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ABSTRACT. The problem of describing ice dynamics has been faced by many researchers; in this paper a
fully three-dimensional model for ice dynamics is presented and tested. Using an approach followed by
other researchers, ice is considered a non-linear incompressible viscous fluid so that a fluid-dynamic
approach can be used. The model is based on the full three-dimensional Stokes equations for the
description of pressure and velocity fields, on the Saint-Venant equation for the description of the free-
surface time evolution and on a constitutive law derived from Glen’s law for the description of ice
viscosity. The model computes the complete pressure field by considering both the hydrostatic and
hydrodynamic pressure components; it is time-evolutive and uses high-order numerical approximation
for equations and boundary conditions. Moreover it can deal with both constant and variable viscosity.
Three theoretical tests and two applications to Priestley Glacier, Antarctica, are presented in order to
evaluate the performance of the model and to investigate important phenomena of ice dynamics such as
the influence of viscosity on pressure and velocity fields, basal sliding and flow over perturbed bedrocks.
All these applications demonstrate the importance of treating the complete pressure and stress fields.

LIST OF SYMBOLS

a ¼ as � að�bÞ
Net accumulation/ablation rate

að�bÞ Basal melting/refreezing rate

as Surface accumulation/ablation rate
B0 Viscosity parameter
�b Bedrock depth
C Basal sliding coefficient

g ¼ ½gx , gy , gz �T
Gravity acceleration vector

n Glen’s law exponent

n ¼ ½nx , ny , nz �T
Outward normal unitary vector

p Kinematic pressure
Q Creep activation energy
q Time index
R Perfect gas constant
S ¼ sðx, y, tÞ � z

Free-surface function
s Free-surface elevation
s0 Undisturbed reference level
T Temperature
t Time

u ¼ ½u, v, w�T
Velocity vector

uð�bÞ ¼ ½uð�bÞ, vð�bÞ, wð�bÞ�T
Basal velocity vector

x ¼ ½x, y, z�T
Space coordinates

� Difference of a quantity between two successive
iterates

�t Time-step
�x, �y, �z

Control volume dimensions

_"0 Small number to prevent singularities in Glen’s law
� Non–hydrostatic part of p
� Density of ice

�ð�bÞ ¼ �� ðnT � � � nÞI� � � n
Basal stress vector

� Stress tensor

�e ¼ 1
2 tr ð�þ �pIÞ2
h in o1

2

Effective stress
�ij Stress tensor components

� Kinematic viscosity
� ¼ ½�, �, ��

Space coordinates of a local reference system
r Gradient operator
r� Divergence operator

1. INTRODUCTION
One of the main challenges in glaciological sciences is
understanding glacier dynamics, in terms of mass and
thermal flows, basal processes and responses to climate
change. Many authors have faced the problem of describing
ice dynamics through numerical modelling. Most of the
large-scale ice-sheet models are based on the shallow-ice
approximation (SIA) which, by assuming a small aspect
ratio between vertical and horizontal dimensions of the
domain, neglects part of the stresses and considers the
pressure hydrostatic. After the original work of Mahaffy
(1976), a number of models have been proposed and
applied to studying ice-sheet dynamics (Jenssen, 1977;
Huybrechts 1990; Greve,1997; Ritz and others, 1997;
Calov and others, 1998). SIA models have also been used
to study the motion field in valley glaciers (Hubbard and
others, 1998; Le Meur and Vincent, 2003). The hypothesis
of a small aspect ratio, on which the SIA relies, may fail on
medium- and small-scale applications. A way to improve
these models is represented by the higher-order models in
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which second-order stresses are considered (Gudmunds-
son, 1997a, b; Colinge and Blatter, 1998; Pattyn, 2002). A
two-dimensional method, in which the equations are
integrated line by line over the ice depth in order to
compute the basal conditions, is proposed by Van der
Veen (1989) and Van der Veen and Whillans (1989). A
two-dimensional ice-sheet model in which a projection
method is used for the time-advancing scheme and
classical second-order finite-difference formulae are used
for the space discretization is presented by Mangeney and
others (1997). Commercial finite-element codes have also
been used for modelling ice dynamics (Gudmundsson,
1999; Lüthi and Funk, 2000, 2001). Some finite-difference
time-advancing schemes are presented and compared in
Greve and Calov (2002). A recent work (Martı́n and
others, 2004) includes a complete treatment of the
pressure field.

The target of the present work is the implementation of a
general three-dimensional method capable of working on
large- and small-scale applications. For this reason a fluid-
dynamic approach has been considered and a method
capable of modelling the full stress and pressure fields is
presented. The full pressure field is computed by splitting the
pressure into hydrostatic and hydrodynamic components
(Casulli, 1999; Casulli and Zanolli, 2002). It should be
noticed that no stress component is neglected in the
proposed method. The use of fully three-dimensional equa-
tions requires the imposition of boundary conditions on all
the domain boundaries, not only on surface and bedrock as
usually done in SIA and higher-order models thanks to the
small-aspect-ratio hypothesis. The model is based on the
Stokes equations and the Saint-Venant equation which are
discretized in space by means of the finite-volume method
in order to guarantee both local and global mass and
momentum conservation. High-order approximations are
used for the discretization of equations and boundary
conditions. The equations are discretized in time by a
modified projection method that can take the free-surface
time evolution into account.

The paper is organized as follows: In section 2 the
governing equations are presented. In section 3 the space
and time discretization of these equations is presented
together with the description of the boundary conditions. For
clarity, in this section only the time semi-discretization of the
field equations is presented; the space- and time-discretized
equations and the formulae for the approximation of the
derivatives are given in Appendices A and B, respectively. In
section 4 three theoretical applications are presented and in
section 5 the model is applied to the real case of Priestley
Glacier, Antarctica. Finally in section 6 some conclusions
are drawn.

2. GOVERNING EQUATIONS
Following the approach proposed by Nye (1952) and
commonly accepted and used in glaciological studies, ice
is a non-Newtonian viscous fluid, governed by the Navier–
Stokes equations. If a meso- or large-scale model is
investigated, then convective terms are negligible since they
act on a much smaller space- and timescale (Colinge and
Blatter, 1998); however, when small-scale phenomena are to
be investigated (frontal movements, crevasse opening, etc.),
convective terms might be retained. In what follows, the
unsteady Stokes equations for an incompressible fluid will

be considered; the equations written in conservation form
are:

@u
@t

�r � � ruð Þ þ ruð ÞT
h in o

¼ �rp þ g, ð1Þ
r � u ¼ 0, ð2Þ

where u ¼ ½u, v,w�T is the three-dimensional velocity
vector, t is the time, r� is the divergence operator, r is
the gradient operator, � is the kinematic viscosity,
p ¼ trð�Þ=3� is the kinematic pressure and g is the gravity
acceleration vector. The strain-rate tensor is represented by

ruð Þ þ ruð ÞT
h i.

2:

For temperate ice masses, when large- or mesoscale
applications are investigated, the term @u=@t can be
neglected, the only transient development being surface
evolution. In these cases the time derivative can be used to
numerically solve Equations (1) and (2) until a steady state is
reached (Mangeney and others, 1997).

The momentum equation (1) can be written as

@u
@t

�r � � ruð Þ½ � ¼ �rp þ gþ r� � ruð ÞT
h i

, ð3Þ

so that the momentum equation for the single velocity
components can be solved separately. The term r � � ruð Þ½ �
will be called the ‘diffusive term’.

Ice viscosity is described by the following relation derived
from Glen’s law:

� ¼ 1
2�
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Q
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where B0 is the viscosity parameter, Q is the activation
energy for creep, R is the perfect gas constant, T is the
temperature, n is the exponent in Glen’s law and _"0 is a
small number (e.g. 10–30 a–1) used to avoid singular be-
haviour where the stress vanishes.

The surface of an ice mass is a stress-free surface that can
evolve in time. The surface evolution can be caused by
changes in the inner motion field as well as by changes in
the accumulation/ablation rate. Denoting the surface eleva-
tion above an undisturbed reference level by s, the kinematic
boundary condition for the free surface is

@s
@t

þ u
@s
@x

þ v
@s
@y

�w ¼ as, ð5Þ

where as is the accumulation/ablation rate at the surface
multiplied by the modulus of the gradient of the free surface
function ðjrSj ¼ j @s=@x, @s=@y, �1ð ÞTjÞ. Denoting the
depth of the bedrock with respect to the undisturbed
reference level by �b, the kinematic boundary condition
for the ice/bedrock interface is

u
@ð�bÞ
@x

þ v
@ð�bÞ
@y

�w ¼ að�bÞ, ð6Þ

where að�bÞ is the basal melting/refreezing rate multiplied by
the modulus of the bedrock gradient.
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Integration of the incompressibility equation (2) from the
bedrock to the surface and substitution of Equations (5)
and (6) lead to the Saint-Venant equation:

@s
@t

þ @

@x

Z s

ð�bÞ
u dz þ @

@y

Z s

ð�bÞ
v dz ¼ a, ð7Þ

where a ¼ as � að�bÞ. This equation describes the free
surface evolution in time as a function of the unit-discharges
and incorporates the physical law of mass conservation.

3. NUMERICS
3.1. Space discretization
A solution in closed form for the unsteady three-dimensional
Stokes problem is not known, even in simple cases; thus an
approximated solution has to be computed by numerical
methods. Conservation of mass and momentum is crucial for
the stability and the accuracy of the solution, especially in
the presence of a moving boundary such as the free surface
(Deponti and others, 2004). The finite-volume method is
used for the discretization of the field equations since it
guarantees both local and global conservation of mass and
momentum.

An undisturbed reference level s0 coincident with the
linear least-squares approximation of the physical surface is
considered. In the reference system used, the x-y plane lies
on s0, the x axis is oriented along the mean flow direction
and points downhill, the z axis points upward and the y axis
is consequently determined. The domain is partitioned by
means of cell-centred control volumes in the shape of
rectangular prisms (Fig. 1); each control volume face is
orthogonal to one coordinate axis, and the union of all the
control volumes determines the computational domain. The
dimensions of each control volume are �x, �y and �z. The
volume horizontal dimensions are chosen on the basis of a
priori knowledge of the domain peculiarities and are fixed
throughout computation. The volume height is also fixed
with the same criterion for the volumes far from the free
surface, but, due to its evolution, the height of those
including the free surface can change in time and it may be
necessary to add or suppress some volumes; this is why the
dimension �z will be time-indexed from now on. Control
volumes filled with ice are called active.

The field equations are integrated on each control
volume; by the Green–Gauss theorem this leads to com-
puting the surface integral of the flux of the diffusive terms
(diffusive fluxes). These are calculated by summing the
contributions of each control volume face, i.e. using the
product of the representative value of the diffusive term and
of the face area (integral mean value theorem). Hence,
diffusive fluxes are to be approximated on each control
volume face; this is done by a four-point centred differencing
scheme (see Appendix B for details). The scheme is general
enough to allow for non-uniform spacing between adjacent
points and is third-order accurate. The volume integrals are
approximated using the integral mean value theorem.

3.2. Time-advancing scheme
A method for time integration of Stokes equations without
particular assumptions on the pressure field is the projection
method (a particular type of fractional step method) in which
the equations are integrated in two or more steps. This
method is widely used in fluid dynamics, and many

formulations have been proposed in the literature (e.g.
Gresho, 1991; Guermond and Quartapelle, 1998; Armfield
and Street, 2002).

The projection method alone cannot describe the free
surface evolution, and direct calculation of the kinematic
boundary condition at the surface (Equation (5)) or of the
Saint-Venant equation (7) may lead to physical inconsis-
tency and to numerical instability. Indeed, the kinematic
boundary condition and the Saint-Venant equation are to be
computed on the basis of a velocity field consistent with the
new surface elevation in spite of its being unknown; this
could become important in the presence of accumulation/
ablation or in the presence of varying dynamic boundary
conditions at the surface. For these reasons, a modified
projection method in which the Saint-Venant equation is
kept in order to calculate the free-surface evolution is
proposed in this work.

As mentioned in the Introduction, the pressure in an ice
mass is not always hydrostatic; in particular, in the presence
of bedrock perturbations or of changes in the basal sliding
conditions a hydrodynamic pressure occurs. This phenom-
enon is also called the ‘bridging effect’ (Van der Veen and
Whillans, 1989; Blatter and others, 1998). The total
kinematic pressure, p, is divided into the hydrostatic part,
jgjðs � zÞ, and the hydrodynamic part, �,

p ¼ jgjðs � zÞ þ �: ð8Þ
In the first step, provisional velocities ~uqþ1 are calculated by
considering the contribution of the hydrostatic pressure at
the preceding time-step, q, and neglecting the contribution
of the hydrodynamic pressure:

~uqþ1 �uq

�t
�r � �qr ~uqþ1� �

¼ �jgjrSq þ gþ r�q � ruqð ÞT
h i

, ð9Þ

where rSq ¼ @sq=@x, @sq=@y, �1ð ÞT is the gradient of the
free surface function and the superscripts represent the time
indices. The physical boundary conditions for the three
velocity components are imposed on all boundaries. In the
first step the incompressibility equation is not considered so
that the provisional velocity field is, in general, non-
divergence-free.

The target of the second step of the projection method is
the formulation of a second-order equation for the total
pressure or for a part of it, in which the mass conservation

Fig. 1. Sketch of a three-dimensional control volume.
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principle (expressed by the null-divergence constraint) is
accounted for. In our formulation the second-order equation
for the hydrodynamic pressure, �, is obtained by applying
the divergence operator to the momentum equation written
in the form

uqþ1 � ~uqþ1

�t
¼ �r�qþ1 ð10Þ

and considering the null-divergence constraint

r � r�qþ1 ¼ 1
�t

r � ~uqþ1 : ð11Þ

This equation holds for the control volumes not connected
to the surface. In the presence of a moving surface, the mass
conservation and the compatibility between the velocity
field and the surface geometry are guaranteed by a
combination of the incompressibility equation (2) and the
Saint-Venant equation (7). Hence, the discretized form of the
equation for � at the surface control volumes is obtained by
combining the discretized form of Equations (2) and (7)
(Equation (A13) in Appendix A). The second-order discre-
tized equation for � is thus given by the conjunction of the
discretized form of Equation (11) (Equation (A8) in
Appendix A) and the discretized equation at the surface
(Equation (A13) in Appendix A). Homogeneous Neumann
boundary conditions are imposed at all boundaries.

Once the hydrodynamic pressure is calculated, the final
velocity field is computed by Equation (10); assuming the
pressure to be hydrostatic only in the surface control
volumes, the final free-surface elevation is computed by

sqþ1 ¼ sq þ �qþ1

jgj : ð12Þ

The final velocity field is divergence-free since the mass
conservation has been imposed in the second step; more-
over the free-surface elevation is consistent with the inner
velocity field since the Saint-Venant equation has been
considered.

3.3. Boundary conditions
As said above, physical boundary conditions for the three
components of the velocity field are applied at all bound-
aries in the first step, while homogeneous Neumann
boundary conditions are imposed in the second step for

the hydrodynamic pressure at all boundaries. Let us focus on
the boundary conditions for the velocity field. At the open
boundaries (inflow and outflow sections), homogeneous
Neumann boundary conditions are applied. At the surface
the stress-free condition applies. At lateral solid walls and at
the bedrock the impenetrability condition holds for the
normal velocity component, while a sliding condition is
required for the tangential and binormal velocity com-
ponents. The relation between basal stress and sliding
velocity is expressed by

uð�bÞ � C�2
ð�bÞ�ð�bÞ ¼ 0, ð13Þ

where uð�bÞ is the basal velocity vector, C is a sliding
parameter and

�ð�bÞ ¼ ½�� ðnT � � � nÞI� � n ð14Þ
is the basal stress vector, I being the identity matrix. The
three-dimensional sliding relation (13) automatically satis-
fies the impenetrability condition expressed by Equation (6)
where að�bÞ ¼ 0 (Hutter, 1983). If C ¼ 0 the relation
translates into the no-slip condition, i.e. homogeneous
Dirichlet; if C ! 1 the condition translates into the perfect
slip condition, i.e. homogeneous Neumann. In all other
cases the condition is a Robin boundary condition and
allows the computation of stress and sliding velocity at the
same time.

Numerical boundary conditions are approximated by
means of high-order (second and third) generalized finite-
difference formulae (presented in Appendix B); this yields a
good approximation of the boundary conditions and allows
for non-uniform volume dimensions. In particular, the
control volumes can be smaller where a better accuracy of
the solution is required.

4. THEORETICAL APPLICATIONS
The applications presented in this section aim to evaluate
the method performance and to investigate important
aspects in ice dynamics such as the influence of viscosity
on velocity and pressure fields, basal sliding and flow over
undulating bedrocks. For these targets it is useful to consider
theoretical tests in which the aspect being investigated can
be emphasized; hence two-dimensional tests are consid-
ered. Even though the problems are two-dimensional, they
are modelled in a complete three-dimensional setting where
homogeneous Neumann conditions are imposed in the
transverse direction (y direction). Results will be presented
in vertical sections (x-z planes).

Steady-state solutions are calculated starting from an
undisturbed situation; the time discretization is chosen on
the basis of the desired accuracy and of the stability
conditions imposed by the method. The iterations are
stopped when the difference, �, between two successive
iterates is smaller than a fixed tolerance. This difference is
computed on the whole domain by

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j
P

i ðuqþ1
i � uq

i Þ2
h i

j

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j
P

i ðuq
i Þ2

h i
j

r , ð15Þ

where the i index describes the three velocity components
and the j index extends to all control volumes.

Fig. 2. Vertical profile of the longitudinal velocity for three
kinematic viscosities: � ¼ 1011m2 s–1 (solid line), � ¼ 1012m2 s–1

(dashed line), � ¼ 1013m2 s–1 (dotted line).
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4.1. Uniformly inclined plane

In the first application a section of an infinite slab is
considered. Surface and bedrock are flat, parallel and
inclined at a small angle (58). The expected solution is the
so-called ‘laminar flow regime’ (Nye, 1952; Paterson, 1994)
in which the vertical and transverse velocity components are
null and the free surface remains undisturbed. The domain is
partitioned into 1575 control volumes (21 rows in the
x direction, 25 in the z direction and 3 in the y direction),
of which 1512 are active; the time-step, Dt, is 0.5 years.
Iterations are stopped for � � 10�4. Different sliding par-
ameters, ranging from the no-slip condition to the perfect slip

condition, are tested. In all cases the velocity field agreeswith
the expected solution, the free surface remains undisturbed
and the velocity divergence is null everywhere. Different
constant values of the kinematic viscosity are tested.

In Figure 2 the vertical profile of the horizontal velocity
component for the no-slip case is presented for three
different kinematic viscosities: � ¼ 1011, 1012, 1013m2 s–1.
The number of iterations performed to reach the steady state
were 508, 134 and 26 for the three viscosity values,
respectively. The model sensitivity to viscosity changes can
be appreciated. It can be seen that the lower the viscosity,
the higher the surface velocity; since no-sliding conditions
apply, for lower viscosity vertical deformations are larger.

Fig. 3. (a) Velocity field, (b) free surface and (c) hydrodynamic
pressure field of the flow in the presence of variations in basal
slipperiness. The components of the gravity acceleration vector in
the considered reference system are gx ¼ 0:855, gy ¼ 0:000,
gz ¼ �9:773 (see section 3.1). Negative and positive hydrodynamic
pressures arise in the vicinity of slipperiness variations; these
kinematic pressures are related to vertical velocities and free-
surface perturbations. Note the different scales of horizontal and
vertical axes.

Fig. 4. (a) Velocity field, (b) free surface and (c) hydrodynamic
pressure field of the flow over an undulating bedrock. The
components of the gravity acceleration vector in the considered
reference system are gx ¼ 0:855, gy ¼ 0:000, gz ¼ �9:773 (see
section 3.1). The velocities in the vicinity of the bedrock follow the
basal undulations; positive hydrodynamic pressure upstream and
negative hydrodynamic pressure downstream of undulations can be
appreciated. The free surface presents perturbations similar to
bedrock undulations.
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4.2. Variations in basal slipperiness
In the second application the influence of variations in basal
slipperiness on pressure and velocity fields and, conse-
quently, on the free-surface geometry are investigated. The
proposed test is similar to the one presented in Blatter and
others (1998) and Colinge and Blatter (1998): an infinite slab
is considered but in this case the sliding parameter C varies
locally. In particular, an 8 km long and 1 km deep domain is
considered; the bedrock is inclined at 58 with respect to the
horizontal direction. Perfect slip conditions are prescribed in
a 1 km long central portion of the domain while no-slip
conditions are prescribed elsewhere. The domain is parti-
tioned into 3024 active control volumes (72 rows in the
x direction, 14 in the z direction and 3 in the y direction);
the time-step, Dt, is 0.5 years. Iterations are stopped for
� � 10�4; a total of 470 iterations were performed to reach
steady state.

In Figure 3 the results of the simulation with a constant
kinematic viscosity � ¼ 1012 m2 s–1 are presented. In
Figure 3a the velocity field is shown: it can be seen how,
in the vicinity of the slipperiness variations, vertical
velocities increase. These vertical velocities produce a
perturbation of the free surface that can be appreciated in
Figure 3b. The apparent positive local slope of the free
surface (in this and in subsequent figures) is due to the
inclined reference system adopted and to the differing
vertical and horizontal scales. Finally, in Figure 3c the
hydrodynamic pressure field is presented: it can be seen that
in the presence of slipperiness variations the pressure field is
not purely hydrostatic. Indeed, where the sliding conditions

change from no-slip to perfect slip, a longitudinal extension
(accompanied by negative hydrodynamic pressure) occurs
while a longitudinal compression (accompanied by positive
hydrodynamic pressure) occurs when the sliding conditions
change from perfect slip to no-slip. As mentioned in
section 3.2, this phenomenon is called the bridging effect.
Even if the hydrodynamic pressure is about two orders of
magnitude smaller than the total pressure, it is related to
vertical velocities and surface perturbations. This test
confirms the importance of a complete treatment of pressure
and stress fields in the solution of the full Stokes problem.

4.3. Undulating bedrock
In the third application the influence of bedrock undulations
on pressure and velocity fields and, consequently, on the
free-surface geometry are investigated. Similar investigations
have been performed by Gudmundsson (1997a, b, 2003),
Schoof (2002) and Hindmarsh (2004). In our simulation a
4 km long domain is considered. The mean domain
thickness is 1 km, while the mean bedrock inclination
is 58. The amplitude of the bedrock undulations is 100m;
viscous-slip conditions are imposed on the whole bedrock
with sliding parameter C ¼ 1019m s–1 Pa–2. In the first
simulation a constant kinematic viscosity, � ¼ 1012m2 s–1,
is considered. Iterations are stopped for � � 10�4; a total of
286 iterations were performed to reach steady state. The
domain is partitioned into 2160 control volumes (36 rows in
the x direction, 20 in the z direction and 3 in the
y direction), of which 1515 are active; the time-step, Dt, is
0.5 years. In Figure 4a the velocity field is presented: it can

Fig. 5. (a) Velocity field, (b) free surface, (c) hydrodynamic pressure field and (d) viscosity distribution of the flow over an undulating bedrock
with variable viscosity. The presence of positive and negative hydrodynamic pressures and of vertical velocities following the bedrock can be
appreciated. Minimum viscosity (�1011m2 s–1) is found near the bedrock, while maximum viscosity (�1013m2 s–1) is found at the surface.
Because of the higher velocities, the free surface is more inclined than with constant viscosity.
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be seen that the velocities in the vicinity of the bedrock
follow the basal undulations. The vertical velocity com-
ponent influences the free-surface geometry that, as shown
in Figure 4b, exhibits perturbations similar to those
presented by the bedrock but with smaller amplitude. In
Figure 4c the kinematic hydrodynamic pressure field is
presented; it can be seen that longitudinal compressions
(accompanied by positive pressures) occur upstream of the
bedrock undulations while longitudinal extensions (accom-
panied by negative pressures) occur downstream; this
hydrodynamic pressure is related to vertical velocities
which, in turn, are responsible for surface perturbations.

In the second simulation the same domain and the
same partition are considered but viscosity is computed
by Equation (4); the value of B ¼ B0 exp ðQ=nRT Þ=2 is

1.3�105 s1/3 kPa. The term r�q � ruqð ÞT
h i

on the righthand

side of Equation (9) is neglected, as is usual in fluid
dynamics; for variable viscosity this implies neglecting part
of the stress field. Results are presented in Figure 5. Iterations
are stopped for � � 10�3; 768 iterations were performed to
reach steady state. It can be seen that the results are
significantly different from those with constant viscosity. In
particular, from Figure 5a, it can be seen that the velocity
field is higher since the viscosity is smaller near the bedrock
due to high strain rates. Minimum viscosity (�1011m2 s–1) is
indeed found near the bedrock; maximum viscosity
(�1013m2 s–1) is found near the surface. In Figure 5d it is
worth noting that near-surface viscosity is not constant due
to deformations of different amplitudes. Since the velocity
field is higher than in the preceding simulation, the free-
surface geometry tends to be more inclined than the mean
bedrock due to the high mass flow at the inflow boundary
(Fig. 5b). Moreover, due to the combined effect of a higher
velocity field and a higher viscosity at the surface, the
perturbations at the free surface are smaller. In this
application more than one volume layer is affected by the
free-surface evolution; the shortwave perturbations near the
inflow are produced by the inclusion of new control
volumes and by the particular discretization of the surface;
they have no physical meaning, nor are they numerical
instabilities. The higher velocity produces higher absolute

values of the kinematic hydrodynamic pressure in the
vicinity of bedrock undulations (Fig. 5c). In Figure 6 the
vertical profiles of the longitudinal velocity at the domain
centre (x ¼ 2.056 km, y ¼ 0.075 km) in conditions of con-
stant (solid line) and variable (dashed line) viscosity are
compared. It can be seen that for variable viscosity the
profile shows the typical shape expected for non-linear
fluids; ice is indeed stiffer near the surface and softer near
the bedrock; for this reason, vertical variations in the
longitudinal velocity are concentrated near the bedrock
while they are comparatively small near the surface.

5. A REAL CASE APPLICATION: PRIESTLEY GLACIER
Priestley Glacier is an Antarctic glacier that starts from
Victoria Land Plateau and flows into Nansen Ice Sheet; it is
about 96 km long. It flows into a narrow valley which is
about 7 km wide, and its flow is almost unidirectional. In
this application we consider a portion of Priestley Glacier
13 km long and 6 km wide, around a reference point P with
coordinates 74819’ S, 162891’ E (Baroni, 1996). Since the
domain is narrower than the valley, some ice/ice interfaces
occur on lateral walls. Surface topography is calculated
using the RAMP (RADARSAT-1 Antarctic Mapping Project)
database, while bedrock topography is calculated by inte-
grating BEDMAP data and radio-echo soundings (personal
communication from I. Tabacco, 2004).

Fig. 6. Comparison between the vertical profiles of the longitudinal
velocity of the simulation with constant viscosity (solid line) and
variable viscosity (dashed line) in the centre of the domain with
undulating bedrock. The sliding velocity is 1.3ma–1 for the
constant viscosity case and 0.9ma–1 for the variable viscosity case.

Fig. 7. (a) Velocity field in the central longitudinal section
(y ¼ 3000m) and (b) free surface of case A of the application to
Priestley Glacier. The components of the gravity acceleration vector
in the considered reference system are gx ¼ 0:170, gy ¼ 0:012,
gz ¼ �9:809 (see section 3.1). The velocities are strongly affected
by the bedrock geometry, and the surface undulations are of the
same amplitude as the measured ones. Shortwave undulations of
the surface are due to the coarse discretization.
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The study is performed with two different space
discretizations in order to evaluate the model performance
and the computational effort; calculated velocities are
compared to the measured surface velocity at P. It should
be noted that the bedrock geometry may change when
using different discretizations; indeed the use of smaller
control volumes allows for a better representation of the
bedrock.

In the first case (case A) the domain is partitioned into
3528 control volumes (21 rows in the x direction, 12 in the
y direction and 14 in the z direction), of which 2301 are
active. In the second case (case B) the domain is partitioned
into 13 860 control volumes (66 rows in the x direction, 15
in the y direction and 14 in the z direction), of which 9202
are active. In both cases the time-step, Dt, is 0.1 years. The
solution is calculated starting from an unperturbed situation
with constant viscosity and no-slip conditions on all solid

walls; after the velocity field is developed, the viscosity is
calculated by Equation (4), with sliding coefficients chosen
in order to calculate the steady-state solution. The high
surface velocities allow the hypothesis of basal sliding
conditions; on this basis an average temperature of –108C is
used so that the value of B is 1.3�105 s1/3 kPa. The sliding
parameters on all control volume faces lying on the bedrock
are C ¼ 6� 1018m s–1 Pa–2 and C ¼ 2�1018m s–1 Pa–2 for
cases A and B, respectively. On lateral walls where ice/ice
interface occurs C ! 1 is used in both cases. Time
iterations are 10 000 for case A and 12810 for case B; in
both cases the final � is less than 10�4.

Unlike the preceding theoretical tests, in this application
none of the righthand-side terms are neglected, � is
computed by Equation (23) on all control volumes and
homogeneous Dirichlet boundary conditions are imposed at
inflow and outflow for v, w and �.

Fig. 8. (a) Discretized bedrock geometry, (b) free surface, (c) velocity field in the central longitudinal section (y ¼ 3000m), (d) surface
velocity field, (e) hydrodynamic pressure field in the central longitudinal section and (f) effective stress �e in the central longitudinal section
of case B of the application to Priestley Glacier. The components of the gravity acceleration vector in the considered reference system are
gx ¼ 0:170, gy ¼ 0:012, gz ¼ �9:809 (see section 3.1). Pressure and velocity fields are strongly affected by the bedrock geometry and are
fully three-dimensional; variations in all directions are evident. The surface undulations are of the same amplitude as the measured ones. The
stress is maximum at the base and minimum at the surface.
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The measured surface velocity at P is 81ma–1; the
calculated velocity at the central point of the nearest control
volume is 77.5ma–1 for case A and 83.8ma–1 for case B.
The simulations were performed on a Dell Precision 670
equipped with an Intel Xeon 3.4GHz and 2GB RAM. The
total time for A simulation was 2.75 hours, while the total
time for B simulation was 33.8 hours. This increase of
computational time is due to the use of an iterative method
(the preconditioned biconjugate gradient method) for the
solution of the algebraic systems.

For case A, only surface elevation and velocity field are
presented in Figure 7. For case B, more results are presented
in Figure 8. In all cases the numerical results are in good
agreement with physical values.

6. CONCLUSIONS
A numerical model for ice dynamics is presented and tested.
The model is based on a fluid-dynamic approach, and is
time-evolutive and fully three-dimensional. The full pressure
field is computed by considering both the hydrostatic and
hydrodynamic pressure components, all the stresses are
calculated and the velocity field is calculated by applying
boundary conditions at all the domain boundaries (i.e. at
surface, bedrock, lateral walls, inflow and outflow sections).
The model uses high-order approximations for field equa-
tions and boundary conditions. It can deal with both
constant and variable viscosity thanks to a constitutive law
based on Glen’s law. The presented theoretical applications
investigate basal processes such as flow in the presence of
slipperiness variations or of bedrock undulations. The tests
show that the pressure is not always hydrostatic and, in
particular cases, a hydrodynamic pressure component arises
and plays an important role in basal processes and ice
dynamics. Further investigations of the role of the hydro-
dynamic pressure could be of interest and provide important
information about ice dynamics.

The application to Priestley Glacier shows the capability
of the model to deal with real cases, and the importance of
considering the three-dimensional Stokes equations in order
to have a good description of ice dynamics where three-
dimensional effects are not negligible.
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APPENDIX A
In this appendix the space and time discretization of the
proposed scheme is presented in detail.

In Figure 1 a sketch of a three-dimensional control
volume is presented. Although the control volumes are
labeled at their central points with a proper number (as in
the finite-element method), for clarity in this paper each
control volume is labelled by the three indices ijk of its
centre. Faces 1 and 2 of the control volume are orthogonal
to the x axis, faces 3 and 4 to the y axis and faces 5 and 6 to
the z axis.

In the first step the discretized component-wise form of
Equation (9) is solved:
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The sums are extended over the control volume faces, �½ �f
refers to quantities calculated on a control volume face,
and nx , ny , nz are the components of the outward vector
normal to each control volume face. Details on the
approximation of the diffusive term on control volume
faces are presented in Appendix B. The superscripts
represent the time indices; as said above, the dimension
�z is time-indexed because it is allowed to vary in time for
surface control volumes. In the computation of the fluxes,
�z of faces in common between two surface control
volumes is calculated by the weighted mean value of the
�z of the two control volumes.

In the second step the following discretized form of
Equation (10) is considered:
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The discrete incompressibility equation is
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Formal substitution of Equations (A4–A6) into Equation (A7)
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gives the discrete equations for the hydrodynamic pressure,
�qþ1, for the volumes not connected to the free surface:
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for k ¼ m, m þ 1, . . . , M � 1, ðA8Þ

where m and M are the k index of the lower and upper
control volume layer respectively.

In order to calculate the hydrodynamic pressure, �qþ1, on
the surface control volumes together with the final free-
surface elevation, the following discretized form of the
Saint-Venant equation (7) is considered:
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Formal substitution of Equation (A7) into Equation (A9) gives
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Formal substitution of the momentum equations (A4–A6)
into Equation (A10) gives:
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In this equation, two unknowns are present: namely the new
surface elevation sqþ1

ij and the hydrodynamic pressure at the

surface control volumes �qþ1
ijM . In order to solve this equation,

the pressure in the surface control volumes is considered
hydrostatic, i.e. jgjðsqþ1 � zÞ ¼ jgjðsq � zÞ þ �qþ1, whence

sqþ1 ¼ sq þ �qþ1

jgj : ðA12Þ

Substitution of Equation (A12) into Equation (A11) gives the
discrete equation for �qþ1 in the surface control volumes:
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Finally, the system of discrete equations for �qþ1 is given by
the conjunction of Equations (A8) and (A13).

After the hydrodynamic pressure is calculated, the final
velocity field is computed by Equations (A4–A6) and the
final free-surface elevation is computed by Equation (A12).

APPENDIX B
In this appendix the details of the approximation of diffusive
terms on control volume faces and of boundary conditions
are presented.

The approximation of the diffusive flux of the three
velocity components, u, v, w, and of the hydrodynamic
pressure, �, on the control volume face requires the
approximation of the first derivative of each quantity on
the control volume face itself; this is done using a four-point
centred formula; the formula is third-order accurate even
with non-uniform grid spacing.

As an example, the first derivative, @u=@x, on control
volume face 1 is presented here. Appropriate rotations and
translations of the presented scheme allow the approxima-
tion of all derivatives on all control volume faces. Applica-
tion to the other field variables allows the approximation of
all diffusive fluxes. In order to approximate @u=@x at
point Pw placed on face 1 (Fig. 1), the stencil presented in
Figure 9a is used. The distances of stencil points are
calculated on the basis of a local reference system (�, �, �)
in which the origin is placed at point P2. The approximation
of @u=@x is

@u
@x


 �
Pw

¼
X4
i¼1

Diui , ðB1Þ

where ui are the u values to be calculated at points Pi and
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the Di coefficients are

D1 ¼ �23
4�1ð�1 þ �3Þð�1 þ �4Þ ,

D2 ¼ � 1
�3

� �3
4�1�4

,

D3 ¼ �4�1�3 � 3�23 þ 4�1�4 þ 4�3�4
4�3ð�1 þ �3Þð�4 � �3Þ ,

D4 ¼ �23
4�4ð�3 � �4Þð�1 þ �4Þ :

As a second example the first derivative, @u=@x, at a
boundary point is presented here. Appropriate rotations of
the presented scheme allow the approximation of all
derivatives at all boundary points. Application to the other

field variables allows the approximation of all boundary
fluxes. Fluxes on the boundary are approximated by means
of a non-centred four-point formula, which is third-order
accurate even with non-uniform grid spacing and does not
use any fictitious external point. In order to approximate
@u=@x at boundary point P1, the stencil presented in
Figure 9b is used. The distances of stencil points are
calculated on the basis of a local reference system (�, �, �)
in which the origin is placed at point P1. The approximation
of @u=@x is

@u
@x


 �
P1

¼
X4
i¼1

riui, ðB2Þ

where the coefficients ri are

r1 ¼ �ðr2 þ r3 þ r4Þ,

r2 ¼ ðh1 þ h2Þðh1 þ h2 þ h3Þ
h1h2ðh2 þ h3Þ ,

r3 ¼ �h1ðh1 þ h2 þ h3Þ
ðh1 þ h2Þh2h3 ,

r4 ¼ h1ðh1 þ h2Þ
ðh1 þ h2 þ h3Þðh2 þ h3Þh3

and the distances between the stencil points are h1 ¼
�2 � �1, h2 ¼ �3 � �2, h3 ¼ �4 � �3.

These formulae are used for the approximation of all
implicit terms. Explicit terms (on the righthand side of
Equations (A1–A3) and in the boundary conditions) are
approximated by similar three-point second-order formulae.
More details on the generalized finite-difference formulae
can be found in Pennati and others (1992), Pennati and Corti
(1994), Deponti (2003) and Deponti and others (2006).
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Fig. 9. (a) Four-point centred stencil for the approximation of
diffusive fluxes on control volume faces and (b) four-point non-
centred stencil for the approximation of diffusive fluxes at boundary
points.
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