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1. Introduction 

Many problems in stellar dynamics involve phenomena occurring in inhomogeneous 
systems in which the interaction between the particles is fully described by a self-
consistent field operating in phase space. Because the particles interact by means of 
the long-range Coulomb force, each particle is under the simultaneous influence of 
a large number of other particles. Therefore, stellar systems will respond to any 
perturbation in a collective manner, and a study of such systems is concerned es­
sentially with the iV-body problem. 

The collective phenomena do not depend on two-body collisions such as occur 
in ordinary gases, and therefore the collective effects will be present in collisionless 
systems. Since the number of particles in the system is large, a distribution function 
can be used to describe the density of particles in phase space. The distribution 
function must then satisfy the Vlasov equation (the self-consistent set of the Maxwell 
equations plus the collisionless Boltzmann equation). In using the Vlasov equation 
to describe a stellar system the number of masses which make up the system is assumed 
to become infinite while the total mass remains constant. Although such an approach 
allows description of the system by means of a distribution function which must 
satisfy the Vlasov equation, solutions to the time-dependent nonlinear Vlasov (or 
collisionless Boltzmann) equation are, in general, very difficult to obtain. An attempt 
is therefore made to condense the large number of stars which a galaxy or other 
stellar system may contain into a smaller number of superparticles. Numerical or 
computer models are then used to perform computer experiments simulating Vlasov 
phenomena by following the simultaneous motion of a large number of superparticles. 

Computer models for collisionless systems have been extensively used to study 
plasmas and plasma flow problems. Much of this work is referred to in the proceedings 
of the two recent conferences {Symposium on Computer Simulation of Plasma and 
Many-Body Problems, Williamsburg, Virginia, April 1967, NASA SP-153, and 
Proceedings of the APS Topical Conference on Numerical Simulation of Plasmas, Los 
Alamos, New Mexico, Sept. 1968, LA-3990). The application of computer models 
to collisionless stellar systems has been more recent and we describe below the two-
dimensional rod model and the model for disks of stars. For these two models the 
equations of motion used to advance the motion of the stars are the same. The 
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essential difference is in the determination of the gravitational field or force acting 
on a star. 

At the present time there are no realistic three-dimensional computer simulations 
for collisionless systems in progress. The reason for this is simply a matter of eco­
nomics, that is, limited computer storage and computer time. Nevertheless, the 
methods for performing three-dimensional calculations are available as a simple 
extension of the methods used in simulating disks of stars. 

2. Computer Model for Disks of Stars 

One of the more realistic models presently available for simulating stellar systems 
is the model which simulates the motion of large numbers of stars (point masses) 
that are confined to move in the plane of a highly flattened stellar system, such as 
a disk galaxy. 

The model effectively simulates the evolution of an isolated disk of stars. Lindblad 
(1960) pioneered such calculations by following the motion of up to 192 mutually 
attracting mass points in the given central field of the Galaxy. By placing the mass 
points initially in a system of concentric rings with circular velocities, Lindblad 
investigated the mutual disturbances in such a system to simulate the spiral structure 
of galaxies. Because Lindblad was able to follow the motion of only a rather small 
number of stars, his model has limited applicability. Miller and Prendergast (1968) 
developed a model to study the motion of stars in a plane for systems which are 
doubly periodic and the forces, star positions, and velocities are allowed only discrete 
(integer) values which are less than some given maximum value. 

The two computer models that are now in use for studying the evolution of self-
consistent disk galaxies have recently been described by Miller and Prendergast 
(1968), and by Hohl and Hockney (1969). With the development of such models 
it becomes possible to simulate the dynamical evolution of galaxies (Miller, Prender­
gast and Quirk (1970) and Hohl (1970a, 1970b)) and to check some of the theoretical 
predictions for stellar systems (Hockney and Hohl (1969)). The dynamics of the 
gravitational two-stream instability and of the Jeans instability in a plane stellar 
system have been investigated by Hohl (1970c). Miller (1970) has analyzed in detail 
some of the discretization properties of plane stellar systems. 

A. COMPUTER MODEL 

The computer model used for investigating the dynamics of disk galaxies is illustrated 
in Figure 1. The NxN array of cells shown in Figure 1 is superposed over the plane 
of the galactic disk. The array of cells is introduced only for the purpose of calculating 
the gravitational potential. The cells are identified by n, m with n = 0, 1, 2, ..., N— 1 
increasing in the x-direction and with m = 0,l,2, ..., N—l increasing in the y-
direction. The cell in the lower left-hand corner is 0, 0 and that in the upper right-
hand corner of the array is N— 1, N— 1. The stars move over this imaginary array of 
cells. At the center of each cell a mass density is defined which is given by the number 
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Fig. 1. Computer model illustrating the N x N array of cells used in calculating the gravitational 
potential. 

of stars in that cell. The number of stars in a cell is usually of the order of 100 and 
can become much larger near condensations. The density distribution is used to 
obtain the gravitational potential at the center of each cell. From the gravitational 
potential, the force acting at the position of a star is computed. Newton's equations 
of motion are then used to advance the position and velocity of each star by a small 
time step. For the parameters of a typical galaxy, retardation or relativistic effects 
need not be considered. 

One complete cycle for advancing the motion of the system by a time dt consists 
of the following procedure. First, the distribution of mass a„im is used to obtain 
the gravitational potential <j>n>m by effectively summing over the density. Second, the 
gravitational field at the position of the stars is computed from the potential 4>„tm. 
Third, by applying Newton's laws of motion, the motion of all the stars is advanced 
for a small time step dt. This procedure represents one cycle and it is repeated until 
the desired evolution of the system is achieved. 

B. EQUATIONS OF MOTION 

The motion of the stars is described by the differential equations 

dt 

d<f> 

dx dt 
d(j) 

Ty 
(1) 
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and 
dx dy 
— V = — 
dt y dt 

V* = T7 Vy = T7- (2) 

The variable </> represents the gravitational potential and the gravitational field is 
given by K=V4>. For a star in the (n, m)th cell, Equations (1) and (2) in the time-
centered finite difference form are 

i[v^t+tl~v^~f)]={Kx{t)U (3) 

and 

^[x(t + 5t)-x(t)-] = Vx(t + 3*) (4) 

with similar equations for the ^-components. The numerical calculations can be 
speeded up greatly by scaling the distance so that the cell dimensions are equal to 
unity, that is, Ax* = Ay* = 1. If, in addition, the velocity and mass of a star are scaled 
as 

St 
(5) 

(6) 

and 

y* — 
r x 

* 
m = 

Ax 

G(dtf 
— - m 

2(Ax)2 

then the potential is scaled as 

<£* = 
2{AxY 

The equations of motion take on the simplified form 

v* (t+3i) = v* (f ~ f ) + {K*(0)n'm (7) 

x*(t + 5t) = x*(t)+V*(t + ~ \ (8) 

and 

Two methods can be used to obtain the gravitational field. The simple method 
is to let each star in a particular cell experience the same field components, namely, 

0O«,m = 4>*+l,m- </»*-l,m (9) 

for the x-component of the gravitational field in the n, m cell and 

(Ky)n,m = <t>t,m+l - 4>t,m-l (1°) 

for the y-component of the field. Equations (9) and (10) show that all stars in the 
cell {n, m) experience the same gravitational field and the value of the field will jump 
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in crossing the cell boundaries. A smoother variation of the field acting on a star 
is obtained by means of a bilinear interpolation of the fields (as given by Equations 
(9) and (10) at the four cell centers surrounding the position of a particular star. 
The two components of the field are then given by 

and 

K* = (1 - by) (1 - Sx) (ti+Um - *:_!.„) + Sy(l- 5x) x 
X (0*+ l ,m+l - 0 * - l , m + l ) + <5*(l ~ Sy) (ti+2,m ~ Km) + 

+ 5x Sy(<j)*+ 2>m+1 -(/>*m+i) 

K* = (1 - Sy) (1 - Sx) « m + 1 - < m _ ! ) + 5x(l - Sy) x 

X (4>*+1,m+l - ^ * + l ; m - l ) + ^ ( l -dx)(4>Zm + 2 -Km) + 

+ 8X Sy(<l>Z+l,m + 2 - îT+l,m) 

(11) 

(12) 

where the pertinent parameters are defined iti| Figure 2. It is found that the bilinear 
interpolation gives a slightly more definite structure for the condensations which 
occurred during the initial evolution of a system. After about one rotation, the results 
obtained by the two methods display essentially the same structure. 

n + 1, m + 1 

Star position 

Center of cell, 
n,m 

Fig. 2. Parameters used for the bilinear interpolation of the gravitational field. 

If a star should leave the N x N array of cells, the field acting on it is calculated 
by placing all the mass remaining in the system at the center of the array. The stars 
outside the array will not interact among themselves, but they will be attracted by 
the central force due to the mass placed at the center of the array. Whenever an 
appreciable number of stars leave the array, the calculations are no longer accurate 
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and the computer run should be repeated by either increasing the array or by changing 
the initial conditions. 

C. THE POTENTIAL CALCULATION 

In calculations with the two-dimensional rod model (Hohl, 1968: Hockney, 1967) 
the gravitational potential is easily obtained by solving the two-dimensional Poisson 
equation 

d2<p d2<$> 

e7 + Iy 
An attempt therefore might be made to obtain the gravitational potential for the 
disk model by the same method. The Poisson equation then becomes 

d2ct> d2(j) d24> 

dx2+dy2 +6z 

where S (z) is the Dirac delta function and a (x, y) is the surface density of stars 
in the plane of the disk. The difficulty is that no means are available to evaluate 
d24>/dz2. Therefore, n a(x',y') 

V(* - x'f + (y- y'f 
is used to obtain the gravitational potential from the mass density (the primes denote 
variables over which integration is performed). Presently the density is given only 
at a finite number of cells separated by a unit distance so that the integral can be 
changed to a summation 

J V - l JV— 1 

4>n.m= £ Z <Ti,jHi-n,j-m (16) 
i = 0 j=0 

where N is the dimension of the array of cells and H is Green's function defined by 

H>.J = ~7W=2- (17> 
V» + J 

To perform directly the summation indicated by Equation (16) requires the summation 
of N* terms. For 7V =100, N*=10S and the time required to obtain <p becomes 
excessive. 

D. FOURIER METHOD 

The method to obtain the gravitational potential makes use of the fast Fourier 
transform methods now available (Cooley and Tukey, 1965). The Fourier transform 
of the density is defined as 

N - l J V - l 

<J*,i = (/vJ ) / ff»-»<exp\ijf(kn + lrn) • (18) 
n = 0 m = 0 
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Similarly, the Fourier transform of Green's function is given by 
N-l N-l 

K i = ( ^ ) y y H«,m ̂  h ~ (kn+im)\ • (i9> 
n = 0 m = 0 

Applying the finite convolution theorem to Equation (16) gives the result (Hohland 
Hockney, 1969) 

J V - l J V - l 

4>n,m- ) ) ai,fli-n,j-m 

i = 0 j = 0 
J V - l N - l 

=\N) L ) d k - i f f k - i e x p \ ~ i N ^ k n + i m A - (2o) 

k = 0 1=0 

From Equation (22) and the definition of the Fourier transform, it is clear that 

<Pk,i = °k,iHktl. 

Therefore, the potential $„jm is obtained directly from the inverse Fourier transform 
of d-H. Such a method gives a doubly periodic system. A similar method is used 
by Miller and Prendergast (1968) in their investigation of doubly periodic stellar 
systems. 

The Fourier transform method just described can be modified to obtain the potential 
distribution for an isolated system. This modification is achieved by increasing the 
number of cells by a factor of 4 and by confining the system to one-quarter of the 
array of cells. The mass density in the remaining three-quarters of the array will 
then always be identically zero. 

Consider now that in addition to the array under investigation, the summation 
in Equation (16) is extended over all the doubly infinite array of images. However, 
Green's function H„m is now modified so that it corresponds to the correct single 
particle potential for particle separation r less than N/2 (one-half the dimension of 
the array) and to zero interaction for r greater than N/2. Even though the system 
is still doubly periodic, there is no longer any interaction between adjacent image 
systems because their masses are separated by at least N/2. 

Thus, to get the correct potential for an isolated system at the expense of a four­
fold increase in storage, Green's function to be used in Equation (20) is 

! (o ^ n, m S y ) 
H„ym= = } l> (21a) 

V « + m2 (n2 + m2 # 0) 

"N-n,m — "n,N-m ~ ™N-n,N-m ~ "n,m (21b) 

and 

•Ho.o = 1 • (21c) 
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As before, setting H0t0 = l is equivalent to setting the self-potential of a star equal 
to unity. The Fourier transform of Hnm need be done only once. Also, because of 
the symmetry of Hnm only a finite cosine transform on a (N/2 + l)x(N/2 + l) mesh 
is required. The modified Fourier transform approach is described by Hohl and 
Hockney (1969). It should be pointed out that the Fourier transform method solves 
Equation (16) for the isolated system exactly (within computer rounding error). It 
should also be noted that since only one quarter of the NxN array contains the 
active potential, the potential calculations can be easily performed such that only 
storage for an N x N/2 array is required. A listing of the computer program for 
obtaining the gravitational potential for isolated disk galaxies is given by Hohl 
(1970b) and a listing of the fast Fourier transform subroutine is given by Hockney 
(1970). 

The two components of the gravitational field can also be directly computed by 
the Fourier method by performing the summations 

I (x„-xi)aiJ 

l(xH-xt)
2 + (ym-yj)2y12 (KX)n,m — — & ) P7 \2~~? „ \ 2 T 3 / 2 (22) 

and 

)n,m = ~G) 
(ym-yj)*t,j 

{.(x.-xl)
2 + (ym-yl)

2Y>2-(Ky)n,m = ~ G ) IT— - y / '"',. x2nl72 ' ( 2 3 ) 

However, the computer storage and time required becomes much larger. 

E. ARBITRARY FORCE LAW 

The method presented for obtaining the gravitational potential can easily be extended 
to three-dimensional problems. Also, the force law between particles can easily be 
changed by simply changing Green's function H. For example, some of the effects 
of finite thickness of the galactic disk can be simulated by using finite-length mass 
rods instead of point masses to represent the stars. The force of attraction F between 
two mass rods of unit mass and of length / alined perpendicular to the galactic plane 
with their centers in the galactic plane is 

where r is the separation of the two rods. Green's function then becomes 

Hn, m = j |r"; ™ [i - y i + (/2/r„2.J] + ioge | y ~ + Vi + OX-.)]} 
2 2 ' (24) 

where rnm = n +m . 

F. CALCULATION OF ENERGY AND MOMENTUM 

The angular momentum of the disk at time t is given by 

r(t) = Zmi[xiVx,i-yiVyJ-] (25) 
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where mt is the mass of the ith star, VXii= \yXti{t+dtj2) + VXtl{t-dtj2)'\l2 is the 
x-component of the velocity of that star, and the summation extends over all the stars. 

The kinetic energy of the disk at time t is 

T(0 = *2>«[P», «+*?.*]• (26) 
i 

An approximate expression for the potential energy is 

* = - i IE *»>.....• (27) 
n m 

A better definition of the potential energy should be devised by using the definition 
of potential energy as the work done on a test star and apply it to the present model. 
The difficulty in the use of Equation (27) is that in regions of large mass condensations 
this equation gives a value of (j> which is too large for the potential energy. 

3. Two-Dimensional Rod Model 

Computer simulations of 'Cylindrical Galaxies' by means of two-dimensional mass 
rod models have been performed by Hockney (1967, 1968) and by Hohl (1968, 1969). 
The stability and dynamics of systems containing up to 100000 mass rods were 
investigated. However, the rod-star approximation is likely to be valid only for very 
few galaxies, such as possibly NGC 2685. The model is essentially identical to that 
for disk galaxies except that the gravitational potential is now strictly two dimensional 
and is obtained by solving the two-dimensional Poisson equation. The gravitational 
potential <p„im is then obtained from the density Qn<m by solving the two-dimensional 
Poisson equation 

d2d> d2d> 
^ + J ^ = 4nGQ(x,y) (28) 
ox oy 

by finite difference methods. The standard five-point difference equation 

<t>n+l,m + 0 „ , m + l + <t>n-Um + 4>n,m-l ~ 4 0 » , m = ^GQn< m (29) 

is generally used to solve for the potential distribution. The cell dimensions Ax and 
Ay are taken to be equal to unity. 

The potential at the boundary of the rectangular region is required in the solution 

of the Poisson equation. At an arbitrary boundary point a distance z = x+iy (i=J — 1) 
from the center of the mesh, the potential is given by 

<j)(z) = 2G X en > mk>ge |z-z„ i m | = 
n, m 

= 2 G M l o g J z | + 2 G Ze„,mRe log, 0-z") (30) 

where M is the total mass in the system and z„tm=x„im+iy„tm is the coordinate of 
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the cell n, m. Since e„,mis nonzero only for z„m/z< 1, Equation (30) can be written as 

<p(z) = 2GM\oge\z\-2GReY ~ (31) 

k 

where 

flit=Ze»,m4m (32) 
n, m 

and the series expansion for loge(l —zniJz) is truncated after 15 terms. 
The set of simultaneous equations given by Equation (29) can be solved by an 

iteration of the form 

4>n*m = <t>n,m + 7 (<£»- l ,m + <Pn+l,m + </>«,+m-1 + 

+ <Pn, m+ i - 4 # , m - 47cGft,, m ) . (33) 

For the purpose of saving computer storage and increasing the convergence rate, 
the new values of (p (that is, (pr+1) which have already been calculated during a 
particular iteration are used in the right-hand side of Equation (33). The superscript 
r refers to the rth iteration and the parameter y is adjusted to give the maximum 
rate of convergence. 

If the motion of all the stars in the system is advanced for a small time step 8t, 
the mass distribution qnm will not change very much. The change in the gravitational 
potential will then also be very small. Thus, the solution of the finite difference form 
of the Poisson equation (Equation (33)) by an iteration method which uses the 
potential from the previous cycle as an initial guess will converge very rapidly. The 
accuracy of the iterative solution of the Poisson equation is easily checked during 
the calculations. This verification is made by obtaining the values of the potential 
and the field at several selected points by summing directly the contribution from 
each star. The values so obtained agree with those obtained from the solution of 
the Poisson equation to at least the first three digits. The number of iterations required 
for a 51 x 51 mesh was found to be 5 to 7 and for a 101 x 101 mesh, 12 iterations 
(Hohl, 1969). 

The initial guess of the potential at t = 0 is determined by using analytical expression 
for the potential of the initial cylinder (Hohl, 1969). 

Since direct methods for solving the set of Equations (29) are now generally 
available it is preferable to use them for obtaining the potential. 

The method described previously for disks of stars can of course also be used for 
obtaining the potential for the two-dimensional rod model. However, the method 
of solving the Poisson equation is faster and requires less computer storage. 

4. Summary 

The dynamics of collisionless stellar systems can be studied by representing the 
system by large numbers of representative stars. The numerical methods that are 
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used to integrate the motion of the system in time are presented in some detail. 
Examples of actual computer experiments can be found in the literature cited. 
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