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AVERAGES INVOLVING FOURIER COEFFICIENTS OF 
NON-ANALYTIC AUTOMORPHIC FORMSC) 

BY 

V. VENUGOPAL RAO 

1. Introduction. Let/(r) be a complex valued function, defined and analytic in 
the upper half of the complex r plane (r=x+iy, y>0), such that/(r+A)=/(r) 
where À is real and /(— l/T)=y(—iT)kf(T), k being a complex number. The 
function (—ir)k is defined as ekloei~H) where log(—ir) has the real value when — IT 
is positive and y is a complex number with absolute value 1. Such functions have 
been studied by E. Hecke [4] who calls them functions with signature (A, k, y). 
We further assume that/(r) = 0(\ y\ ~c) as y tends to zero uniformly for all x, c being 
a positive real number. It then follows that/(r) has a Fourier expansion of the 
tyPe /(T)=ao + 2 an exp(27ri«T/A) («=1,2,.. .), the series being convergent 
absolutely in the upper half plane. f(r) is called an automorphic form belonging 
to the group generated by the transformations r->r+A, r->—1/r and an 

(n= 1, 2, . . .) are called the Fourier coefficients of f(r). Examples of such functions 
f(r) are quite numerous. For A = 1, we get analytic modular forms of dimension —k 
and A(r), the discriminant in the theory of elliptic functions, is a well known 
example. The corresponding Fourier coefficients an then define the well known 
Ramanujan T function. For A=2, we get automorphic forms of "stufe 2". If 
G(r) = ,2enin2%—co<n< + oo) then 6k(r)={6(r)}k, k being a positive integer, is an 
automorphic form of stufe 2 and the Fourier coefficient an becomes the number 
of ways in which n can be represented as a sum oîk squares. We then consider for a 
function/with signature (A, k, y) the classical problem of obtaining an asymptotic 
formula for Rô(x)=^an(x—n)ô(0<n<x), (3>0), as x->oo. In general it turns 
out that R %x) = c0x

 ô+k+Pô(x)9 for 8> 80, 80 being a real number depending on 
/ (T ) , CQ a constant independent of x, Pô(x) being the "error term". The function 
Pô(x) can be represented as a series of Bessel functions of the first kind. In the case 
where /(r) = 6k(r), we have 

PX*)=-*a+»-«r(8+i) I aS^^jmu^y^\ 
n=l \nJ 

J^x) being the Bessel function of the first kind and the series on the right converges 
absolutely for $>%(k—l), conditionally for 8>J(/:~3), and can be summed by 
Riesz typical means (R9 n9 8) for 0< 8<-|(&-3). The above problem can be posed 
for the case where an represents the number of integral representations of « by a 
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positive define quadratic form 2 s^Xj (l<i,j<m), where the matrix S=(sij) is 
an integral, symmetric, positive definite, matrix of order m and the corresponding 
results are known. Let now S=(stj) be a rational, non-singular, symmetric, in­
definite matrix of order m. Then the number of integral representations of a rational 
number / by the indefinite quadratic form 2 s^Xj is infinite in general and C. L. 
Siegel [9] has associated with the set of integral solutions of 2 •%**•** = * a non-
negative valued function /x(S, i) called the "measure of representation". The 
function /x(S, t) is a generalization of the number of integral representations of t by 
the quadratic form with matrix S when S is a rational, positive definite, matrix. 
[x(S, t) is finite except for a few special cases. We then consider the problem of 
expressing 2 ^(S, i)(x—t)0 (0<t<x) as a series of analytic functions. It is known 
[12] that when \S\ >0, \S\ being the determinant of S, 2 ^ ( 5 , t)(x-t)â (0<t<x) 
can be expressed as a series of Bessel functions of the first kind and in the case 
| S | < 0, as a series of Bessel functions of the type Yv(x), Kv(x) and two other series 
involving functions associated with the Bessel functions, all the series so obtained 
being convergent absolutely for 8>-£(/w—1). It is known [10] that the numbers 
/x(S, t) can be realized as Fourier coefficients of an analytic automorphic form of 
the type considered by Hecke in the case \S\ >0 for suitable values of À, k and y 
and this is not the case when | S | < 0 . A function f(r) which yields n(S,t) as 
"Fourier coefficients" (in a generalized sense) has been introduced by Siegel [11] 
and it turns out that this function is not an analytic function of T, but transforms 
like an analytic automorphic form under the transformations r —> r + A, r -> — 1/T 
in the upper half of the complex r plane. H. Maass [6] has introduced a class of 
nonanalytic functions which generalize the functions introduced by Siegel in the 
study of indefinite quadratic forms with rational coefficients. Our aim, in this paper, 
is to represent 2 at{x—t)0 (0<t<x) as a convergent series of analytic functions 
where {at} is the sequence of "Fourier coefficients" of a non-analytic automorphic 
form in the sense of Maass [6]. 

2. Non-analytic automorphic forms and some properties of the associated Dirichlet 
series. Let z denote a complex variable, z=x + iy, x and y real and w=z. We 
consider a pair of complex valued functions/(z, w) and g(z, w) defined in the upper 
half plane y> 0 which are solutions of the elliptic partial differential equation 

<•> ^(s+p)-(«-»»g+<«+»4;=°. 
a and j8 being real numbers and having the following properties : 

(2) ff(z+\,W+X) = e™»if(z,w) 
\ g(z + A, w + A) = e2*ib2g(z, w), 

A being a real number and 0 < bt < 1 (/= 1, 2) ; 

(3) g{ - \, - J;) = y( - izniwYfiz, w), 
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where y = ± 1 and (-zz)a, (iwY are defined by the principal value of the logarithms; 

f4) ff(z' w) = °(^Al) a n d #(z> w) = °(yÀ2) as j ->oo 
\ / ( z , w) = 0(y-^) and g(z, w) = Oiy-ty asj;->0 

where Xt and /Xj(/=1, 2) are positive constants, and the estimates are uniform in 
— CO<X<00. 

It then follows from a result of Maass [6, Hilfssatz 8] that 

fi(x, y) = f(z, w) = a0u(y, a+p) + b0 

+ 2 atWl^p-y; a, ft sgn /) é**"*'\ 
t ^ o , i = bi(modl) \ A I 

gi(x, y) = £<>, W) = C0w(>, a + ft) + rf0 

+ 2 *«W^^;«,i9,sgiirW^, 
**o,is&2(modl) \ A / 

the series on the right of (5) and (6) being absolutely convergent, where 

W(y; a, ft e) = jr«« + *> ̂ ««-*>«.««-,-i><2;0, (e = ± 1) 

with JFifm0>) the Whittaker solution of the confluent hypergeometric differential 
equation in reduced form [8], and sgn t=±l according as t > 0 or t < 0 respectively. 

It is useful to note that 

vlp-ly f00 / f\m + l-i 

"•M-T&ï=Iif.'"MrV+}) * 
for y > 0 and Re (m+\ — I) > 0. 

From the properties of the function WUm(y), it follows that 

W(y; a, ft £)~2Ha-p)sy-iKa+0)+(l3-(x)sle-y, asj>->oo 

and therefore 

W(y; a, ft 1) = O(y-0e-y), for j -> oo O real). 

From the power series representation of the Whittaker function it follows [8, p. 116] 
that 

W(y; a, ft 1) = OCr *), for j> -> 0 (j> real) 

with 

* >K«+0)+il«+j8|-i. 
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We will be referring to (5) and (6) respectively as the nonanalytic Fourier expansions 
of f(z9 w) and g(z, w) and the sequences of complex numbers {at} and {bt} as their 
Fourier coefficients respectively. 

We then introduce the Dirichlet series 

Us) = 2 % Us) = I ^, 
t>0 * t> 0 * 

(7) 

Us) =2% Us) = 2 V ' 
t > 0 * t>0 l 

where s is a complex variable and ts = esloet with log t real. On account of the 
estimates (4), it follows that the four Dirichlet series in (7) have finite abscissae of 
convergence [6, p. 257]. Further it is known [6] that they can be continued analytic­
ally into the entire complex s plane and the resulting functions are meromorphic. 
The functions defined by the Dirichlet series in (7) satisfy [6] a functional equation 
of the following type. 
Let 

(8) T(s; a, p) = JJ W(y; «, p, \)fdy, 

(9) Us) = (y)~V('; «, Piïi(s) + Wsi ft « W 4 

and 

n(s) = ( T ) " ( S + 1 W + i ; «, ?)-$(*-m*i «, pws) 

(10) 

Then 

(11) fi(«+0—*) = y&CO a n d ^i(«+i8-J) = -W2(J). 

3. Preliminary lemmas. 

LEMMA 1. r(y; a, p)T(s+1 ; ft a) + r(.y+1 ; a, p)F(s; p, a)=2r(s)T(s+1 -a-j8), 
with T(s; a, P) as defined in (8). 

This result has been proved by Maass [7, §4]. 

LEMMA 2. The function ^(s) is meromorphic in the complex s-plane with at most 
simple poles at s=a+p ands = \ ; further (s— IXs—a—p^^s) is an entire function of 
finite order. 
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Let ^ 0 0 = 2 atwm^y;aj,sgnt\ 
*s&i(modl),**0 \ A J 

t = b2(modl),t*0 \ * I 

F£y) = I tatWl^p y,a,f}, sgn t), 
i = &i(modl),i*0 \ ^ / 

G2(y)= 2 tbtW (^py; a, p, sgn X 
* = &2(modl),i*0 \ * / 

and Hty) = Giy)-\-Zj£F&y), 0 = 1 , 2 ) . 

It then follows from the work of Maass [6] that 

us)=j; * w *+y j ; G I ( ^ — ^ + ^ -^ 
(12) 

+ y \(l-,X«+j8-*)"(«+j8-j))* 
and 

Vi(s) = J" i / i W / - 1 <fy-y J" HaHy)/1*»-'-1 dy 

(13) 

+ A K~^ { ao ,b° \ J c° d° IV 
4T7 \ j ( j + l - a - | 8 ) , •* • / [ ( !_ , ) ( a + j3_ , ) («+/}_ , , ) ] / 

From the definition of fi(s), it then follows that 

r(s; «,£)&(*)+ r( j ; ft «^(j) 

= (x)S { J" ̂ W1 *+y J" dW-- 1 *} 

n4i i / 2 g V f ao *Q| vr CQ ^ — H 
U / W + i - « - « * yL(i-*x«+P--o («+J8-* ) J J 

S j P ( 5 ) + ( T ) \S(S+ 1 - a - j S ) ~ 7 + y 1(1 -s)(a+/?-j)"(a + /?-.ï)J/' 

It follows from the work of Maass [6, p. 256] that 

is an entire function of finite order; hence P(s) is an entire function of finite order. 
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Similarly 

{T(s+ l;a,P)-Ha-P)r(s;a,mi{s)-{r(s+15 ft «)+««-|8)r(*; ft «)}&(*) 

= (y)S+1{ J" H^f^dy-y J" ̂ (j)^^ — 1 #} 

n ^ + /^V + 1 £z£ A f «o , ftp i v[ CQ 4> 1) 

^ + \ A / ' 4TT ' A l J ( S + 1 - K - / 3 ) + . S
 yL(l-s)(«+j3-.0 («+(8-5)]/ 

+ y[(l - J ) ( a + i 3_ 5 ) - (« + jS
0_J)J}' 

where 2(5) is an entire function of s of finite order. We can solve for <f>i(^) from (14) 
and (15). Using Lemma 1, it follows that 

A M - rfr+i;ft«)+K«-flr(j;ft«) r(j;fta) 
*lW ~ 2r(*)r(5+i-«-jS) P(5)+2r(5)r(5+i-a-^)ew 

/2ir\' f flp . &o r Cp 4 , 11 
+ \ A / \ * ( J + 1 - « - J 3 ) s+Y[(l-s)(a+p-s) (a+j3-s)\) 

r(s+UP,a) + H«-fir(s;p,«) (2*V^ ( a - f l 

x A f ao A i J c ° d° ~0 
\ S(s+l-a-py S+Y[(ls)(a + I3-S) (a + p-s)}} 

r(s;fta) 
x 

Now 2r(s)r{s+i-a-p) 

(17) F(s; a, p) = 2<«-*>'2 mrfiî! "> ® F(P, 1 - « , J+1 - « ; i), 
1 (£ + 1 — a ) 

where F(a,f$9y;x) denotes the hypergeometric function. It is known that 
F(J1, l—^s+l—a; %)/r(s+1 —a)is an entire function of s. Hence 

and T(s; f$, a) become entire functions of s after division by 2T(s)T(s +1 — a — f3) 
It follows from (16) that </>x(s) is meromorphic in the complex s plane and has at most 
poles ats=a+p,a+f$—1,1 and 0. We now prove that ^(s) is regular at s = a+ft — 1 
and^=0by proving that lims_0 s<f>1(s) = 0 and lims->a+i5-i (s-a-[$+l)(f>1(s) = 0. 

It follows from (16) that 

a*» - (T^-^)r+^?r:n;;n., 
+ î z l / a0 u r(J;ft«) i _ 
+ 2 \ i-«-iS+0oA2r(*)r(*+i-«-/3);s=o * 
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by using (17) and elementary properties of the gamma function. Similarly 

lim (s+l-a-p)^) 
S-KX + 0-1 

= / M " * ' - 1 a0 jT(j+l;ft«)+j(«-/8)r(j;ft«)l 
\ A / («+J8-1)\ 2r(s)T(s+l--a-p) / ._„+,-! 

\ A / ' 4» - («+i î - i ) \2 r ( j ) r (*+i -« - /? ) / , . „+ , . ! u-

LEMMA 3. The function <f>i(s) has the functional equation 2T(s)T(s+1 —a-f})<j>1(s) = 
j/(2*r/A)2s-a-"{A(a, ft j)^2(<* +/5-j)+/*(«, ft ^2(ce+i3-s)}, wfere 

(18) \(<x,p,s) = r ( j + l ; /3,-a)r(a+j8-j; «, J 8 ) - I X J ; j8, a)IX«+iS-*+l; ee, j8), 

and 

/*(«, ft j) = r ( 5 + 1 ; ft «HYa+jS-s; ft o) + r(s; ft « ) r ( « + 0 - * + 1 ; ft a) 
(19) 

+ («-j5)r(*; ft a ) r (a+ iS- 5 ; ft a). 

This lemma follows by solving for </>i(s) from the two equations defined by (11) 
and using Lemma 1. 

LEMMA 4. A(«, ft s) = 0(e~aW) andn(a, ft s) = 0(e-*w\t\"-*) as\t\-+co uniformly 

for — <x><a<o<b«x>, where as usuals=a+it. 

It is known [1, p. 76] that 

F{a, b,c;z)=l+^z+--- +^Ùs z<>+0(\c\-n-1), 

as \c\ -> oo, for fixed a, bandz, if \z\ < 1 and |argc| <TT-B<TT, where for a complex 
number x, (x)n==(;t+l).. .(x+w--l). Hence jp(ft 1 — a, s+1 — a; i ) ~ l as 
|f|->oo uniformly in -oo<a<o<b<oo. From Stirling's approximation for 
T(s), it follows that r(a+i'0~V2w*~**ull*lff~* for J->oo, uniformly in 
— co<a<o<b<co. Hence by (17), it follows that 

i^ff l-<TC'-Tw l) 
(20) 

= 0(e-*»i«i|f|*-'-*) 

as |/| —>oo uniformly in — co<a<<j<b<oo. 

Consequently 

X(a, ft s) = r (M- l ; ft a)r (a+jS-s ; a, 0 ) - r ( j ; ft a ) r ( a + £ - * + 1 ; a, P) 

= OCe-^^^ + OCe-*"1) = O^-*1"), 

as |f| -> oo uniformly in — co<a<a<b<co. 
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Similarly 

/*(«, ft s) = T(s + 1 ; ft a)T(a + P-s; ft a) + T(s; ft a ) r ( a + j 8 - J + 1 ; ft a) 

= 0(e-*m|r|/,-a)+0(e-;i,*l|r|^-a) + 0(e-"m|r|/,-a-1) 

= 0(e-*w\t\'~*)> 
as |f| ->oo uniformly in —co<a<o<b<co. 

LEMMA 5. Let c* > 0 be such that the four Dirichlet series defined by (7) converge 
absolutely for s = c* and c*>(a+ft/2. Then<f>1(a+it) = 0(\t\;'i), as \t\ -> oo uniformly 
ina+p-c*<a<c*9 where A1 = max{0, 82-2(a+j8-c*)} w///* S2 = max (a+ft 2ft. 

By Lemma 4, it follows that 

and 

nr\ ^a' & ^ = 0fl/F-2ff>> 
1 ] r^r^+i-a-ft ^ | r | h 

as |f |->oo uniformly in —ao<a<o<b<co. By the choice of c*9 ^2^) = 0(1), 
02(s) = 0(l) for (7>c*; hence ^2(a+j8-,y) = 0( l ) and 0 a(a+]8-j) = O(l) for 
a = a+j8 — c*. It then follows from Lemma 3, (21) and (22) that 

fas) = 0( | f | B + ' - 2 O + 0( | f | 2 ' - 2 ' ) 

= 0 ( | ^ 2 - 2 ^ 

on the line (7=a+/?—c* as |f| -» 00, where o2 = max(a+ft 2ft. 
By the choice of c*, it follows that <j>1(s) = 0(l) on a=c*. In view of Lemma 2, 

(s— l)(s—a—P)<t>i(s) is an entire function of finite order; it then follows by the 
theorem of Phragmen-Lindelôf that <f>i(a + it) = 0(\t\v{<J)) uniformly in «+/? — 
c* < a < c* for 11\ > t0 (t0 being a suitable positive constant), where r)(a) is the linear 
function joining (c*, 0) and (a+jS-c*, o2 —2a). Hence 

^ (a+f t ) = 0(|r|<52-2(« + /?-c*)) if s 2 _ 2 ( a + ^ - c * ) > 0 

= 0(1) if o 2 -2(a+j8-c*) < 0 

uniformly in a+f$—c*<a<c*. 

As Ax = max (0, S2-2(a-i-£— c*)), the result follows. 

4. Proof of the main theorem. We invoke Perron's formula in the classical theory 
of Dirichlet series [3, p. 81] and apply it to 

Us) = 2% 
t>ot 
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which converges absolutely for <J>C*. Then we have for JC>0 and S>0, 

(23) x aix-ty=r(8+i^. ± ria r%?iiids> 
where the dash on the left of (23) indicates that the last term of the sum on the left 
side of (23) is to be multiplied by \ if 8 = 0 and x — tx with att^0; further the 
integral on the right of (23) is to be understood as a Cauchy limit. We note that the 
number of t for which at^0 and 0< t<x is finite. We now transform the integral 
on the right of (23) into an integral taken on the line RGs = a+f3 — c*. We now 
impose the additional condition that the strip a+f3—C*<CT<C* includes all the 
singularities of fais) and that T(s) and^s) are both regular onRQs = a+p-c*. We 
consider the integral of 

over the rectangle with vertices at c* ± it, a+j8 - c* ± it oriented in the positive sense. 
Then 

J /»c* + fi J f>a + 0-c* + it J pcc + 0-c*-it J pc*-it 

2iri J c*_it 2iri J c* + it 2-iri J a + p_c* + it 2rri J a + / j _ c * _ i É 

is the sum of the residues of (24) inside the rectangle; we denote this sum by 
Qô(x). By Stirling's approximation and Lemma 5 

(*a + 0-c* + it v^ + s P M / rc* \ 

L. lfcT&*«*-0(L.,*,"l1*~*) 
= O d ^ i - * " 1 ) = o( l )asr->ooif A ! - 8 - l > 0 

or 8 > A i - 1 . 

Similarly the integral on the line joining a+p — c* — it and c* — it tends to zero as 
\t\ -> oo if 8> A x - 1 . Hence for 8>0 and 8> A x - 1 , 

ï W ) o I ^ / ) d = a w + i 
(25) 

X 
J c*-i°o r(8 + l + a + j8-^) 

h h 
Using Lemma 3 and the facts (f>2(s) = 2 ~i' ̂ (s) = 2 "~T' f° r s=c*> ^ e integral on 

t>o t t>o t 
the right of (25) can be rewritten as 

y(^Y + \>^^± r + "° r(a+)8-j) ( \(a,p,a+p-s) - b, 
2 \ A / x 27TiJc..lcor(B + l + a+p-s)\r(a+^-s)T(l-s)ti'0t

s 

(26) 

+ T(*+p-s)r(l-s) f0 f A A2 j aS-
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We want to exchange the order of integration and summation in (26); this can be 
done if the series 

<rr\ V h - L f*+ic* A(q,]8,tt+j3-j) /4TT2/X\-S 

KLl)
 ffo

 t27TiJc*_i00r(h + l+a + p-s)r(\-s)\ A2 ) aS> 

and 

m\ v h - L r + i ° ° /*(«,£,«+£-*) /4TT2LY\-S 

converge absolutely. 

Let 

(29) J(x; a, p, 8, c) = ± riC° r n ^ ? t f " f a ^ *~2S*> 
27TZ J c_ i00 I ( 1 - ^ ) 1 (p+l+a + p — S) 

(0 < c < ±(S + a + P);x > 0) 

and 

(30) 
(0 < c < i(3 + 2a);x > 0) 

where c is such that the path of integration does not include any of the singularities 
of the integrand. As F(fi, 1 — a, s +1 -a; -|)/r(s +1 - a) is an entire function of s, 
it follows from (17) that T(s; a, j8) is meromorphic in the complex s plane with at 
most poles at s=l— n, s — a + P — n, n being any positive integer. It then follows 
from (18) that A(a, p9 s) is a meromorphic function of s with at most poles at points 
congruent to 0 or a+|3 modulo 1. The same is true for the function /x(«5 p, s). We 
now study the convergence of the integrals defined by (29) and (30). From Lemma 4, 
it follows that the integrand in (29) is 

0(|*| -<* + i + « + e-2c)x-2c)9 where J = c + it. 

Hence the integrals in (27) and (29) converge absolutely if 8 > 2c* - (a+/3) or 8 > 2c -
(a+jS) respectively. Similarly the integrand in (30) is 0(|/|-(<5 + 1 + 2a~2c);c-2c), 
where s—c+it. Hence the integrals in (28) and (30) converge absolutely if 8 > 2c* — 
2a or 8 > 2c — 2a respectively. It then follows that the series (27) and (28) converge 
absolutely if S>2c* —2a and $>2c* — (a+P). We therefore have proved the 
following 

THEOREM. Let c* > 0 be such that all the singularities of ^ (s ) lie in the strip 
a+p — c*<cr<c*9 c* not congruent to 0 or a + p modulo 1 and also c* satisfy the 
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conditions of Lemma 5. If Xx is as in Lemma 5, 3>0, S > 2c*— 2a, h>2c* — a—jS 
and S>XX — 1, ̂ few 

(31) 

x { 2 V ( ^ Vto; a, ft 8, c*) + t 2 6_(*:(y Vtt; «, ft 8, c*)}> 

where the summation in the series on the right of (31) is over all real / > 0 such that 
t=b2 (mod 1) and the series on the right of (31) converges absolutely. 

5. Some special cases. (1) Let j3=0. Then by a theorem of Maass [6, Satz 6], 
f(z, w) can be transformed by the application of a suitable differential operator into 
the function 

(n + &i) 

(32) â0+B0 + do 2 an+He2ni—~ * 
n + b i > 0 

â0, b0 and c0 being suitable constants and n an integer. (32) and a similar transform 
of g(z, w) then have a functional equation under the mapping z~> — z'1 as in the 
classical case of the Ramanujan r function and 20<n+&i<;* an + ̂ x—n — bx)0 can 
be expressed as a series of Bessel functions of the first kind. A very good account 
of such results can be found in [2]. 

(2) a=j3. In this case we get the so called wave functions [5] and the functions 
J(x; a, a, S, c), K(x; a, a, 8, c) can be evaluated explicitly in terms of Bessel 
functions and related functions. It turns out that 

r ( W ) = ̂ 2<—r(f)if±!-«), 
and 

(2TT) sin^—a) 
A(a, a, s) . , v . T= x , 

v ' ' J Slll(7r,s)sin7r(2a-s) 

then 

J(X- a a 8 c*) ~ -L r + i " 2 r ^ ^n(a-s) x-»ds 

J(X, a, a, ù, C ) - 2 v i J ^ ^ r ( g + j + 2 a _ s ) s i n ^Qa-s) * as 

(33) - h SIZ n*+ï+2*-s)cos {™)x~2sds 

- 2 sin(7ra) •=-. ; ' COt ?r(2a - ^)x " 2 s * . 
LTTl J c*_joo 1 ( 0 + 1 -f-Za —«SJ 

The first integral in (33) is a Bessel function of the first kind multiplied by a factor 
and the second integral in (33) can be expressed [12, §5] in terms of the Bessel 
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function Yv(x) and the Lommel function S^x). In the same manner it follows 
that 

t v (27r) sin(7ra) 

sin(W) sin7r(2a—s) 

and 

(34) Kix; a, «, 8, c*) = ±-. f°*+" r l S i " S r ( ^ cosec *(2«-*)*"*<&. 
Z77Z J c*_ i 0o 1 (O + 1+2C£ — 5J 

The integral in (34) is expressible [12, §5] in terms of the Bessel function Kv(x) and a 
function GUtV(x) similar to the Lommel function S^v(x). The relevant properties 
of Ĝ vCx;) can be found in [12, §5]. 
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