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Abstract

Let X be a real Banach space. The rectangular constant μ(X) and some generalisations of it, μp(X) for
p ≥ 1, were introduced by Gastinel and Joly around half a century ago. In this paper we make precise
some characterisations of inner product spaces by using μp(X), correcting some statements appearing in
the literature, and extend to μp(X) some characterisations of uniformly nonsquare spaces, known only
for μ(X). We also give a characterisation of two-dimensional spaces with hexagonal norms. Finally, we
indicate some new upper estimates concerning μ(lp) and μp(lp).
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1. Introduction

LetX be a real Banach space. Let us denote by B(X) and S(X) the unit ball and the
unit sphere, respectively.The vector x is (Birkhoff–James) orthogonalto y (which we
denote by x ⊥ y) if ‖x‖ ≤ ‖x + λy‖ for every real λ. In [8] (see also [9]), the rectangular
constant was introduced:

μ(X) = sup
{ 1 + λ
‖x + λy‖ : x, y ∈ S(X), x ⊥ y, λ ≥ 0

}
.

In [8], Joly proved that
√

2 ≤ μ(X) ≤ 3 and, for dim(X) ≥ 3, that μ(X) =
√

2 if and
only if X is a Hilbert space. In [4], the equivalence was extended to two-dimensional
spaces. Moreover, in [1], the following result was proved: μ(X) = 3 if and only if
the space X is nonuniformly nonsquare. We recall that a space X is nonuniformly
nonsquare (non-UNS for short) if for every ε > 0 there exist x, y ∈ S(X) such that
‖x ± y‖ > 2 − ε.

In [6], Gastinel and Joly extended the definition of the rectangular constant: for
p ≥ 1, x, y ∈ S(X) and x ⊥ y,

μp(x, y) = sup
λ≥0

{ (1 + λp)1/p

‖x + λy‖

}
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and

μp(X) = sup{μp(x, y) : x, y ∈ S(X), x ⊥ y}.

We note that μ1(X) = μ(X). The following properties are proved in [6].

(A) We have 2(2−p)/2p ≤ μp(X) ≤ 3. We remark that μp(X) is never smaller than 1 and
so the left-hand inequality is meaningful only for 1 ≤ p < 2. In Theorem 2.1 we
will prove better estimates.

(B) If dim(X) ≥ 3, then X is a Hilbert space if and only if μp(X) = 2(2−p)/2p. By
the preceding remark this is true only for 1 ≤ p ≤ 2. In Theorem 2.1 we will
revise this result by proving that, for p ≥ 2, X is a Hilbert space if and only
if μp(X) = 1.

In Section 3 we will extend the characterisation of nonuniformly nonsquare spaces
in terms of the parameter μp(X). More precisely we will prove that a space X is
non-UNS if and only if μp(X) = (1 + 2p)1/p for every p ≥ 1.

In Section 4 we will give a characterisation of two-dimensional spaces with
symmetric orthogonality by using the parameter μp(X) and, finally, in the last section
we will improve some upper bounds obtained in [5] for the parameter μ(lp).

2. Revisiting the Hilbert space characterisation

As we have already remarked, Proposition 7.2.4 in [6] is correct only for 1 ≤ p ≤ 2.
In the following theorem we give the correct result for p > 2.

THEOREM 2.1. Let X be a real Banach space and p ≥ 1.

(i) We have max{1, 21/p−1μ(X)} ≤ μp(X) ≤ min{μ(X), (1 + 2p)1/p}.
(ii) If p ≥ 2 and dim(X) ≥ 3, then X is a Hilbert space if and only if μp(X) = 1.

PROOF. From the inequality ap + bp ≤ (a + b)p ≤ 2p−1(ap + bp), where a and b are
nonnegative scalars, it follows immediately that 21/p−1μ(X) ≤ μp(X) ≤ μ(X). The
inequality μp(X) ≥ 1 is trivial. Finally, since ‖x + λy‖ ≥ 1 and ‖x + λy‖ ≥ |λ − 1|,

1 + λp

‖x + λy‖p ≤ min
(
1 + λp,

1 + λp

|λ − 1 |p
)
≤ 1 + 2p.

This concludes the proof of the first statement.
Suppose now that μp(X) = 1. If x, y ∈ S(X) and x ⊥ y, then (1 + λp)/‖x + λy‖p ≤ 1.

This implies that λ ≤ ‖x + λy‖ or equivalently 1 ≤ ‖x/λ + y‖ for every λ > 0. Replacing
x by −x, for every λ we have ‖λx + y‖ ≥ 1 = ‖y‖, which means that y ⊥ x. So, orthogo-
nality is symmetric and so by [7] the space X is a Hilbert space. It is easy to prove that
if X is a Hilbert space, then μp(X) = 1. �

Therefore, the correct characterisation of Hilbert spaces in terms of μp(X) is
the following: if dim(X) ≥ 3, then X is a Hilbert space if and only if μp(X) =
max{1, 2(2−p)/2p}.

https://doi.org/10.1017/S0004972721000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721000253


126 M. Baronti, E. Casini and P. L. Papini [3]

3. Uniformly nonsquare spaces

In this section we extend Theorem 4 in [1]. We recall that the property that X is
non-UNS can equivalently be defined in the following way: for every ε > 0, there exist
x, y ∈ S(X) such that ‖x ± y‖ < 1 + ε.

THEOREM 3.1. The following conditions are equivalent:

(a) X is non-UNS;
(b) for every p ≥ 1, μp(X) = (1 + 2p)1/p;
(c) there exists p ≥ 1 such that μp(X) = (1 + 2p)1/p.

PROOF. (c ⇒ a) If μp(X) = (1 + 2p)1/p, then, for every ε > 0, there exist λε > 0 and
xε , yε ∈ S(X) with xε ⊥ yε such that

1 + 2p − ε ≤ 1 + λp
ε

‖xε + λεyε‖p
≤ 1 + 2p.

It is easy to show that this implies that 2p − ε < λp
ε < 2p + δ(ε) with δ(ε)→ 0 when

ε → 0. From this,

‖xε + λεyε‖ ≤
( 1 + λp

ε

1 + 2p − ε

)1/p
≤
(1 + 2p + δ(ε)

1 + 2p − ε

)1/p

and so 1 ≤ ‖xε + λεyε‖ ≤ 1 + η(ε) with η(ε)→ 0 when ε → 0. Next, f (t) = ‖xε + tyε‖
is a convex function such that 1 ≤ f (t), f (0) = 1 and f (λε) ≤ 1 + η(ε), so it follows that
1 ≤ ‖xε + yε‖ < 1 + η(ε). Let z = (xε + yε)/‖xε + yε‖. Then

‖z + yε‖ =
‖xε + yε + ‖xε + yε‖ yε ‖

‖xε + yε‖
≤ ‖xε + λεyε + (1 + ‖xε + yε‖ − λε)yε ‖

≤ ‖xε + λεyε‖ + |(1 + ‖xε + yε‖ − λε)|
≤ 1 + η(ε) + |1 − ‖xε + yε‖| + |λε − 2| = 1 + δ1(ε)

with δ1(ε)→ 0 when ε → 0. Similarly,

‖z − yε‖ =
‖xε + yε − ‖xε + yε‖yε‖

‖xε + yε‖
≤ ‖xε + (1 − ‖xε + yε‖)yε‖

≤ ‖xε‖+ | 1 − ‖xε + yε‖ | ≤ 1 + η(ε).

So, X is non-UNS.
(a ⇒ b) Let X be non-UNS. Fix ε with 0 < ε < 1/2. There exist x, y ∈ S(X)

such that ‖x ± y‖ > 2 − ε2. By convexity, ‖λx ± (1 − λ)y‖ ≥ 1 − 2ε2 for every λ ∈ [0, 1].
Moreover, ‖x + εy‖ > 1. Indeed, 2 − ε2 < ‖x + y‖ ≤ ‖x + εy‖ + 1 − ε and so ‖x + εy‖ >
1 + ε − ε2. Let F(λ) = ‖εy + λ(x − (x + εy)/‖x + εy‖)‖. It is easy to show that F is a
convex function with F(1) = F(‖x + εy‖) and so there exists λ0 > 1 such that F attains
its minimum. It follows that the two vectors a = εy + λ0(x − (x + εy)/‖x + εy‖) and
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b = x − (x + εy)/‖x + εy‖ are orthogonal. Moreover,

‖b‖ =
(‖x + εy‖ − 1 + ε

‖x + εy‖

)∥∥∥∥∥ ‖x + εy‖ − 1
‖x + εy‖ − 1 + ε

x +
ε

‖x + εy‖ − 1 + ε
(−y)
∥∥∥∥∥

≥
(‖x + εy‖ − 1 + ε

‖x + εy‖

)
(1 − 2ε2) ≥

( (1 + ε)∥∥∥ x
1+ε +

εy
1+ε

∥∥∥ − 1 + ε

1 + ε

)
(1 − 2ε2)

≥ 1 − 2ε2

1 + ε
((1 + ε)(1 − 2ε2) − 1 + ε) =

1 − 2ε2

1 + ε
ε(2 − 2ε − 2ε2) = ε(2 − η(ε))

with η(ε)→ 0 as ε → 0. Finally, recalling that λ0 > 1,

μ
p
p(X) ≥

‖a‖p + λp
0‖b‖

p

‖a − λ0b‖ ≥ 1
ε p

(∥∥∥∥∥εy + λ0

(
x − x + εy
‖x + εy‖

)∥∥∥∥∥
p

+ ε p(2 − η(ε))p
)

≥ 1
ε p

(
λ0

∥∥∥∥∥x − x + εy
‖x + εy‖

∥∥∥∥∥ − ε
)p
+ ε p(2 − η(ε))p

)

≥ 1
ε p

( (ε(2 − η(ε)) − ε)p + ε p(2 − η(ε))p) = (1 − η(ε))p + (2 − η(ε))p. �

We remark that it is easy to show (see [6]) that if μ(X) = 3 is attained, that is, if there
exist x and y such that x ⊥ y and μ1(x, y) = 3, then there is a segment of length 2 on the
unit sphere. (See also [10] for an extension of this result.) The space X =

(∏∞
n=2 l2n

)
2 is

a non-UNS space but it is strictly convex (see [2, page 185]), so in this space μ(X) = 3
but it is not attained. This gives an affirmative answer to Remark 2.2 in [10].

4. Symmetric orthogonality

We have already remarked that if dim(X) ≥ 3, the symmetry of Birkhoff–James
orthogonality implies that X is a Hilbert space. However, there are two-dimensional
spaces which are not Hilbert spaces but orthogonality is still symmetric. A simple
example is the space X with the ‘hexagonal’ norm, that is, the norm generated by a
regular hexagon. An easy evaluation shows that μp(X) = 21/p for any p ≥ 1. In this
section we give a necessary and sufficient condition for a two-dimensional space X to
be isometric to a space with ‘hexagonal’ norm. We denote by J+x (y) the right derivative
of the norm at x, that is, J+x (y) = limλ→0+ (‖x + λy‖ − ‖x‖)/λ and similarly by J−x (y) for
the left derivative. The following properties of J±x (y) are easy to prove.

LEMMA 4.1. For x, y ∈ X:

(1) J+x (y) = sup{ f (y) : f ∈ S(X∗), f (x) = ‖x‖};
(2) J−x (y) = inf{ f (y) : f ∈ S(X∗), f (x) = ‖x‖};
(3) J+x (x + y) = J+x (x) + J+x (y) and J−x (x + y) = J−x (x) + J−x (y);
(4) J+x (−y) = −J+x (y) and J−x (−y) = −J−x (y);
(5) J−x (y) ≤ 0 ≤ J+x (y) if and only if x ⊥ y.
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LEMMA 4.2. Let x ⊥ y with x, y ∈ S(X) and p > 1. Let λ0 be such that

μ
p
p(x, y) =

1 + λp
0

‖x + λ0y‖p .

Then x + λ0y ⊥ λp−1
0 x − y.

PROOF. Let F(λ) = (1 + λp)/‖x + λy‖p and suppose that F(λ0) ≥ F(λ) for every λ ≥ 0.
Then

F′+(λ) =
pλp−1‖x + λy‖p − p(1 + λp)‖x + λy‖p−1J+x+λy(y)

‖x + λy‖2p
.

So, F′+(λ0) ≤ 0 and, by Lemma 4.1,

[λp−1
0 ‖x + λ0y‖ − (1 + λp

0 )J+x+λ0y(y)] = λp−1
0 J−x+λ0y(x + λ0y) + J−x+λ0y((−1 − λp

o )y) ≤ 0.

Moreover,

J−x+λ0y(λp−1
0 x + λp

0y − y − λp
0y) = J−x+λ0y(λp−1

0 x − y) ≤ 0.

Finally, in the same way, J+x+λ0y(λp−1
0 x − y) ≥ 0 and this implies that x + λ0y ⊥

λ
p−1
0 x − y. �

THEOREM 4.3. Let dim(X) = 2 and suppose that Birkhoff–James orthogonality is
symmetric. Then the following statements are equivalent:

(a) X has a ‘hexagonal’ norm;
(b) μp(X) = 21/p for every p ≥ 1;
(c) there exists p ≥ 1 such that μp(X) = 21/p.

PROOF. Suppose that μp(X) = 21/p = (1 + λp
0 )1/p/‖x + λ0y‖. Since the orthogonality is

symmetric,

2 =
1 + λp

0

‖x + λ0y‖p ≤ 1 + λp
0

and

2 =
1 + λp

0

‖x + λ0y‖p ≤
1 + λp

0

λ
p
0

and this implies that λ0 = 1. So, ‖x + λy‖ = 1 for λ ∈ [0, 1] and, by Lemma 4.2,
we obtain x + y ⊥ x − y. Consider the linear map T : X → R2 with T(x) = (1, 0)
and T(y) = (−1, 1) and define ‖|T(z)‖| = ‖z‖. Then ‖x + λy‖ = 1 implies that
‖|(1 − λ, λ)‖| = 1 for λ ∈ [0, 1]. Again, ‖|λ(−1, 1) + (1 − λ)(0, 1)‖| = ‖y + 2(1 − λ)x‖ ≥
‖y‖ = 1 for λ ∈ [0, 1] and by convexity ‖|λ(−1, 1) + (1 − λ)(0, 1)‖| = 1. Since
‖x + y‖ = 1 = ‖y‖ ≤ ‖x + y + λx‖, it follows that x ⊥ x + y. Finally, we observe that
‖|λ(−1, 1) + (1 − λ)(−1, 0)‖| = ‖x − λ(x + y)‖ ≥ 1 and again, by convexity, we have
‖|λ(−1, 1) + (1 − λ)(−1, 0)‖| = 1 for every λ ∈ [0, 1]. �
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We conclude this section by showing that in the class of two-dimensional spaces
with symmetric orthogonality we always have μp(H) ≤ μp(X) ≤ 21/p, where H denotes
the Euclidean plane. As shown by Theorem 4.3, the upper bound is attained by the
hexagonal norm.

THEOREM 4.4. Let X be a two-dimensional space with symmetric orthogonality. Then
μp(X) ≤ 21/p.

PROOF. Let x, y ∈ S(X) and x ⊥ y (and so y ⊥ x). Then

sup
λ≥0

(1 + λp)1/p

‖x + λy‖ = sup
λ>0

(1 + (1/λp))1/p

‖x + (1/λ)y‖ = sup
λ≥0

(1 + λp)1/p

‖y + λx‖ ,

so that μp(x, y) = μp(y, x). Let λ0 be such that μp(x, y) = (1 + λp
0 )1/p/‖x + λ0y‖. Then

μp(x, y) =
(1 + λp

0 )1/p

‖x + λ0y‖ =
(1 + (1/λ0)p)1/p

‖y + (1/λ0)x‖ ≤ μp(y, x) = μp(x, y).

Since λ0 or 1/λ0 is less than or equal to 1, this proves the theorem. �

5. Estimates in lp spaces

The exact value of the parameter μp(X) is in general unknown. However, as we
have already claimed, if X is a Hilbert space, then μ(X) =

√
2. It is also easy to obtain

μ(l1) = μ(l∞) = 3. These results also follow from Theorem 3.1. Some bounds for lp

spaces are given in [5]: μ(lp) ≤ (5 +
√

p)/(1 +
√

p) for 1 ≤ p ≤ 2 and μ(lp) ≤ 3 − 2/3p
for p ≥ 2. In the next theorems, we will improve these estimates.

LEMMA 5.1. Let p ≥ 2, x, y ∈ S(lp) and x ⊥ y. Then, for every λ ≥ 0,

‖x + λy‖p ≥ 1 +
λp

2p−1 − 1
.

PROOF. The proof follows easily if we prove that for every N,

‖x + λy‖p ≥ 1 +
( N∑

n=1

2n(1−p)
)
λp. (5.1)

From the well-known Clarkson inequality,

2(‖u‖p + ‖v‖p) ≤ ‖u + v‖p + ‖u − v‖p,

choosing u = x + λy and v = λy,

2(‖x + λy‖p + λp) ≤ ‖x + 2λy‖p + 1. (5.2)

Since ‖x + λy‖ ≥ 1, it follows that ‖x + 2λy‖p ≥ 1 + 2λp. From this,

‖x + λy‖p ≥ 1 + 21−pλp. (5.3)
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This shows that (5.1) is true for N = 1. Let us suppose that (5.1) is true. Then,
by (5.2),

‖x + 2λy‖p ≥ 2‖x + λy‖p + 2λp − 1

≥ 2
(
1 +
( N∑

n=1

2n(1−p)
)
λp
)
+ 2λp − 1 = 1 +

( N∑
n=0

2n(1−p)+1
)
λp.

This implies that

‖x + λy‖p ≥ 1 +
( N∑

n=0

2n(1−p)+1
)
λp

2p
= 1 +

( N+1∑
n=1

2n(1−p)
)
λp. �

THEOREM 5.2. For p ≥ 2,

μ(lp) ≤ (1 + (2p−1 − 1)1/(p−1))(p−1)/p.

PROOF. Suppose that x, y ∈ S(lp) with x ⊥ y. Then, by Lemma 5.1,

μ(x, y) = sup
λ≥0

1 + λ
‖x + λy‖ ≤ sup

λ≥0

1 + λ(
1 + λp

2p−1−1

)1/p .

It is easy to show that the function

φ(λ) =
1 + λ(

1 + λp

2p−1−1

)1/p
attains its maximum value for λ = (2p−1 − 1)1/(p−1), so

μ(x, y) ≤ φ((2p−1 − 1)1/(p−1)) = (1 + (2p−1 − 1)1/(p−1))(p−1)/p. �

LEMMA 5.3. Let 1 < p ≤ 2, x, y ∈ S(lp) and x ⊥ y. Then, for every λ ≥ 0,

‖x + λy‖q ≥ 1 +
λq

2q−1 − 1
,

where q and p are conjugate indices.

PROOF. Starting from the inequality

2q−1(‖u‖q + ‖v‖q) ≥ ‖u + v‖q + ‖u − v‖q,

the proof follows with similar arguments to those in Lemma 5.1. �

THEOREM 5.4. For 1 < p ≤ 2,

μ(lp) ≤ (1 + (21/(p−1) − 1)p−1)1/p.

PROOF. The proof of the theorem is similar to that of Theorem 5.2 with the help of
Lemma 5.3. �
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THEOREM 5.5. For 1 < p ≤ 2,

μ(lp) ≤
√

p
p − 1

.

PROOF. For f , g ∈ lp, we use the inequality (see [3])

2‖ f ‖2 + 2‖g‖2 ≥ ‖ f + g‖2 + (p − 1)‖ f − g‖2.

Let x, y ∈ S(lp) with x ⊥ y. If f = 1
2 x + λy and g = 1

2 x,

2
∥∥∥∥∥ x

2
+ λy
∥∥∥∥∥

2
+ 2
∥∥∥∥∥ x

2

∥∥∥∥∥
2
≥ ‖x + λy‖2 + (p − 1)‖ λy‖2

or equivalently

‖x + 2λy‖2 ≥ 2‖x + λy‖2 + 2(p − 1)λ2 − 1. (5.4)

Since ‖x + λy‖ ≥ 1, we obtain ‖x + 2λy‖2 ≥ 1 + 2(p − 1)λ2 and, from this,

‖x + λy‖2 ≥ 1 +
p − 1

2
λ2.

It is now easy to prove by induction that

‖x + λy‖2 ≥ 1 +
2n − 1

2n (p − 1)λ2

and so ‖x + λy‖2 ≥ 1 + (p − 1)λ2. This last inequality yields

μ(x, y) = sup
λ≥0

1 + λ
‖x + λy‖ ≤ sup

λ≥0

1 + λ
(1 + (p − 1)λ2)1/2 .

Finally, simple calculations show that, for λ > 0,

1 + λ
(1 + (p − 1)λ2)1/2 ≤

√
p

p − 1
. �

From the last two theorems,

μ(lp) ≤ min
(
(1 + (21/(p−1) − 1)p−1)1/p,

√
p

p − 1

)
.

A numerical evaluation shows that

(1 + (21/(p−1) − 1)p−1)1/p ≤
√

p
p − 1

for 1 < p ≤ p0 with p0 
 1.188.
With the aid of Lemmas 5.1 and 5.3, we also obtain some estimates for μp(lp).

THEOREM 5.6. For p ≥ 2,

μp(lp) ≤ (2p−1 − 1)1/p.
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PROOF. Suppose that x, y ∈ S(lp) with x ⊥ y. Then, by Lemma 5.1,

μ
p
p(x, y) = sup

λ≥0

1 + λp

‖x + λy‖p ≤ sup
λ≥0

1 + λp

1 + λp

2p−1−1

= sup
λ≥0
φ(λ) (say).

It is easy to show that the function φ(λ) is increasing, so

μp(x, y) ≤ lim
λ→∞

( 1 + λp

1 + λp

2p−1−1

)1/p
= (2p−1 − 1)1/p. �

THEOREM 5.7. For 1 < p < 2,

μp(lp) ≤ (1 + (21/(p−1) − 1)(p−1)/(2−p))(2−p)/p.

PROOF. The proof is similar to that of Theorem 5.6. Suppose that x, y ∈ S(lp) with
x ⊥ y. Then, by Lemma 5.3,

‖x + λy‖q ≥ 1 +
λq

2q−1 − 1
,

where q and p are conjugate indices. Consequently,

μ
p
p(x, y) = sup

λ≥0

1 + λp

‖x + λy‖p ≤ sup
λ≥0

1 + λp

(1 + λq

2q−1−1 )p/q
= sup
λ≥0
φ(λ) (say).

Finally, the maximum of the function φ(λ) is the upper bound in the theorem. �

In [6], Gastinel and Joly proved that μ(lp) = μ(l2p), where l2p is the two-dimensional
lp space and they gave a table with some numerical estimates of the rectangular
constant for l2p spaces. In their subsequent Remark 11.4.1, they suggested that probably
μ(lp) = μ(lq), where p and q are conjugate. We conclude with a similar table (see
Table 1) obtained with more accurate calculations, which shows instead that, in
general, they are different.

TABLE 1. Values of μ(lp) and μ(lq).

p μ(lp) q μ(lq)

2 1.4142 2 1.4142
3 1.7285 3/2 1.6554
4 1.9337 4/3 1.8264
5 2.0772 5/4 1.9554
10 2.4328 10/9 2.3099
15 2.5826 15/14 2.4742
30 2.7598 30/29 2.6819
50 2.8429 50/49 2.7854
100 2.9131 100/99 2.8771
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