that X, = ¢,(a), i € I, where ¢(a) = (g,(a):i(a) € I(a)) is a random
array indexed by I(a) = I{n,:p € a}. We then seek to express the generalised
moments and cumulants of X in terms of those of &(a). For a partition
T € Hom(P, #(m)) write 7(a) = (7(p):p € a) for the naturally associated ele-
ment of Hom(a, #(m)) obtained by restriction.

LEMMA 5.2.
(i)  ¥¥(o) =v"(o(a));
@ )= {170 T =0pea
0

otherwise.

(Here 0 denotes the least element of #(m) or the number zero as appropriate.)
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PrOOF. To see (i) we take #: m — I with ¢* = ¢ and observe that # composed
with the canonical projection from I to I{ @) has kernel o(a). Thus

YX(O) = IE{ Xh(l)(l) T Xh(m)(m)} = IE{Eh(l)(l) T eh(m)(m)} = Ye(a)(o(a))-

We turn now to (ii), dropping the superscript on all expressions which obviously
relate to e(a). Then we have

f¥(r) = Lnlo, 1)v¥(0)

- S| I {#(0(2). (o)) TLu(r(p). (0)) | r(a(a).
o LpPEP q>p

Now we sum over the a(p), p € @’ = P\ a, beginning with minimal elements
and ensuring that, at each stage, whenever we are summing over o( p), the terms
corresponding to o( p*) for all p* < p have already been removed. Bearing in
mind the fact that we have

;)H(U(P), 7(p)) = 8(0,7(p))

we find that when 7(p) = 0 for all p € a’, the above expression for f *(r) reduces
0 Loa) Halo(a), 7(a))y(o(a)), where p, is the Mobius function of
Hom(a, #(m)); otherwise it reduces to zero.

The final lemma in this sequence concerns arrays X for which X, =¢,, i € I,
where the moments of £ of order m are invariant under the full symmetric group
St over I and not just the group G = GW(I). As before we seek expressions for
the generalised moments and cumulants of X in terms of those of ¢, and this time
the latter are (as in (II)) labelled by the elements of 2 (m).

LEMMA 5.3.

@) yMo)=7v(r{s(p):p € P}).
(ii) fX('r)={{;('”) iftr(p)=m<€P(m)forallp € P;

otherwise.

ProOF. Since the moments of & of order m are symmetric we need the kernel
ker*, say, of h: m — I in the sense in which it was originally defined in (1I),
rather than as an element of Hom( P, 2(m)). But it is easy to see that if ¢" = ¢ in
the later sense, then ker*h = A{o(p):p € P}, the inf being taken in #(m). Thus

v*(e) = €{ [T X, (1)} = E{ [T esin (D) = v(A{o(p):p € P))

and (i) is proved.
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To obtain (i) we note that {(p, A{a(p):p € P}) = [1,,¢(p, o(p)) in P(m),
and so, using Mdbius inversion and (i) above, we have

(1) = Xnlo, 1)v*(o)
=X T1{#(o(2), 7(p) TTn(+(p). o(2)} T TT£(p,0(2))1*(p)

o PEP p PEP

=270 T {r(o(p), 7(p) Tn(+(p), o(2))} [T (o.0(p)
= { TG, (o) 1 (o).

where the sum is simplified by summing over o(p), p € P, beginning with
maximal elements of P and, at each stage, ensuring that before summing over
o( p), all terms involving 6(q), ¢ > p have been removed.

With these preliminaries completed we can state our main result concerning
arrays synthesised by linear models.

PROPOSITION 5.1. Let us suppose that X = (X,:i € 1) is a random array given by

Xi=p+ )y Ei(ay» iel,
@ #ac F(P)

where for all & + a € F(P),

(1) e(a) = (&;4):i(a) € Wa)) is a random array indexed by 1(a) = l_I{np:p e
a};

(ii) the moments of order m of e(a) are symmetric; and

(iii) the arrays {e(a)} are mutually independent.
Then X has GW-invariant moments of order m and for every T € Hom( P, #(m))
we have

fX("') = Zfs(a‘)(’”l)fs(az)('”z) T

where the sum is over all m,, m, - -+ € P(m) for which the elements o, o,,... of
Hom( P, #(m)) given by

m, ifp €a,
o B =
(7) { 0  otherwise,

i=12,..., satisfyolo, - -+ =1

COROLLARY. Suppose that m = 2. Then if for every 0 € Hom(P, £(2)) we write
a(c) = {p € P:o(p)= 12}, we have

f¥(e) = f(12).
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Proor. This is an immediate consequence of the proposition, for every o €
Hom( P, #(2)) is uniquely determined by a(o).

The corollary asserts that when m = 2, each of the generalised cumulants
associated with X defined by such a linear model is a generalised cumulant of a
component array. If the elements of the component arrays are themselves
independent, then this is just a (co)variance, and so our generalised cumulants
reduce to components of (co)variance with the usual linear models. Further
aspects of this connexion will be explored in the next section.

ExaMpLE 5.1. Let P =] }. The linear model naturally associated with this
nesting poset is

X,=p+e(l)+e,;(1,2)

where p is constant, the sets {¢,(1):i € n;} and {¢,,(1,2):(4, j) € n; X n,} of
effects are independent, and exchangeable (if not mutually independent) within
sets. The generalised cumulant f ¥(14]23, 14|2|3) appears in the expression for the
variance of k(12,1|2) (the between class component of variance in the anova
table) and so it is of interest to compute this cumulant in terms of those of &(1)
and &(1, 2). Using Proposition 5.1 we expand as follows:

£%(14123,14|2|3) = £20(14)23,14]2|3) + £:D(14,14) f512(23,23)
+£e12(14,14) £5D(23,2(3) + £:1D(14(23, 14]2(3)
= /7214 f0(23)
for f:1(14)23,14]2J3) = 0 since 14|23 # 1|2|3|4 (the zero of P(4)),

f¢®(14,14) = 0 for a similar reason, whilst f*3:2(14|23,14|2|3) = O since 14|23
+ 142|3.

6. Components of variances

We have asserted on a number of occasions that our generalised symmetric
functions k(o), 0 € Hom(P, #(2)) coincide with familiar sample components of
variance from the analysis of variance of the multi-indexed array (X,:/ € I). This
result, which was conjectured by Zyskind (1958) and first proved by Dayhoff
(1964a,b) is easy to prove here using the machinery now available to us: all we
need to do is rearrange our notation so that the tensors 4,, R, and F, are in fact
nXn matriccs, wheren = [1{n P EPY, and use some general results.

If, instead of defining % = 8" ® §"® as we did in Section 2, we write
h = §"W(§"D)’, then h, and hence 4,, R, and F,, would all be n X »n matrices
over I, where n = [Il| = II{n,:p € P}. Let us suppose this to be the case for the
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remainder of this section. Then the family { 4,:0 € Hom(P, #(2))} of matrices
defines an association scheme over 1. The simplest way to see this is to observe
that the {A4,} are simply the characteristic (indicator) functions of the orbits of
the action of GW(I) on I X I, and since these orbits are all self-paired, the
assertion follows (cf. Higman (1975, 1976)). An alternative proof can be based
upon the results in Speed and Bailey (1982), the contents of which will be helpful
in what follows.

Once we have established that the { 4,} form an association scheme, we know
that they can be simultaneously diagonalised, and that the orthogonal projections
onto their common eigenspaces can all be written as linear combinations of the
{A,}; see for example MacWilliams and Sloane (1978). In this case the orthogo-
nal projections are also indexed by Hom(P, #(2)) (see Speed and Bailey (1982)),
and we denote them by {S,:0 € Hom(P, #(2))}. Thus there exist matrices
P = (p,,) and Q = (q,,) such that

1
(6'1) So = ; quaAp’
p
(6.2) A, =3 PepS,
o
Now d, = rank(S,) is called the degrees of freedom of the stratum labelled by o,
and an important related coefficient is k, = n~'(n),, for we know the identity

(6.3) d;'q,, = k;'p,p

(see McWilliams and Sloane (1978, eqn. (18) of Theorem 3, Chapter 21, Section
2)). One final fact which we need is a result from Speed and Bailey (1982),
namely,

(6.4) Pep = 5 Lo, m)3 (0, )"

The assertion that we wish to prove really has two forms: one involving
generalised symmetric functions and one involving generalised cumulants. Be-
cause they were always operating within the framework where all distributions
were permutation distributions associated with finite populations, essentially a
special case of our srswor set-up, these two forms coincided for Zyskind and his
successors. A form which includes both is the following,.

PROPOSITION 6.1. In the notation just introduced,

F, == Tu(o,7)d,’s,.
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PROOF. We substitute (6.1) into the right hand side of the above, and use (6.3),
(6.4) and Mobius inversion to get our result:

2 Y u(o,1)d;’S, = - Tu(o, 1)d; + T, 4, (by (6.1))
=¥ Ta(o, 1)k oA, (by (6.3))

= LYY Tu(o, )l m)(a, m)nk; 4,

o p
(by (6.4))
=Y u(p, T)(nkp)_lAp (by Mobius inversion)
I3

=F (since nk, = (n),.)

COROLLARY. (i) If [S,X(1)|S, X(2)] is the sum of products in the line (stratum)
labelled by 0 € Hom( P, P(2)) of the anova table, then

k, = = Tu(o, 1)d;'[5, X1, X(2)].

Gi) If ¢, = E{d;'[S,X(1)|S, X(2)]} is the expected mean sum of products in line
o, then

f.= nl ;Mo, )¢,

PrOOF. The result (i) is obtained directly from the proposition by introducing
the elements X = (X(1), X(2)) of the random array as indeterminates, and (ii)
follows by taking expectations. Either can be construed as stating Zyskind’s
conjecture when X(1) = X(2), for under a randomisation model they coincide.

We close this section with some remarks concerning the estimation of the
variance components f(¢) of an array X = (X;:i € I), recalling that elements of
Hom( P, #(2)) are more readily labelled by the filters of P. Under an assumption
of GW-invariance of the moments of order 4, we can conclude from Proposition
4.2 that the symmetric functions k(o) provide minimum variance estimators of
f(o). If we specialise this result to the linear model framework discussed in the
previous section and further suppose that the effects (e,,,:i(a) € I(a)) are
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mutually independent, @ # a € F(P), this assertion reduces to a result of
Graybill and Hultquist (1959, Theorem 7) concerning MIVQUE of variance
components.

7. Closing remarks

Two topics not covered here will be dealt with in later papers in this series. The
first concerns the fact that all the generalised k-statistics, and the other gener-
alised symmetric functions, are multi-indexed reversed martingales with respect to
certain naturally defined arrays of o-fields. These reversed martingales turn out to
satisfy the further conditions necessary to ensure their a.s. covergence and a
particular consequence of this is a neat asymptotic theory for variance component
estimates. The second topic concerns the form and estimates of the variances and
covariances of estimated variance components. Because of its special interest and
algebraic complexity, this topic warrants a paper in its own right.

Further results which may be published later concern the same issues with
differently structured index sets such as those which arise in quantitative genetics;
see for example Nelder (1960).

In closing it is a pleasure to thank Professor Oscar Kempthorne most warmly
for providing copies of the relevant Iowa theses done under his direction. Without
having had access to this largely unpublished body of fine material, I would not
have been able to do this work. Thanks are also due to the referees for their
helpful comments and for providing further relevant references.
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