
Dynamical Evolution of Dense Stellar Systems
Proceedings IAU Symposium No. 246, 2007
E. Vesperini, M. Giersz & A. Sills, eds.

c© 2008 International Astronomical Union
doi:10.1017/S1743921308016207

6th and 8th Order Hermite Integrator Using
Snap and Crackle

Keigo Nitadori1, Masaki Iwasawa2 and Junichiro Makino3

1Department of Astronomy, Graduate School of Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

email: nitadori@cfca.jp
2Department of General System Studies, Graduate School of Arts and Sciences,

The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
email: iwasawa@cfca.jp

3National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588, Japan
email: makino@cfca.jp

Abstract. We present sixth- and eighth-order Hermite integrators for astrophysical N -body
simulations, which use the derivatives of accelerations up to second order (snap) and third order
(crackle). These schemes do not require previous values for the corrector, and require only one
previous value to construct the predictor. Thus, they are fairly easy to be implemented. The
additional cost of the calculation of the higher order derivatives is not very high. Even for the
eighth-order scheme, the number of floating-point operations for force calculation is only about
two times larger than that for traditional fourth-order Hermite scheme. The sixth order scheme
is better than the traditional fourth order scheme for most cases. When the required accuracy
is very high, the eighth-order one is the best.
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1. Direct calculation of higher order derivatives
The gravitational acceleration from particle j to particle i and its first three time

derivatives (we call them jerk, snap and crackle) are expressed as

Aij = mjrij /r3
ij , (1.1)

J ij = mjvij /r3
ij − 3αAij , (1.2)

Sij = mjaij /r3
ij − 6αJ ij − 3βAij , (1.3)

Cij = mjjij /r3
ij − 9αSij − 9βJ ij − 3γAij , (1.4)

with

α = (rij · vij )/r2
ij , (1.5)

β = (|vij |2 + rij · aij )/r2
ij + α2 , (1.6)

γ = (3vij · aij + rij · jij )/r2
ij + α(3β − 4α2), (1.7)

where ri , vi , ai , ji and mi are the position, velocity, total acceleration, total jerk and
mass of particle i, and rij = rj − ri , vij = vj − vi , aij = aj − ai and jij = jj − ji

(Aarseth 2003).
The increase of the number of floating point operations required in the high-order

schemes is small. In the fourth-order scheme (Makino 1991a; Makino & Aarseth 1992), we
need 60 operations for one calculation of acceleration and jerk, if we count 10 operations
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Figure 1. Maximum relative deviation of the total energy during the time integration for 10
time units, as a function of average number of timesteps per particle per unit time. Triangles,
squares and pentagons represent the results of 4th-, 6th- and 8th-order schemes. The three
dotted lines indicate the expected scaling relations for 4th-, 6th- and 8th-order algorithms.

for each division and square-root (Warren et al. 1997; Nitadori et al. 2006). In the sixth-
order scheme, we need 97 operations for the acceleration, jerk and snap and even in the
eighth-order scheme, we need only 144 operation for up to the crackle term (Nitadori &
Makino 2007).

Fig. 1 shows the relation between the relative energy error after the integration for
10 time units of a 1024-body Plummer model and the average number of timesteps per
particle per unit time. Here, we used the standard N -body unit (Heggie & Mathieu 1986),
a softened potential with ε = 4/N = 1/256, and the block timestep algorithm (McMillan
1986; Makino 1991b) where all timesteps are restricted to be powers of two.

We can clearly see that the error of sixth- and eighth-order schemes are proportional
to ∆t6 and ∆t8 , as expected. For the relative accuracy of 10−8 , the sixth-order scheme
allows the average timestep which is almost a factor of three larger than that necessary
for the fourth-order scheme. For the relative accuracy of 10−10 , the eighth-order scheme
allows the average timestep which is almost a factor of seven larger than that necessary
for the fourth-order scheme. Even for the relatively low accuracy of 10−6 , the sixth-order
scheme allows about a factor of two larger timestep than the fourth-order scheme does.
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