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Abstract

We derive an asymptotic expansion for the distribution of a compound sum of independent
random variables, all having the same rapidly varying subexponential distribution. The
examples of a Poisson and geometric number of summands serve as an illustration of the
main result. Complete calculations are done for a Weibull distribution, with which we
derive, as examples and without any difficulties, seven-term expansions.
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1. Introduction

In this paper we construct asymptotic expansions for the tail area of a compound sum,
when the distribution of the summands belongs to a class of rapidly varying subexponential
distributions. To be more precise, let Xi, i ≥ 1, be a sequence of independent random variables,
all having the same distribution, F . For any positive integer n the distribution of the partial
sums Sn = X1 + · · · + Xn is the n-fold convolution F�n. We set S0 = 0 and therefore F�0 is
defined as the distribution of the point mass at the origin. Let N be a nonnegative integer-valued
random variable, independent of the Xis. We consider the distribution G of the compound sum
SN , that is E F�N , and we seek an asymptotic expansion for its tail area G = 1 − G.

First-order asymptotic results for G have been obtained by Embrechts et al. (1979), Cline
(1987), and Embrechts (1985). A second-order formula may be found in Grübel (1987) and
Omey and Willekens (1987).

Compound sums or subordinated distributions arise as distributions of interest in several
stochastic models. In insurance risk theory, it models the total claim amount. For a discussion
of issues related to random sums and insurance risk, we refer the reader to Embrechts et
al. (1997), Asmussen (1997), and Goldie and Klüppelberg (1998). Compound sums also
appear in queueing theory, in connection with the stationary distribution of waiting times in
the GI/G/1 queue. The connection here is not as direct as in the insurance risk model in that
it is derived from an analysis of ladder heights for transient random walks; see, for example,
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Asymptotic expansions 671

Asmussen (1987, p. 80), Feller (1971, p. 396), and Pakes (1975). Another common way in
which this model occurs is through the solution to a transient renewal equation. An example of
this occurs in branching processes, where we obtain a geometric-compound sum in the analysis
of the mean number of particles alive at a given time in an age-dependent subcritical process;
see Athreya and Ney (1972, p. 151). We refer the reader to Feller (1971, Chapter XI) for a
discussion of transient renewal theory. For further applications of subexponentiality in transient
renewal theory, we refer the reader to Teugels (1975) and Embrechts and Goldie (1982).

We conclude this introduction by discussing two technical points. While the technique
developed in this paper is applied in a more restrictive setting than that promoted by Grübel
(1987), it appears to lead to results in a form more suitable for computation. Moreover, in
his improvement of the so-called Banach algebra method, Grübel (1987) pointed out that ‘in
principle this should lead to arbitrarily fine expansions’; to the authors’ knowledge, the Banach
algebra method has yet to be used to produce such explicit fine results comparable to the one
we present here for the problem at hand.

A second technical aspect of the current paper is that for regularly varying tails, Barbe
and McCormick (2004) obtained expansions for compound sums based on an expansion for
weighted convolutions with an estimate of the remainder term. In contrast to this, for rapidly
varying subexponential tails, Barbe and McCormick (2005) did not provide explicit bounds,
thereby precluding use of the method from Barbe and McCormick (2004) to obtain applied
probability applications to be carried over to the present setting. Thus, one goal of the
current paper is to obtain compound sum tail expansions in the rapidly varying subexponential
setting with less information than was available in the regularly varying setting in Barbe and
McCormick (2004).

2. Main results

If it exists ultimately, the hazard rate h = F ′/F yields the representation of the distribution
function F as

F(t) = F(t0) exp

(
−

∫ t

t0

h(u) du

)

ultimately. We write ‘Id’ for the identity function on R; for any positive real number r , the
function Idr maps t to t r . From the representation of F in terms of its hazard rate, we see
that if h ∼ α/ Id at ∞, then F is regularly varying with index −α. If limt→∞ h(t) = α, then
F(t) = e−αt(1+o(1)) has tail behavior close to that of an exponential distribution. Since we are
interested in rapidly varying subexponential tails, it is natural to consider hazard rates such that

h is regularly varying,

lim
t→∞ th(t) = +∞, and lim

t→∞ h(t) = 0.
(2.1)

In order to be not too close to the Pareto-type distributions, we will strengthen this assumption
by requiring that

lim inf
t→∞

th(t)

log t
> 0. (2.2)

This excludes distributions with tail e−(log t)a with a < 2, but includes those for which
a ≥ 2. The class of distribution functions satisfying these conditions includes the subexpo-
nential Weibull ones as well as distributions transformationally related to the normal, such
as the log-normal and Johnson’s SU system; see Stuart and Ord (1994, Section 6.35). Spe-
cific purpose distributions that fall within the class includes Benktander type I and II; see
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Beirlant et al. (1996, Section 1.4). Our class also includes distribution functions with tails of
the form tβe−tα , with β arbitrary real and α positive and less than 1, which have been considered
in the extreme value literature; see Rootzén (1986) and Davis and Resnick (1988).

For modeling tail behavior for distributions with Weibull-like tails, a mean excess plot, i.e.
a plot of E(X − x | X > x), is revealing; see Beirlant et al. (1995). Under a mild regularity
condition for the class of distribution functions considered in this paper, it can be established
that the conditional variance function satisfies var(X | X > x) ∼ 2/h2(x) as x → ∞, thus
allowing us to examine the adequacy of the model based on the data.

As observed in Barbe and McCormick (2004), (2005), smoothness is a key requirement to
obtain asymptotic expansions. For our purposes, a good class of regularly varying functions
are the smoothly varying ones of a given order, whose definition we now recall.

Definition 2.1. A function h is smoothly varying of index α and order m if it is ultimately
m-times continuously differentiable and its mth derivative is regularly varying of index α − m.

Clearly, if the hazard rate is m times differentiable, then the tail function F can be differen-
tiated m + 1 times.

The next notation we need to introduce pertains to the Laplace characters. We write D for
the derivation operator; that is, if g is differentiable then Dg is its derivative. As is customary,
we define D0 to be the identity and, for any positive integer i, we define Di by induction as
DDi−1.

We write µF,i for the ith moment of F .

Definition 2.2. (Barbe and McCormick (2004).) Let F be a distribution function having at
least m moments. Its Laplace character of order m is the differential operator

LF,m =
∑

0≤i≤m

(−1)i

i! µF,iD
i .

Laplace characters have useful algebraic properties which are described in Barbe and
McCormick (2004). In particular, consider the ring Rm[D] defined as the quotient ring of
polynomials in D with real coefficients modulo the ideal generated by Dm+1. Laplace characters
are elements of this ring, and can be multiplied. It may be helpful to think of a Laplace character
as a formal Laplace transform E e−XD, where X has distribution F , expressed as a formal Taylor
series in D, dropping all terms in Dm+1, Dm+2, . . .. Then, the multiplication in the ring Rm[D]
amounts to the usual multiplication of Taylor series, dropping any term in Dm+1, Dm+2, . . ..
In particular, in Rm[D], we have LH�K,m = LH,mLK,m. In what follows, we always consider
Laplace characters of orderm as members of Rm[D], and all the operations on Laplace characters
are in that quotient ring.

The following theorem, which we prove in Section 5, provides an asymptotic expansion for
the tail of G. A less elegant but more explicit formulation is given as a corollary.

Theorem 2.1. Let F be a distribution function whose hazard rate is smoothly varying with
negative index at least −1 and positive order m. Assume, further, that (2.2) holds and that
the moment generating function of N is finite in a neighborhood of the origin. Then, for any
nonnegative integer k ≤ m for which F admits a moment of order k, we have

G = E NLF�(N−1),kF + o(hkF ).
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Remark 2.1. It was shown, by Barbe and McCormick (2005, Lemma 4.1.1), that under the
assumptions of Theorem 2.1 the asymptotic equivalence F

(k) ∼ (−1)khkF holds. Therefore,
the remainder term in the above formula could be written as o(F

(k)
).

Remark 2.2. In the statement of Theorem 2.1, the assumption that F admits a moment of order
k has bearing only on the lower tail of the distribution for F is rapidly varying.

We will see in the next section that the formulation of Theorem 2.1 is quite adequate for
practical calculations. A more explicit formulation may be interesting both for understanding
the meaning of Theorem 2.1 and for further theoretical developments. To write down such a
formulation, we introduce the factorial moments of N ; writing (N)p = N(N−1) · · · (N−p+1)

for the falling factorial of order p of N , the pth factorial moment of N is E(N)p. Given a
multiindex k = (k1, . . . , kn) of nonnegative integers and extending the classical notation for
the multinomial coefficients, we write

(
n

k

)
or

(
n

k1 · · · kn

)

for n!/k1! · · · kn!, and the norm |k| = k1 + · · · + kn. We define the following coefficients,
involving only the moments of F and the factorial moments of N : when i = 0, we set
g0 = E N and, for any positive i, we have

gi = (−1)i

i!
∑

k1+2k2+···+iki=i
k1,...,ki≥0

(
i

k

)
E(N)|k|+1

(
µF,1

1!
)k1

· · ·
(

µF,i

i!
)ki

= (−1)i

i!
∑

1≤p≤i

E(N)p+1

p!
∑

j1+···+jp=i

j1,...,jp>0

(
i

j1 · · · jp

)
µF,j1 · · · µF,jp .

The following corollary asserts that G has an asymptotic expansion in the natural asymptotic
scale (F

(i)
)0≤i≤m, whose coefficients are given by the gi .

Corollary 2.1. Under the assumptions of Theorem 2.1, we have

G =
∑

0≤i≤m

giF
(i) + o(hmF).

Proof. Consider the probability generating function �(t) = E tN of N and the Laplace
transform L(t) = E e−tX of X. Considered as an element in Rm[D], the operator L(D)

coincides with the Laplace character LF,m. Consequently, introducing the derivative �′ of
�, in Rm[D] we have

E NLF�(N−1),m = E NLN−1
F,m = �′(L(D)).

Given Theorem 2.1, it suffices to evaluate the right-hand side of this equality. For this purpose,
consider the function defined in a neighborhood of the origin of the real line g(t) = �′(L(t)).
This function has a Taylor expansion

∑
i≥0 t ig(i)(0)/i!. Applying the Faà di Bruno formula

(see, e.g. Roman (1980)), we see that g(i)(0) = i! gi . The result follows.
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3. Examples

We illustrate the use of Theorem 2.1, considering the cases where N has a Poisson and a
geometric distribution.

3.1. Example 1

Assume that N has a Poisson distribution with parameter a. Sums with a Poisson number
of summands are commonly used in insurance mathematics, modeling total claim size; see
Beirlant et al. (1996), Embrechts et al. (1997), and Willmot and Lin (2001). The following
expansion is easily derived.

Proposition 3.1. Let F be a distribution function satisfying the assumptions of Theorem 2.1.
If N has a Poisson distribution with parameter a, then G = aLG,mF + o(hmF). Moreover,
LG,m = exp(a(LF,m − Id)).

Proof. Combine Theorem 2.1 and the proof of Corollary 4.4.2 of Barbe and McCormick
(2004) to obtain the expansion aLG,mF . To obtain the expression for LG,m, write, in the quotient
ring,

E NLN−1
F,m = e−a

∑
n≥1

n
an

n! L
n−1
F,m = a exp(a(LF,m − Id)).

The above formula is easily implemented with a computer algebra system. For example, the
following Maple©R code calculates a exp(a(LF,m − Id)):

mu[0]:=1:

LF:=sum(’(-1)ˆj*mu[j]*Dˆj/j!’,’j’=0..m+1):

taylor(a*exp(a*(LF-1)),D=0,m+1);

Setting m = 3 in the above code yields the following first four terms:

E(NLN−1
F,3 ) = a Id −a2µF,1D + a2

2
(aµ2

F,1 + µF,2)D
2

− a2

6
(a2µ3

F,1 + 3aµF,1µF,2 + µF,3)D
3.

To give a very concrete example, assume that F is the Weibull distribution with parameter 1
3 ,

so that F(t) = exp(−t1/3). Define er(t) = t r exp(−t1/3). We obtain, after evaluation of
E(NLN−1

F,3 ), and using a computer algebra package,

G = ae0 + 2a2e−2/3 + 2a2(20 + a)e−4/3 + 4a2(20 + a)e−5/3

+ 4a2(1680 + 60a + a2)

3
e−2 + 8a2(1680 + 60a + a2)e−7/3

+ 2a2(403200 + 9120a + 140a2 + a3)

3
e−8/3 + o(e−8/3).

Perhaps the only remarkable feature of such a seven-term expansion is that it can be done.
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3.2. Example 2

Motivated by applications to queueing theory (see, e.g. Cohen (1972) or Bingham et al.
(1989, p. 387)), consider the case where N has a geometric distribution with parameter a, that
is, N is a nonnegative integer n with probability (1 − a)an. Again, Theorem 2.1 provides a
compact expression of the asymptotic expansion of G, and the issue is how to actually compute
it.

Any polynomial in D with nonvanishing constant term is invertible in the quotient ring
Rm[D]. Therefore, since a is positive and less than 1, we have

E NLF�(N−1),m = (1 − a)
∑
n≥1

annLn−1
F,m = a(1 − a)(Id −aLF,m)−2.

Consequently, the following result holds.

Proposition 3.2. Let F be a distribution function satisfying the assumptions of Theorem 2.1. If
N has a geometric distribution with parametera, thenG = a(1−a)(Id −aLF,m)−2F+o(hmF).

Setting m = 3, we obtain, as in the previous example, with the help of a computer algebra
package, with b = a/(1 − a),

E NLN−1
F,3 = b Id −2b2µF,1D + b2(µF,2 + 3bµ2

F,1)D
2

− b2

3
(12b2µ3

F,1 + 9bµF,1µF,2 + µF,3)D
3.

For instance, when F is the Weibull distribution with parameter 1
3 , the calculation of

E NLN−1
F,3 yields the following seven-term expansion, where er(t) = t r exp(−t1/3) (expressed

solely with a, the formula contains alternating signs; expressing it with b = a/(1 − a) makes
it slightly more stable numerically):

G = be0 + 4b2e−2/3 + 4b2(20 + 3b)e−4/3 + 8b2(20 + 3b)e−5/3

+ 32b2(140 + 15b + b2)e−2 + 192b2(140 + 15b + b2)e−7/3

+ 80b2(6720 + 456b + 28b2 + b3)e−8/3 + o(e−8/3).

4. Concluding remarks

In a different subexponential context, namely assuming that F is regularly varying, Mikosch
and Nagaev (2001) produced an example showing that the rate of convergence in the first-
order asymptotic approximation G ∼ E NF can be arbitrarily slow, showing that the use of
this approximation can be problematic. However, they showed that smoothness of F , meaning
essentially here that it admits a regularly varying density, ensures that the relative error in the
approximation decays in the same way as 1/ Id. Along the same lines, Barbe and McCormick
(2004) obtained higher-order terms yielding, in theory, a more precise approximation under
a higher-order regularity condition. We could therefore believe that the key to prevent an
arbitrarily slow rate of convergence is smoothness of the distribution. Interestingly, Theorem 2.1
shows that a problem may arise in another direction, when the distribution becomes too close
to an exponential one, yet being subexponential. Indeed, considering m = 1 in Theorem 2.1,
we see that, in R1[D],

LF�(N−1),1 = LN−1
F,1 = (Id −µF,1D)N−1 = Id −(N − 1)µF,1D,
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so that

G = E NF − E N(N − 1)µF,1F
′ + o(hF)

= E NF + E N(N − 1)µF,1hF + o(hF).

Therefore, the relative error of the first-order term is

G − E NF

E NF
∼ E N(N − 1)

E N
µF,1h.

Note that there is no restriction on the rate of convergence of the hazard rate to 0 besides (2.1)
and (2.2), and that this allows for arbitrary slow polynomial rates—it is conceivable that a more
refined analysis would show that an arbitrarily slow rate can be obtained by taking distributions
even closer to the exponential one. To fix the ideas, if h(t) ∼ t−α with 0 < α < 1, then

F(t) = exp

(
− t1−α

1 − α
(1 + o(1))

)
.

Hence, arbitrarily slow polynomial rates can be obtained for a distribution with α close to 0,
that is, a distribution close to the exponential distribution. However, again, smoothness and
integrability may rescue a poor rate in allowing a higher-order expansion by choosing m large
in Theorem 2.1.

5. Proof of Theorem 2.1

When m vanishes, Theorem 2.1 is due to Embrechts et al. (1979, p. 342). Therefore, we will
prove it when m is at least 1. The proof is carried out in two steps. We first prove Theorem 2.1
under the extra assumption that the distribution function F is concentrated on the nonnegative
half-line; in the second part of the proof, we remove this assumption.

5.1. Proof in the nonnegative case

Until further notice, we assume that F is concentrated on the nonnegative half-line. It is
convenient to introduce a pseudo-semi-norm on tails. If K is a distribution function, we write

|K|F = sup
t≥0

(
K

F

)
(t),

with the convention 0/0 = 0. This generates balls B(F, r) containing all tails K which are
less than rF . We write B(F) for the union of all these balls for all positive r . Also, we write
Gn for the n-fold convolution F�n.

We start by recalling Kesten’s global bound on the tail function of self-convolutions of
subexponential distributions; see Athreya and Ney (1972, Section IV.4, Lemma 7). This result
asserts that for any positive ε there exists a positive A such that, for all positive integers n,

|Gn|F ≤ A(1 + ε)n. (5.1)

We also need a precise estimate of the order of magnitude of derivatives of F . As noted in
Remark 2.1, Lemma 4.1.1 of Barbe and McCormick (2005) shows that, for any nonnegative
k ≤ m, we have

F
(k) ∼ (−1)khkF . (5.2)
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Finally, we also need a basic representation of convolution in terms of operators. For any
distribution function K with support in the nonnegative half-line and any η positive and less
than 1, define the operator

TK,ηf (t) =
∫ ηt

0
f (t − x) dK(x).

For any positive c, we also define the multiplication operator Mc acting on functions by

Mcf (t) = f

(
t

c

)
.

These two operators allow us to write a convolution in a way suitable for our analysis. Define
the powers T n

K,η by T 0
K,η = Id and T n+1

K,η = TK,ηT n
K,η. Using proposition 5.1.1 of Barbe

and McCormick (2004) inductively, we obtain the following representation for the distribution
function, valid on the nonnegative half-line:

Gn =
∑

1≤i≤n

T i−1
F,η TGn−i ,1−ηF +

∑
1≤i≤n

T i−1
F,η (M1/ηFM1/(1−η)Gn−i ). (5.3)

Our first lemma is a simple moment bound.

Lemma 5.1. Let i be a nonnegative integer, and let ε be a positive real number. There exists
t1 such that, for any t ≥ t1 and any distribution function K in B(F), we have

∫ ∞

t

xi dK(x) ≤ (1 + ε)|K|F tiF (t).

Proof. For any nonnegative integer i, integration by parts yields
∫ ∞

t

xi dK(x) = t iK(t) + i

∫ ∞

t

xi−1K(x) dx. (5.4)

The right-hand side of this equality is less than |K|F times the same expression with K replaced
by F . Consequently, it suffices to prove the result when K = F . In this case, let M be a positive
real number so that ε(M − i) ≥ i. Since Id h tends to infinity at infinity, h is more than M/ Id
ultimately. For any large enough t and any x ≥ t , we have

F(x)

F (t)
= exp

(
−

∫ x

t

h(u) du

)
≤

(
t

x

)M

.

This implies that the integral on the right-hand side of (5.4), when F is substituted for K , is at
most εt iF (t).

Our next lemma contains the main argument of the proof, namely that a TK,η operator is in
some sense very close to a Laplace character as far as tail behavior is concerned when applied
to F and its derivatives.

Lemma 5.2. For any fixed integer p ≤ m,

lim
t→∞ sup

K∈B(F)

|(TK,η − LK,m−p)F
(p)|

|K|F hmF
(t) = 0.
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Proof. The proof of Lemma 4.2.3 of Barbe and McCormick (2005) shows that, for any
positive δ, ∣∣∣∣

∫ δ/h(t)

0
F

(p)
(t − x) dK(x) − LK,m−pF

(p)
∣∣∣∣ (5.5)

is at most ∑
0≤j≤m−p

|F (p+j)
(t)|

∫ ∞

δ/h(t)

xj dK(x) (5.6)

+
∫ δ/h(t)

0

∫ x

0

ym−p−1

(m − p − 1)! |F
(m)

(t − x + y) − F
(m)

(t)| dy dK(x). (5.7)

Let ε be a positive number. Using Lemma 5.1 and (5.2), we see that, for large t , the term in
(5.6) is less than

F(t)2|K|F
(

δ

h(t)

)j

F

(
δ

h(t)

)
.

Since F is rapidly varying, this is ultimately less than ε|K|F hmF .
The proof of Lemma 4.2.3 of Barbe and McCormick (2005) shows that, for small enough

δ, for any large enough t , and for any K in B(F), the double integral (5.7) is at most
ε|K|F µF,m−phmF . Hence, we have shown that (5.5) is at most ε|K|F (µF,m−p + 1)hmF

ultimately uniformly over B(F).
The proof of Lemma 4.2.4 of Barbe and McCormick (2005) shows that, for any positive δ

and η, ultimately uniformly over B(F),

∫ ηt

δ/h(t)

|F (p)
(t − x)| dK(x) ≤ ε|K|F hmF(t).

This completes the proof.

Lemma 5.2 yields the following estimate on an operatorT composed with a Laplace character
applied to a derivative of F .

Lemma 5.3. The following uniform limit holds:

lim
t→∞ sup

K∈B(F)

H :µH,m−p<∞

|TK,ηLH,m−pF
(p) − LK�H,m−pF

(p)|
|K|F hmF

∑
0≤j≤m−p(µH,j /j !) (t) = 0.

Proof. Since TK,η is linear and

LH,m−pF
(p) =

∑
0≤j≤m−p

(−1)j

j ! µH,jF
(p+j)

,

the result follows from Lemma 5.2 and Lemma 2.1.4 of Barbe and McCormick (2004).

The next two lemmas will take care of some remainder terms. The first one asserts that terms
of order o(hmF) remain so through the action of some T operators.
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Lemma 5.4. Let q be a nonnegative integer and ε be a positive real number. There exist t2 and
some positive A and η such that, for any positive integer i,

T i
F,η(h

qF ) ≤ A(1 + ε)ihqF

on [t2, ∞).

Proof. Let ε be a positive real number. Since h is regularly varying with negative index,
provided that η is small enough, we have h(t − x) ≤ (1 + ε)h(t) for any large enough t and
any nonnegative x ≤ ηt . Therefore, for t ≥ t ′2,

TF,η(h
qF )(t) =

∫ ηt

0
(hqF )(t − x) dF(x)

≤ (1 + ε)hq(t)

∫ ηt

0
F(t − x) dF(x)

≤ (1 + ε)hq(t)F �2(t).

By induction, it follows that

T i
F,η(h

qF )(t) ≤ (1 + ε)i(hqF �(i+1))(t).

Using Kesten’s bound, (5.1), this shows that T i
F,η(h

qF ) is ultimately at most A(1 + ε)2ihqF ,
which completes the proof since ε is arbitrary.

Our penultimate lemma will be used to handle the terms involving the multiplication oper-
ators in (5.3).

Lemma 5.5. Let ε be a positive real number. There exists t3 such that, for any positive integers
i and m,

|M1/ηFM1/(1−η)Gi | ≤ (1 + ε)ihm+1F

on [t3, ∞).

Proof. Kesten’s bound, (5.1), shows that

|F(tη)Gi(t (1 − η))| ≤ F(tη)A(1 + ε)iF (t (1 − η)).

Arguing as in Lemma 4.2.1 of Barbe and McCormick (2005), we find that F(tη)F (t (1 − η))

is o(hqF (t)) for any positive q. This implies the result.

Our last lemma is stated merely to avoid digression in the argument later on.

Lemma 5.6. Let ε be a positive number. There exists A such that, for any positive integer n,

∑
0≤j≤m

µGn,j

j ! ≤ A(1 + ε)n.

Proof. The lemma follows from the Marcinkiewicz–Zygmund inequality (see Chow and
Teicher (1988, Section 10.3, Theorem 3)), which implies that µGn,j ≤ Anj for some constant A.
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We can now conclude the proof of Theorem 2.1 under the additional assumption that the
distribution function is concentrated on the nonnegative half-line. Combining Lemmas 5.4
and 5.5, there exists an interval [t3, ∞) on which, for any j and k with 0 ≤ j ≤ k ≤ n and for
any positive i and n with i ≤ n,

|T i−1
F,η (M1/ηFM1/(1−η)Gn−i )| ≤ A(1 + ε)nhm+1F .

Equation (5.3) yields, on [t3, ∞),

∣∣∣∣Gn −
∑

1≤i≤n

T i−1
F,η TGn−i,1−η

F

∣∣∣∣ ≤ An(1 + ε)nhm+1F . (5.8)

Let ε be a positive real number, small enough so that E(1 + 2ε)N is finite. Let δ be a
positive real number. Combining Lemmas 5.2, 5.3, 5.4, and 5.6 and also using Kesten’s bound,
ultimately, uniformly in n and i ≤ n, we have

|T i−1
F,η TGn−i ,1−ηF − T i−2

F,η LGn−i+1,mF |
≤ T i−1

F,η |(TGn−i ,1−η − LGn−i ,m)F | + T i−2
F,η |(TF,ηLGn−i ,m − LGn−i+1,m

)F |
≤ 2δ(A2 + A)(1 + ε)nhmF . (5.9)

Using the same combination of lemmas, we also have, ultimately, uniformly in n and j ≤ n−1,

|T j
F,ηLGn−j−1,mF − T j−1

F,η LGn−j ,mF | ≤ A2(1 + ε)nδhmF . (5.10)

We take A > 1, simply to ensure that A2 is more than A. Summing (5.10) for j positive and
less than i and adding (5.9), we obtain

|T i−1
F,η TGn−i ,1−ηF − LGn−1,mF | ≤ 4A2δhmF i(1 + ε)n

on some interval [t4, ∞). Summing these inequalities for positive i ≤ n and combining with
(5.8) yields

|Gn − nLGn−1,mF | ≤ 10A2δn(n + 1)(1 + ε)nhmF . (5.11)

Since the moment generating function of N is finite at log(1+2ε) and δ is arbitrary, Theorem 2.1
follows for distributions satisfying the hypothesis of the theorem and concentrated on the
nonnegative half-line.

5.2. Removing the nonnegativity assumption

Now that we have proved Theorem 2.1 for nonnegative random variables, we extend the
result by removing the nonnegativity assumption. To make such an extension nontrivial, from
now on we assume, without any loss of generality, that F(0−) is positive and F(0) < 1.

Let 1 − p be F(0−). Let F+ and F− be the distribution functions respectively defined on
the nonnegative and negative half-lines by F− = F/(1 − p) and F+ = (F − (1 − p))/p. We
see that F = (1 − p)F− + pF+. It follows that, for any nonnegative integer n,

F�n =
∑

0≤k≤n

(
n

k

)
pk(1 − p)n−kF �k+ � F

�(n−k)
− . (5.12)
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This expression involves convolutions F�k+ � F
�(n−k)
− of two distribution functions concentrated

on the nonnegative and negative half-lines, respectively. To any distribution function H

concentrated on the negative half-line, we associate the operator UH defined by

UH f (t) =
∫ 0

−∞
f (t − x) dH(x).

If K is a distribution function on the nonnegative half-line, then H � K = UH K on the non-
negative half-line.

The following result is stated mostly for clarity of further arguments so that it can be referred
to. Its proof follows directly from the definition of UH .

Lemma 5.7. Let a be a positive real number. If f is a nonnegative function nonincreasing on
[a, ∞) then, for any distribution function H on the negative half-line, UH f ≤ f on [a, ∞).

In particular, this lemma will apply to functions of the form hmF because the following
result holds.

Lemma 5.8. For any nonnegative integer m the function hmF is ultimately nonincreasing.

Proof. The derivative of hmF is

hmF

Id

(
m

Id h′

h
− Id h

)
.

Since h is smoothly varying of index α and order at least 1, the function Id h′/h tends to α at
infinity. Hence, assumption (2.1) implies that the derivative of hmF is ultimately negative.

Our next lemma approximates an operator UH by the Laplace character LH,m when acting
on derivatives of F .

Lemma 5.9. Let p be a nonnegative integer such that p ≤ m and let ε be a positive real number.
There exists a neighborhood of ∞ such that, for any distribution function H concentrated on
the nonpositive half-line and having a finite absolute moment of order r greater than m, we
have

|UH F
(p) − LH,m−pF

(p)| ≤ εhmF max
0≤s≤r

µM−1H,s .

Proof. As in Lemma 4.2.3 of Barbe and McCormick (2005), we bound

∣∣∣∣
∫ 0

−δ/h(t)

F
(p)

(t − x) dH(x) − LH,m−pF
(p)

(t)

∣∣∣∣
by the sum of

∑
0≤j≤m−p

|F (p+j)
(t)|

j !
∫ −δ/h(t)

−∞
|x|j dH(x) (5.13)

and ∫ 0

−δ/h(t)

∣∣∣∣
∫ x

0

ym−p−1

(m − p − 1)! (F
(m)

(t − x + y) − F
(m)

(t)) dy

∣∣∣∣ dH(x). (5.14)
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Lemma 4.1.1 of Barbe and McCormick (2005) shows that |F (p+j)| ∼ hp+jF at infinity, while,
for p + j < r , ∫ −δ/h

−∞
|x|j dH(x) =

∫ −δ/h

−∞
|x|p+j−r |x|r−p dH(x)

≤
(

δ

h

)p+j−r

µM−1H,r−p.

Therefore, there exists t5, depending only on F and not on H , such that (5.13) is at most

2m(hrF )(t)δ−r max
0≤s≤r

µM−1H,s

on [t5, ∞). Again following the proof of Lemma 4.2.3 of Barbe and McCormick (2005) we
see that, for any positive ε, we can fix δ such that the term (5.14) is bounded by

ε(hmF)(t)

∫ 0

−δ/h(t)

∣∣∣∣
∫ x

0

ym−p−1

(m − p − 1)! dy

∣∣∣∣ dH(x) ≤ ε(hmF)(t)µM−1H,m−p.

Finally, using Lemma 5.8 we obtain, provided t5 is chosen large enough, for any t ≥ t5,
∣∣∣∣
∫ −δ/h(t)

−∞
F

(p)
(t − x) dH(x)

∣∣∣∣ ≤ 2
∫ −δ/h(t)

−∞
(hpF )(t − x) dH(x)

≤ 2(hpF )(t)

(
h(t)

δ

)r

µM−1H,r ,

and the result follows.

We can now complete the proof of Theorem 2.1. We rewrite (5.12) as

F�n =
∑

0≤k≤n

(
n

k

)
pk(1 − p)n−kU

F
�(n−k)
−

F�k+ .

It follows, from (5.11) and Lemmas 5.7 and 5.8, that there exists a neighborhood of ∞ on
which, for all nonnegative integers n,∣∣∣∣F�n −

∑
0≤k≤n

(
n

k

)
pk(1 − p)n−kkU

F
�(n−k)
−

L
F

�(k−1)
+ ,m

F+
∣∣∣∣

≤
∑

0≤k≤n

(
n

k

)
pk(1 − p)n−k10A2δk(k + 1)(1 + ε)khmF

≤ 20A2δn2
∑

0≤k≤n

(
n

k

)
pk(1 − p)n−k(1 + ε)khmF

= 20A2δn2(1 + pε)nhmF .

Hence, by the same argument as we used to conclude the proof of Theorem 2.1 in the nonnegative
case, we obtain

E F�N = E
∑
k≥1

(
1{k ≤ N}

(
N

k

)
pk(1 − p)N−kkU

F
�(N−k)
−

L
F

�(k−1)
+ ,m

F+
)

+ o(hmF). (5.15)
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Lemma 5.9 yields ∣∣∣U
F

�(N−k)
−

L
F

�(k−1)
+ ,m

F+ − L
F

�(N−k)
− ,m

L
F

�(k−1)
+ ,m

F+
∣∣∣

≤ εhmF max
0≤s≤r

µM−1F�(N−k),s max
0≤s≤r

µ
F

�(k−1)
+ ,s

.

Applying the Marcinkiewicz–Zygmund inequality and possibly redefining ε, this is at most
εhmFN2r . Therefore, since the moment generating function of N is finite in a neighborhood
of the origin and ε is arbitrary, (5.15) implies that

E F�N = E
∑
k≥1

(
1{k ≤ N}

(
N

k

)
pk(1 − p)N−kkL

F
�(N−k)
− ,m

L
F

�(k−1)
+ ,m

F+
)

+ o(hmF).

To complete the proof, note that Laplace characters are linear with respect to their first index,
and therefore can be defined for measures. Since

k

(
N

k

)
= N

(
N − 1

k − 1

)
,

linearity and the morphism property of the Laplace character show that

∑
k≥1

1{k ≤ N}
(

N

k

)
pk(1 − p)N−kkL

F
�(N−k)
− ,m

L
F

�(k−1)
+ ,m

is the Laplace character of order m of

pN
∑
k≥1

1{k ≤ N}
(

N − 1

k − 1

)
pk−1(1 − p)N−kF

�(N−1−(k−1))
− � F

�(k−1)
+ ,

that is, the Laplace character of pNF�(N−1). Applying this Laplace character to F+ and
observing that F = pF+ on the nonnegative half-line completes the proof of Theorem 2.1.
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