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AVERAGES INVOLVING FOURIER COEFFICIENTS OF
NON-ANALYTIC AUTOMORPHIC FORMS(?)

BY
V. VENUGOPAL RAO

1. Introduction. Let f(7) be a complex valued function, defined and analytic in
the upper half of the complex 7 plane (r=x+1iy, y>0), such that f(r+2A)=f(7)
where A is real and f(—1/7)=y(—i7)*f(7), k being a complex number. The
function (—i7)* is defined as €*1°5¢=* where log(— ir) has the real value when —ir
is positive and y is a complex number with absolute value 1. Such functions have
been studied by E. Hecke [4] who calls them functions with signature (2, &, y).
We further assume that f(7) = O(| y| ~°) as y tends to zero uniformly for all x, c being
a positive real number. It then follows that f(7) has a Fourier expansion of the
type f(r)=ao+2 a, expnint/A) (n=1,2,...), the series being convergent
absolutely in the upper half plane. () is called an automorphic form belonging
to the group generated by the transformations 7— 7+, r— —1/7 and a,
(n=1,2,...) are called the Fourier coefficients of /(7). Examples of such functions
f(7) are quite numerous. For A=1, we get analytic modular forms of dimension —%&
and A(7), the discriminant in the theory of elliptic functions, is a well known
example. The corresponding Fourier coefficients a, then define the well known
Ramanujan = function. For A=2, we get automorphic forms of “stufe 2. If
0(r)=3 e""1(—o0 <n< +00) then 8%(r)={6(7)}*, k being a positive integer, is an
automorphic form of stufe 2 and the Fourier coefficient a, becomes the number
of ways in which n can be represented as a sum of k squares. We then consider for a
function f with signature (A, k, y) the classical problem of obtaining an asymptotic
formula for R’(x)=3 a,(x—n)’ (0<n<x), (8>0), as x —>co. In general it turns
out that R °(x)=cyx °*¥+ Ps(x), for §>3,, 8, being a real number depending on
f(7), ¢y a constant independent of x, P,;(x) being the “error term”. The function
P;(x) can be represented as a series of Bessel functions of the first kind. In the case
where f(7)= 0%(+), we have

Pi) ==X+~ TE+D) 3 anf T2, 20V ),
n=1

J,(x) being the Bessel function of the first kind and the series on the right converges
absolutely for 3>1(k—1), conditionally for §>%(k—3), and can be summed by
Riesz typical means (R, 1, &) for 0< 8 <1(k—3). The above problem can be posed
for the case where a, represents the number of integral representations of #n by a
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positive define quadratic form >, syx;x; (1 </, j<m), where the matrix S=(s;;) is
an integral, symmetric, positive definite, matrix of order m and the corresponding
results are known. Let now S=(s,;) be a rational, non-singular, symmetric, in-
definite matrix of order m. Then the number of integral representations of a rational
number ¢ by the indefinite quadratic form > s;,x;x; is infinite in general and C. L.
Siegel [9] has associated with the set of integral solutions of > s;,x;x;=¢ a non-
negative valued function u(S,?) called the “measure of representation”. The
function u(S, ¢) is a generalization of the number of integral representations of ¢ by
the quadratic form with matrix S when S is a rational, positive definite, matrix.
w(S, t) is finite except for a few special cases. We then consider the problem of
expressing > u(S, t)(x—1)° (0<t<x) as a series of analytic functions. It is known
[12] that when |S|>0, | S| being the determinant of S, > u(S, £)(x—1)° (0<t<x)
can be expressed as a series of Bessel functions of the first kind and in the case
|S| <0, as a series of Bessel functions of the type Y,(x), K,(x) and two other series
involving functions associated with the Bessel functions, all the series so obtained
being convergent absolutely for 6 >4(m~1). It is known [10] that the numbers
©(S, ) can be realized as Fourier coefficients of an analytic automorphic form of
the type considered by Hecke in the case |S|> 0 for suitable values of A, k and y
and this is not the case when |S|<0. A function f(r) which yields u(S, t) as
“Fourier coefficients” (in a generalized sense) has been introduced by Siegel [11]
and it turns out that this function is not an analytic function of =, but transforms
like an analytic automorphic form under the transformations 7 — 7+, 71— — 1/~
in the upper half of the complex = plane. H. Maass [6] has introduced a class of
nonanalytic functions which generalize the functions introduced by Siegel in the
study of indefinite quadratic forms with rational coefficients. Our aim, in this paper,
is to represent > a(x—1)° (0<t<x) as a convergent series of analytic functions
where {;} is the sequence of ““ Fourier coefficients” of a non-analytic automorphic
form in the sense of Maass [6].

2. Non-analytic automorphic forms and some properties of the associated Dirichlet
series. Let z denote a complex variable, z=x-+iy, x and y real and w=2z. We
consider a pair of complex valued functions f(z, w) and g(z, w) defined in the upper
half plane y >0 which are solutions of the elliptic partial differential equation

0% 0% ov o
2 7~ R —_— /1) —— —_— =
0 (5 55) P gat@rBrZ =0,
o and f being real numbers and having the following properties:
- SGAd w42 = sz, w)

g+, w+2) = e?ibag(z, w),
A being a real number and 0<b;<1 (i=1, 2);

6) o(- 1) = W= 2 (W) (2, W),

zZ w
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where y= + 1 and (—iz)% (iw)? are defined by the principal value of the logarithms;

flzw)=0(") and gz, w) = 0(y's) asy—>ow

@ few) = 0(*) and glzw) = O(y™) asy—0

where A; and p,(i=1, 2) are positive constants, and the estimates are uniform in
—0<Xx<00.
It then follows from a result of Maass [6, Hilfssatz 8] that

Si(x, ) = f(z, w) = agu(y, «+B)+bo

(5) + Z tW(Z/\I ,y, o, Ig’ sgn t) eznitxlﬂ.
t#0,t=bj(mod 1)

and

(6) gl(xa y) = g(Z, W) = cOu(y’ O‘+B)+d0

" z bW (27Tlt| y; o, B, sgn t)e2nitx/,1

t#o0,t=bg(mod 1)

the series on the right of (5) and (6) being absolutely convergent, where

u(y,y) = Yoo 21 (logy) -yt

W(y;a,B,e) =y 3e*h Wie-pesa-s-02y), (e = %1)

with W, ,(») the Whittaker solution of the confluent hypergeometric differential
equation in reduced form [8], and sgn =1+ 1 according as 7> 0 or ¢ < 0 respectively.

It is useful to note that

W _ yle-iy - -3 -t(l )m+l-§dt
Ln(Y) = mf e +y ,

for y>0and Re (n+3—1)>0.
From the properties of the function W, ,(»), it follows that
W(y; o, B, )~ 2:e—Pey-H@+B+E-08lp=Y gy 5 on
and therefore
W(y; «, B, 1)‘ = O(y~Ffe~Y), for y — oo (y real).

From the power series representation of the Whittaker function it follows [8, p. 116]
that

W(y;aB,1) = 0(yF), fory—0(yrea
with
K > ¥Ha+pB) +3le+pl—1.
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We will be referring to (5) and (6) respectively as the nonanalytic Fourier expansions
of f(z, w) and g(z, w) and the sequences of complex numbers {a;} and {b;} as their
Fourier coefficients respectively.

We then introduce the Dirichlet series

B = 3% he=3 %

t>0

@
b= 5% =3

t>0 t>0
where s is a complex variable and #°*=e°!°¢* with log ¢ real. On account of the
estimates (4), it follows that the four Dirichlet series in (7) have finite abscissae of
convergence [6, p. 257]. Further it is known [6] that they can be continued analytic-
ally into the entire complex s plane and the resulting functions are meromorphic.
The functions defined by the Dirichlet series in (7) satisfy [6] a functional equation

of the following type.
Let
®) Moo f) = [ W0iep Dy,
2w\ ¢
©) 66 = (57) 1063 o« DO +T63 B, o)
and

271. -(s+1)
10 = (5) T+ H-Ha-PTE:  BIAO)

(10)
2r\ -6+
= (5) @6+ 15E 9+ PTG B MO = 1,2)
Then
n E(etB=5) = v6i(s) and my(atB—s) = —yrals).

3. Preliminary lemmas.

LemMa 1. T'(s; &, BT(s+1; 8, )+ T'(s+1; e, BT(s; B, «) =2T(s)['(s + 1 —a—B),
with I'(s; «, B) as defined in (8).

This result has been proved by Maass [7, §4].

LEMMA 2. The function ¢,(s) is meromorphic in the complex s-plane with at most

simple poles at s=o+ B and s=1; further (s—1)(s — «— B)$.(s) is an entire function of
finite order.
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Let B0 = 3 aw (B p t)
t=bi(mod 1),t #0
Gy(y) = bw (Tl ;o B, sgn t),
t=ba(mod 1),t#0
F2(y) = Z ta,W(Tl ﬁ sgn t),
t=bj(mod 1),t #0
2a|t|
Gy(y) = > thWw Vs % B sent)
t=bo(mod 1),t#0
and H() = G-V 5L EG), (=1,

It then follows from the work of Maass [6] that

60 = [, BOW vy [ GOy g g -
(12)
{(1 S)(a+,3 5) (a+ﬁ s)}
and
m(s) = J‘j H\(y)y~tdy—y Jj Hy(p)y**8-5-1dy
(13)

+A a—f Qo

From the definition of £,(s), it then follows that

I'(s; o, B)pa(s) + T'(s; B, )hu(s)

- ) { [} oy [ omermr )

a4 +(27"){S(ST‘I_°O‘_§)J; [(1 s)(i°+ﬁ —5) (a+d/§) S)]}

= o _bo do
=0+ (F) {ritemp ot [
It follows from the work of Maass [6, p. 256] that

I£ ROy dy+y [ Gy +e-2-t dy

191

b, Co _ d, )
= ‘s(s+1—a—ﬁ)+?+y[(1—s)(a+ﬁ-s) (a+B—s)]}

I}

is an entire function of finite order; hence P(s) is an entire function of finite order.
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Similarly
{L(s+1;e, B) —Ha—B)L'(s;0, B)}b1(8) —{T'(s +1; B, @) + 3(« —B)T(s; B, )} (5)

= (&)m{f H\(y)y*~tdy— yf Hy(y)y“+h=s- 1dy}

(15) +(27”) T _B

b Co _ do
s e e +"[(1—S)(a+ﬁ—s) (a+B—S)]}

a—ﬁ ay bo
= "‘{‘s(s+1—a—,3)+?

s+1

= Q(S)+(7”)

”[(1—s)(i°+ﬁ—s)'(a+§°—s)]}’

where Q(s) is an entire function of s of finite order. We can solve for ¢,(s) from (14)
and (15). Using Lemma 1, it follows that

_TG+1;8, 0 +3(«—PI(s; B, @) [(s; B, o
$0) = = reretri=e—p) . L OT GG —amp) 2¢
2m\*® (1) bo Co _ dO
+(7) {s(s+1—a—ﬁ)’?+7[(1—s)(a+ﬁ—s) (a+ﬁ—s)]}

I'(s+1; B, )+3e—PB)I(s; B, ot) 2a\s*t (a—B).
(16) XTI+ 1—a—pB) (,\) T

A{ m*b +7[(1—s)(ocalﬁ—s)‘(wgo—s)]}

D'(s; B, @)
XTI +1—a—p)

Now

I T - =LV [CREPIS B}

where F(o, B, y; x) denotes the hypergeometric function. It is known that
FB,1—a,s+1—a;1)/T(s+1—a)is an entire function of s. Hence

P(s+1; B, 9 +3(a—B)I(s; B, @)
and I'(s; B, «) become entire functions of s after division by 2I'(s)I'(s + 1 — «— B)
It follows from (16) that ¢,(s) is meromorphic in the complex s plane and has at most

polesats=a+pB, «+B—1,1 and 0. We now prove that ¢,(s) is regularat s=a+8—1
and s=0 by proving that lim,_, s¢,(s)=0 and lim,_ 51 (s—a—B+1)¢i(s)=0.

It follows from (16) that

; _(_% D(s+1; B, &) +3(«—PI(s; B, o)
100 sha(s) = (l—a—ﬁ'b°) 2T(I(s+1—a—P) }

+g‘2—£( T—a— B+b°) ZP(S)Eg;‘I‘ﬁl,i)a—ﬁ)}uo:O
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by using (17) and elementary properties of the gamma function. Similarly

lim (s +1—a—PB)di(s)

s=a+ 8-

=(27r)"'+3‘1 o [(s+1;B, &) +3(a—PB)(s; B, @)

Py («+p-1) 20(s)T(s+1—a—p) sma+f-1
2r\o+8 ot—,3 a L(s; B, @) -
‘A(A) 4 (a+ﬁ° D) BTOTG =B scaraos

LEMMA 3. The function ¢,(s) has the functional equation 2I'(s)['(s + 1 — a— B)d1(s) =
YQRa [N~ KXo, B, )pa(a+B—5)+u(e, B, )ho(a+B—5s)}, where
(18) Me, B,5) = I'(s+1; 8, ))T(e+B—s5; &, B)—T'(s; B, )[(+B—5+1; , ),
and
19 w(e B, 5) = T(s+1; B, )T (a+B—s;B, )+ I'(s; B, )T (e+B—s+1; 8, @)
+(@—B)(s; B, IT(a+B—5; B, ).

This lemma follows by solving for ¢,(s) from the two equations defined by (11)
and using Lemma 1.

LeMMA 4. (e, B, 5)=0(e~™*") and (e, B, 5)=0(e~"!|¢t|# =) as |t| — oo uniformly
for —o<a<o<b<oo, where as usual s=o+it.

It is known [1, p. 76] that

F(a,b,c;z) = 1+a-—cbz (a(),,§b),, z"+0(|c| =" Y),
as |c¢| — oo, for fixed a, b and z, if |z| < 1 and |arg ¢| <7 —& <m, where for a complex
number x, (x),=(x+1)...(x+n—1). Hence F(B, 1—c, s+1—a;3)~1 as
|t|— oo uniformly in —oo<a<o<b<oo. From Stirling’s approximation for
I'(s), it follows that T(c+if)~+/27 e #t|t[°-% for t—>oco, uniformly in
—o0 <a<o<b<oo. Hence by (17), it follows that

(IF(s)IIF(sH—a—B)I)
ITGs+1—a)]

— O(e—'}nltlltlo—ﬁ—i) )

IT(s; 0, B)| = O
(20)
as |t| — co uniformly in —co<a<o<b<oo.
Consequently
M, B, 8) = T(s+1; B, )T («+B—s; @, ) —T(s; B, )T(a+B—5+1;, f)
= O(e™™")+0(e~"") = O(e=™"),

as |t| — oo uniformly in —c0<a<o<b<c0.
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Similarly
wle, B, 8) = I(s+1; B, )(a+B—s5; B, 0) +T(s; B, )(«+B—5+1; 8, @)
+(@—B)I(s; B, )l'(e+B—s5; B, )
— 0(e~nltlltlﬁ-a)+O(e—nltlltlﬂ—a)+O(e—nltlltlﬂ—a—l)
— O(e‘”'“|t|5‘“),
as |t| — oo uniformly in —0<a<o<b<c0.

LEMMA 5. Let ¢* >0 be such that the four Dirichlet series defined by (7) converge
absolutely for s=c* and c¢* > (a+ B)/2. Then ¢,(o +it) = O(|t|*2), as |t| — oo uniformly
ina+B—c*<o<c* where \,=max {0, §;—2(c+B—c*)} with 8;=max («+8, 28).

By Lemma 4, it follows that

)‘(“9 B, S) _ a+B-20
@h Tt +1-a—p) ~ OUI™)
and
@2) peafd -~ o)

Pl +1-a—p)

as |t| — oo uniformly in —oo<a<o<b<oo. By the choice of c*, ¢5(s)=0(1),
Po(s)=0() for o=c*; hence ¢y(c+B—s5)=0() and Yy(e+B—s5)=0(1) for
o=a+B—c*. It then follows from Lemma 3, (21) and (22) that

$i(s) = 0(|tla+3—2a)+0(lt|2s-2g)
= o(lf+~),

on the line o=a+B—c* as |t| — o0, where 8;=max(«+j, 28).

By the choice of c*, it follows that ¢,(s)=0(1) on o=c*. In view of Lemma 2,
(s—1)(s—a—PB)é.(s) is an entire function of finite order; it then follows by the
theorem of Phragmen-Lindelof that ¢;(c+if)=0(|¢|"”) uniformly in «+f—
c*<o<c* for |t| = ¢, (¢, being a suitable positive constant), where 5(o) is the linear
function joining (c*, 0) and (x+B—c*, 8;—20). Hence

di(o+if) = O(|t|%2=2@+E=M) if §,—2(ax+B—c*) = 0
= 0(1) if 8;—2(e+B—c*) <0
uniformly in a+8—c*<o<c*.
As Ay =max (0, 8;—2(a+B8—c*)), the result follows.

4. Proof of the main theorem. We invoke Perron’s formula in the classical theory
of Dirichlet series [3, p. 81] and apply it to

$i() = 3 %
t>0
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which converges absolutely for o> c*. Then we have for x>0 and §>0,

c*+ {00
23) 3 ar—if = D@+ Dx- 2%, f L ’li?g(i#m ds,
where the dash on the left of (23) indicates that the last term of the sum on the left
side of (23) is to be multiplied by % if =0 and x=¢; with a; #0; further the
integral on the right of (23) is to be understood as a Cauchy limit. We note that the
number of ¢ for which @,#0 and 0<¢<x is finite. We now transform the integral
on the right of (23) into an integral taken on the line Re s=a+B—c*. We now
impose the additional condition that the strip a+B—c*<o<c* includes all the
singularities of ¢,(s) and that I'(s) and ¢,(s) are both regular on Re s=a+p—c*. We
consider the integral of
X T(s)
@4 T+ 1+5) 910

over the rectangle with vertices at c* + it, «+ B — c* + it oriented in the positive sense.
Then

1 c* + it 1 a+B—c*+it 1 @+ B—c*—it 1 c*—it

270 J ooy 2w ) orpit 270 ) grpocrrit 2T ) grpoce-it

is the sum of the residues of (24) inside the rectangle; we denote this sum by
Q;(x). By Stirling’s approximation and Lemma 5

a+B—c*+it x6+sI‘(s) (fc* 5t r—be1 )
= o d
fc*+it P(8+1+ )(l)l(S)dS a+B—c“x lt[ ' ’

= O(|t|=%"Y) =o(l)ast >0 if ,;—6—-1>0
ord > A —1.

Similarly the integral on the line joining «+fB—c*—it and ¢*—it tends to zero as
|t] — oo if 8> A; —1. Hence for >0 and 6> X, —1,

TS A=) = Q)+

<tsx

(25)

9 fc*+£w xd+a+ﬁ—sI‘(a+B_s)¢1(a+B_s).
c*—iw P@+1+a+p—s)

Using Lemma 3 and the facts ¢o(s) = Z > Po(s) = Z %‘s—‘, for s=c*, the integral on
>0

the right of (25) can be rewritten as

R R e e s e
2\ 27 ) v F(8+1+a+ﬂ 5) \(e+B—s)'(1—s) S0

(26)
+

fetoraos L # ) @
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We want to exchange the order of integration and summation in (26); this can be
done if the series

D X G CY.XC0 Ny

5o 27 ) or_iw '@+ 1+a+B—s)'(1—5) A2
and
-1_ erie [.L(OC, B,OH-B—S) (477—21x)"3 ‘
(28) t>zo b_, i J‘c*_m TG+ 1 +atf—s)(—5) \ "% ds,

converge absolutely.
Let

. — 1 et A(O‘a /99 0‘+ﬁ—s) .- 98
(29) '](x) o, B’ 85 C) = "2'_;;1- emion F(l “*S)I‘(B‘*'l—l-a‘*‘ﬁ—s)l dS,

O <c<3@+atP);x>0)

and

. . 1 etix M(CL,B,OC‘*‘B—S) 95
K(x, o, B, 8, C) = 21_” emiw 11(1—S)F(3+1+C¢+B—S)A dS,
(30)
0 < ¢ < 1(3+2a); x > 0)

where ¢ is such that the path of integration does not include any of the singularities
of the integrand. As F(B, | —a, s+1—a; 3)/T(s+1—0) is an entire function of s,
it follows from (17) that I'(s; «, B) is meromorphic in the complex s plane with at
most poles at s=1—n, s=a+B—n, n being any positive integer. It then follows
from (18) that A, B, s) is a meromorphic function of s with at most poles at points
congruent to 0 or «+ 8 modulo 1. The same is true for the function u(e, B, 5). We
now study the convergence of the integrals defined by (29) and (30). From Lemma 4,
it follows that the integrand in (29) is

O(Jt|~@+rtatb-20x-2¢)  wheres = c+it.

Hence the integrals in (27) and (29) converge absolutely if § > 2¢* —(a+B) or 6 >2¢—
(«+pB) respectively. Similarly the integrand in (30) is O(|¢]|@+1+2e-20x-2c)
where s=c+it. Hence the integrals in (28) and (30) converge absolutely if &> 2¢*—
2« or 8 >2¢—2« respectively. It then follows that the series (27) and (28) converge
absolutely if 8>2¢c*—2« and 8>2¢*—(a+p). We therefore have proved the
following

THEOREM. Let ¢*>0 be such that all the singularities of ¢.(s) lie in the strip
a+B—c*<o<c*, c* not congruent to 0 or ¢+ B modulo 1 and also c* satisfy the
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conditions of Lemma 5. If A, is as in Lemma 5, §>0, 8>2c*—2a, §>2c*—a—f
and 3>\, —1, then

1 2 a+B
f‘(STI)oZ’ a(x—1)° = Qo(x)+% (—;—r) xorars

<tsx

(€2))
x{z btJ(z—;\T Vix; o, B, 5, c*) + S b_,K(zyﬂ Vix; e, B, 8, c*)}
t>0 t>0
where the summation in the series on the right of (31) is over all real ¢ >0 such that
t=b, (mod 1) and the series on the right of (31) converges absolutely.

5. Some special cases. (1) Let 3=0. Then by a theorem of Maass [6, Satz 6],
f(z, w) can be transformed by the application of a suitable differential operator into
the function

(n+by)

(32) do+bo+Co D Gnipe®™ 2 ¢

n+b1>0

do, by and &, being suitable constants and » an integer. (32) and a similar transform
of g(z, w) then have a functional equation under the mapping z — —z~! as in the
classical case of the Ramanujan = function and g <n+p; <x dn+b, (X —n—b1)° can
be expressed as a series of Bessel functions of the first kind. A very good account
of such results can be found in [2].

(2) «=8. In this case we get the so called wave functions [5] and the functions
J(x; e, ,3,¢), K(x; e a b c) can be evaluated explicitly in terms of Bessel
functions and related functions. It turns out that

I(s; @, @) = — 28-«-11‘(5)1‘(ﬂ—a),

V7T 2 2
and
_ @m@)sina(s—a) |
Ao, @, 8) = sin(rs) sin 7(2e—s)’
then

1 [ertie 21°(s) sin 7(a—s)

— -2s
51 ) s TOTT420=5) Sinn@a—s) ™~ &

J(x; 0,0 8, c*) =

1 c*+{c0 ZF(S)

—_— - -2
(33) = %7 ) oy T 14 20—3) 008 (Fo)x~7ds

c*+10 F(S)

. 1 -2s
-2 sm(mx) 57;1 fc'_‘w m cot 7T(2a—S)x ds.

The first integral in (33) is a Bessel function of the first kind multiplied by a factor
and the second integral in (33) can be expressed [12, §5] in terms of the Bessel
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function Y,(x) and the Lommel function S, ,(x). In the same manner it follows
that

(217) Sin(mx)
sin(as) sin 7(2a—s)

e, o, 5) =

and

1 [+ 2sin(ma)l'(s) _
. ®) — — 2s

(349 K(x;0,a 8,c*) 577 ) oo TOT 14 20—35) cosec m(2a— 5)x ~25ds.

The integral in (34) is expressible [12, §5] in terms of the Bessel function K,(x) and a

function G, ,(x) similar to the Lommel function S, ,(x). The relevant properties

of G, ,(x) can be found in [12, §5].
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