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Abstract

We define an invariant of contact 3-manifolds with convex boundary using Kronheimer and
Mrowka’s sutured monopole Floer homology theory (SHM). Our invariant can be viewed as a
generalization of Kronheimer and Mrowka’s contact invariant for closed contact 3-manifolds and as
the monopole Floer analogue of Honda, Kazez, and Matić’s contact invariant in sutured Heegaard
Floer homology (SFH). In the process of defining our invariant, we construct maps on SHM
associated to contact handle attachments, analogous to those defined by Honda, Kazez, and Matić
in SFH. We use these maps to establish a bypass exact triangle in SHM analogous to Honda’s in
SFH. This paper also provides the topological basis for the construction of similar gluing maps in
sutured instanton Floer homology, which are used in Baldwin and Sivek [Selecta Math. (N.S.), 22(2)
(2016), 939–978] to define a contact invariant in the instanton Floer setting.

2010 Mathematics Subject Classification: 53D10 (primary); 53D40, 57R58 (secondary)

1. Introduction

Floer-theoretic invariants of contact structures—in particular, those defined by
Kronheimer and Mrowka in [26] and by Ozsváth and Szabó in [41]—have led to
a number of spectacular results in low-dimensional topology over the last decade
or so. Kronheimer and Mrowka’s invariant, defined using Taubes’s work on the
Seiberg–Witten equations for symplectic 4-manifolds, assigns to a closed contact
3-manifold (Y, ξ) a class ψ(Y, ξ) in the monopole Floer homology

̂

HM•(−Y, sξ ),
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where sξ is the Spinc structure associated to ξ . (This formulation of Kronheimer
and Mrowka’s invariant first appears in [25], actually.) Ozsváth and Szabó’s
invariant similarly takes the form of a class c+(Y, ξ) in the Heegaard Floer
homology H F+(−Y, sξ ), but is defined using Giroux’s correspondence between
contact structures and open books.

Honda, Kazez, and Matić introduced an important generalization of Ozsváth
and Szabó’s construction in [20], using a relative version of Giroux’s
correspondence to define an invariant of sutured contact manifolds, which are
triples of the form (M, Γ, ξ) where (M, ξ) is a contact 3-manifold with convex
boundary and Γ ⊂ ∂M is a multicurve dividing the characteristic foliation of ξ
on ∂M . (Technically, the invariant in [20] generalizes the ‘hat’ version of Ozsváth
and Szabó’s invariant. Also, it is worth mentioning that the term sutured contact
manifold is used slightly differently in [9].) Their invariant assigns to (M, Γ, ξ)
a class E H(M, Γ, ξ) in the sutured Heegaard Floer homology SFH(−M,
−Γ ). The work in [20] and its sequel [19] has enhanced our understanding of
Legendrian knots [43], knot Floer homology [12], functoriality in SF H [22], and
bordered Heegaard Floer homology [53], and has revealed interesting categorical
structure in contact topology [17]. This categorical structure has, in turn, had
important applications to the categorification of quantum groups [49, 50].

In this paper, we define an invariant of sutured contact manifolds in Kronheimer
and Mrowka’s sutured monopole Floer homology (SH M), generalizing their
invariant for closed contact manifolds in the same way that Honda, Kazez, and
Matić’s contact invariant generalizes that of Ozsváth and Szabó on the Heegaard
Floer side. In other words,

our invariant : ψ :: E H : c+.
Although our contact invariant can be thought of as the monopole Floer analogue
of Honda, Kazez, and Matić’s E H invariant, our construction is quite different
from theirs (not surprising, considering the different constructions of ψ and c+).
One advantage of our construction is that it does not rely on the full strength of the
relative Giroux correspondence, using only the existence of partial open books.
Moreover, we show that our contact invariant is ‘natural’ in the sense that it is
preserved by the canonical isomorphisms relating the different sutured monopole
homology groups associated to a given sutured contact manifold, something
which has not been completely established on the Heegaard Floer side.

As a byproduct of our construction, we define ‘gluing’ maps in SHM associated
to contact handle attachments, analogous to those in SFH defined by Honda
et al. [19]. As we shall see, Kronheimer and Mrowka’s approach to sutured Floer
theory via the closure operation allows for a conceptually simpler construction
of these maps than in SFH. We use these gluing maps to establish a monopole
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Floer analogue of Honda’s bypass exact triangle in SFH—the centerpiece of his
contact category [17]. Moreover, our approach shows that these bypass triangles
are instances of the usual surgery exact triangle in Floer homology, suggesting
that Honda’s contact category fits naturally into a larger category of closed
manifolds.

Our work on defining gluing maps in SHM also provides the topological
foundation for a similar gluing map construction in Kronheimer and Mrowka’s
sutured instanton Floer homology. We use this construction in [2] to define the
first invariant of contact manifolds in the instanton Floer setting.

Beyond providing new insights into developments that have sprung from
Honda, Kazez, and Matić’s work, intrinsic advantages of the monopole Floer
perspective have enabled us to prove results with no counterparts on the
Heegaard Floer side. This point is illustrated in [4], where we use the contact
invariant defined in this paper to construct new invariants of Legendrian and
transverse knots in monopole knot homology. The functoriality of Kronheimer
and Mrowka’s invariant ψ under exact symplectic cobordism leads to a proof that
our Legendrian invariant is functorial with respect to Lagrangian concordance
(see [42] for a similar result), something which is not independently known to
be true of the analogous ‘LOSS’ invariant in knot Floer homology [37] (see
Section 1.3).

Below, we outline the constructions of our contact invariant and our gluing
maps, elaborating on several points in the discussion above. We discuss future
work at the end.

1.1. A contact invariant in SHM. Suppose (M, Γ ) is a balanced sutured
manifold. Consider the manifold obtained by gluing a thickened surface F × I
to M by a map which identifies ∂F × I with a tubular neighborhood of Γ ⊂
∂M . Under mild assumptions, this manifold has two diffeomorphic boundary
components. Gluing these together by some diffeomorphism, one obtains a closed
3-manifold Y with a distinguished surface R ⊂ Y . Kronheimer and Mrowka call a
pair (Y, R) obtained in this way a closure of (M, Γ ). Its genus refers to the genus
of R.

Suppose now that (Y, R) is a closure of (M, Γ ) with genus at least two and η is
an embedded, nonseparating 1-cycle in R. Let R be the Novikov ring over Z. As
defined in [28], the sutured monopole homology of (M, Γ ) is the R-module given
by the portion of the ‘twisted’ monopole Floer homology of Y in the ‘bottom-
most’ Spinc structures relative to R,

SH M(M, Γ ) :=

̂

HM•(Y |R;Γη) :=
⊕

〈c1(s),[R]〉=2−2g(R)

̂

HM•(Y, s;Γη). (1)
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(In [1, 28] the construction used top-most Spinc structures instead, but this makes
no difference due to the conjugation symmetry of

̂

HM•. Also, Γη refers to a local
system on the Seiberg–Witten configuration space B(Y, s) with fiber R specified
by η.) Kronheimer and Mrowka showed that SH M(M, Γ ) is well defined up to
isomorphism. Moreover, the combined results of Kronheimer and Mrowka [28,
Lemma 4.9], Taubes [44–48], Colin, Ghiggini, and Honda [6–8], and Lekili [35]
show that

SH M(M, Γ ) ∼= SFH(M, Γ )⊗R. (2)

(See also Kutluhan, Lee, and Taubes [30–34].)
In [1], we introduced a refinement of this construction which assigns to (M,

Γ ) an R-module that is well defined up to canonical isomorphism, modulo
multiplication by units in R. Our refinement begins with a modification of
Kronheimer and Mrowka’s notion of closure. For us, a (marked) closure is a
tuple D which records the data (Y, R, η), as well as things like an explicit
smooth structure on Y and smooth embeddings of M and R into Y . The sutured
monopole homology SH M(D) of a closure D of (M, Γ ) is then defined in terms
of (Y, R, η) as in (1). For any two closures D,D ′ of (M, Γ ), we constructed an
isomorphism

ΨD,D ′ : SH M(D)→ SH M(D ′),

which is well defined up to multiplication by a unit in R and satisfies the
transitivity

ΨD,D ′′
.= ΨD ′,D ′′ ◦ ΨD,D ′ .

(Here, ‘ .=’ means ‘equal up to multiplication by a unit’.) We view these maps as
canonical isomorphisms relating the R-modules assigned to the different closures
of (M, Γ ). These maps and modules are organized into what we call a projectively
transitive system, denoted by SHM(M, Γ ). It is this system we are referring to in
this paper when we talk about the sutured monopole homology of (M, Γ ).

Now, suppose (M, Γ, ξ) is a sutured contact manifold. To define the contact
invariant, we introduce the notion of a contact closure of (M, Γ, ξ), which is
a closure D of (M, Γ ) together with a contact structure ξ̄ on Y extending ξ
and satisfying certain conditions. One of these conditions is that the surface R
is convex with negative region an annulus, which guarantees that

〈c1(sξ̄ ), [R]〉 = 2− 2g(R)

by basic convex surface theory. But this implies that

̂

HM•(−Y, sξ̄ ;Γ−η) is a direct
summand of SH M(−D), where −D is the closure of (−M,−Γ ) induced by
reversing the orientations on Y, R, and η. It therefore makes sense to define

ψ(D, ξ̄ ) := ψ(Y, ξ̄ ) ∈

̂

HM•(−Y, sξ̄ ;Γ−η) ⊂ SH M(−D),
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where, here,ψ(Y, ξ̄ ) is the ‘twisted’ version of Kronheimer and Mrowka’s contact
invariant.

Our main result is, roughly speaking, that the classes ψ(D, ξ̄ ) define an
invariant of (M, Γ, ξ) up to canonical isomorphism. For the sake of exposition,
we have broken this result into the following two theorems (see Theorems 3.14
and 3.15 for more precise statements).

THEOREM 1.1. If (D, ξ̄ ) and (D ′, ξ̄ ′) are contact closures of (M, Γ, ξ), then

Ψ −D,−D ′(ψ(D, ξ̄ ))
.= ψ(D ′, ξ̄ ′)

for g(D) = g(D ′).

THEOREM 1.2. If (D, ξ̄ ) and (D ′, ξ̄ ′) are contact closures of (M, Γ, ξ), then

Ψ −D,−D ′(ψ(D, ξ̄ ))
.= ψ(D ′, ξ̄ ′)

whenever g(D) and g(D ′) are sufficiently large.

In the lexicon of projectively transitive systems, Theorem 1.1 is equivalent to
the statement that, for each g, the collection of classes {ψ(D, ξ̄ ) | g(D) = g}
defines an element

ψ g(M, Γ, ξ) ∈ SHM(−M,−Γ ).
Meanwhile, Theorem 1.2 is equivalent to the statement that these elements
stabilize in the sense that ψ g(M, Γ, ξ) = ψh(M, Γ, ξ) for g, h sufficiently large.
Our contact invariant is defined to be this stable element, which we denote by

ψ(M, Γ, ξ) ∈ SHM(−M,−Γ ).
The key facts in the proof of Theorem 1.1 are that (1) contact closures of the

same genus are related by Legendrian surgery and (2)Ψ −D,−D ′ is the map induced
by the associated Stein cobordism. (This is a considerable simplification of the
real story.) Theorem 1.1 therefore follows from the functoriality of Kronheimer
and Mrowka’s contact invariant with respect to exact symplectic cobordism (see
Theorem 2.21). For closures of different genera, Ψ −D,−D ′ is defined in terms of a
splicing cobordism which does not admit, in any obvious way, the structure of an
exact symplectic cobordism. So, the previous argument cannot be used to prove
Theorem 1.2. Our proof relies instead on our gluing map construction together
with what we call the ‘existence’ part of the relative Giroux correspondence. We
outline this proof in detail in the next subsection after describing these gluing
maps.
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Our contact invariant shares several features with Honda, Kazez, and Matić’s
invariant. For example, it is preserved by contact isotopy and flexibility, and
vanishes for overtwisted contact structures (see Corollaries 3.18 and 3.19 and
Theorem 3.22 for more precise statements).

We also prove the following theorem relating our invariant to Kronheimer
and Mrowka’s contact invariant for closed manifolds (stated more precisely in
Proposition 3.23). Below, (Y, ξ) is a closed contact 3-manifold and (Y (1), ξ |Y (1))
is the sutured contact manifold obtained from it by removing a Darboux ball.

THEOREM 1.3. There exists a map

SHM(−Y (1))→

̂

HM•(−Y )⊗R

which sends ψ(Y (1), ξ |Y (1)) to ψ(Y, ξ)⊗ 1.

As explained in Remark 3.25, this map can be thought of as a monopole Floer
analogue of the natural map in Heegaard Floer homology relating the ‘hat’ and
‘plus’ versions of Ozsváth and Szabó’s contact invariant.

The following is an immediate corollary (see Corollary 3.24).

COROLLARY 1.4. If (Y, ξ) is strongly symplectically fillable, then ψ(Y (1),
ξ |Y (1)) 6= 0.

Before moving on, it is worth mentioning that Kronheimer and Mrowka also
define a version of SHM without local coefficients. However, local coefficients
are necessary in this paper, both for naturality purposes (in defining the canonical
isomorphisms for closures of different genera) and because the contact class
ψ(D, ξ̄ ) always vanishes without them (see Remark 3.28).

1.2. A gluing map in SHM. Below, we describe a gluing map on SHM for
contact handles. Our main results in this direction are the following (combining
Propositions 4.2, 4.3, 4.5, 4.6, and Corollary 4.15).

THEOREM 1.5. Suppose (M ′, Γ ′, ξ ′) is obtained from (M, Γ, ξ) by attaching a
contact i-handle, for some i ∈ {0, 1, 2, 3}. Then there exists a map

Hi : SHM(−M,−Γ )→ SHM(−M ′,−Γ ′)
which sends ψ g(M, Γ, ξ) to ψ g(M ′, Γ ′, ξ ′) for g sufficiently large.

COROLLARY 1.6. The map Hi sends ψ(M, Γ, ξ) to ψ(M ′, Γ ′, ξ ′).
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It is worth pointing out that these maps depend only on the smooth data
involved in the handle attachments; in particular, they do not depend on the
contact structures ξ or ξ ′.

These maps are defined in terms of natural cobordisms between closures:
for i = 0, 1, we show that a contact closure of (M ′, Γ ′, ξ ′) can also be
viewed naturally as a contact closure of (M, Γ, ξ), and we define Hi to be the
isomorphism induced by the identity map on monopole Floer homology. For
i = 2, the curve of attachment in ∂M gives rise to a Legendrian knot in any contact
closure of (M, Γ, ξ). We prove that the result of contact (+1)-surgery along such
a knot can be viewed naturally as a contact closure of (M ′, Γ ′, ξ ′), and we define
H2 in terms of the map on Floer homology induced by the corresponding 2-
handle cobordism. Finally, for i = 3, we prove that one obtains a contact closure
of (M, Γ, ξ) by taking a connected sum of a contact closure of (M ′, Γ ′, ξ ′) with
the tight S1 × S2, and we define H3 in terms of the map on Floer homology
induced by the corresponding 1-handle cobordism.

Theorem 1.5 is reminiscent of the main result of [19]. Suppose (M, Γ ) is a
sutured submanifold of (M ′, Γ ′) and ξ is a contact structure on M ′r int(M) with
dividing set Γ ∪ Γ ′. Suppose further that ξM is a contact structure on M which
agrees with ξ near ∂M . In [19], Honda, Kazez, and Matić construct a map

Φξ : SFH(−M,−Γ )→ SFH(−M ′,−Γ ′),
depending only on ξ , which sends E H(M, Γ, ξM) to E H(M ′, Γ ′, ξM ∪ ξ).
(Modulo incorporating the naturality results of [23].) We can use Theorem 1.5 to
define an analogous map in SHM, starting from the observation that (M ′rint(M),
Γ ∪Γ ′, ξ) can be obtained from a vertically invariant contact structure on ∂M× I
by attaching contact handles. Given such a contact handle decomposition H , we
define

Φξ,H : SHM(−M,−Γ )→ SHM(−M ′,−Γ ′) (3)

to be the corresponding composition of contact handle attachment maps.
Corollary 1.6 implies that this map sends contact invariant to contact invariant.
We conjecture the following.

CONJECTURE 1.7. The map Φξ,H is independent of the handle decomposition H.

We next outline the proof of Theorem 1.2, as promised. As mentioned
above, our proof relies upon the ‘existence’ part of the relative Giroux
correspondence, which states that every sutured contact manifold admits a
compatible partial open book decomposition. (The full statement of the relative
Giroux correspondence comprises this ‘existence’ part, whose proof is well
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established, together with the ‘uniqueness’ part, which states that any two such
partial open book decompositions are related by positive stabilization. Full details
of the ‘uniqueness’ part have not yet appeared.) This implies, in particular, that
for every (M, Γ, ξ), there is a compact surface S with nonempty boundary such
that (M, Γ, ξ) can be obtained from the tight sutured contact manifold

H(S) = (S × [−1, 1], ∂S × {0}, ξS)

by attaching contact 2-handles. The corresponding composition of contact 2-
handle maps,

H : SHM(−H(S))→ SHM(−M,−Γ ),
therefore sends ψ g(H(S)) to ψ g(M, Γ, ξ) for g sufficiently large. Now, suppose
that

(DS, ξ̄S), (D
′
S, ξ̄

′
S) and (D, ξ̄ ), (D ′, ξ̄ ′)

are contact closures of H(S) and (M, Γ, ξ), respectively, with

g = g(DS) = g(D) and h = g(D ′S) = g(D ′).

The morphism H encodes maps H−DS ,−D and H−D ′S ,−D ′ which make the
diagram

SH M(−DS)
H−DS ,−D //

Ψ−DS ,−D′S
��

SH M(−D)

Ψ−D,−D′

��
SH M(−D ′S) H−D′S ,−D′

// SH M(−D ′)

commute, up to multiplication by a unit. Theorem 1.5 can be translated as saying
that

H−DS ,−D(ψ(DS, ξ̄S))
.= ψ(D, ξ̄ ) and H−D ′S ,−D ′(ψ(D

′
S, ξ̄

′
S))

.= ψ(D ′, ξ̄ ′)
for sufficiently large g and h. To prove Theorem 1.2, it therefore suffices to show
that

Ψ −DS ,−D ′S
(ψ(DS, ξ̄S))

.= ψ(D ′S, ξ̄ ′S).
But this is true since Ψ −DS ,−D ′S

is an isomorphism and ψ(DS, ξ̄S) and ψ(D ′S, ξ̄
′
S)

generate the modules SH M(−DS) and SH M(−D ′S), which are both isomorphic
to R (see Subsection 3.4).

From this proof sketch, one also finds that the contact invariant ψ(M, Γ, ξ) ∈
SHM(−M,−Γ ) is characterized by

ψ(M, Γ, ξ) =H (1), (4)
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where 1 = ψ(H(S)) is the generator of SHM(−H(S)) ∼= R. It is therefore
natural to ask whether one can define a contact invariant in this way, forgetting
about contact closures and Kronheimer and Mrowka’s contact invariant entirely.
In other words, a partial open book decomposition ob compatible with (M, Γ, ξ)
determines a surface S, a map H , and a class

ψ(ob) :=H (1) ∈ SHM(−M,−Γ ),

and the question is whether one can show, without appealing to the existing
monopole Floer apparatus for closed contact manifolds, that ψ(ob) = ψ(ob′)
for any two such partial open book decompositions. Although we do not show
it in this paper, it turns out this can be done using the full relative Giroux
correspondence (both the ‘existence’ and the ‘uniqueness’ parts). In fact, this idea
is the basis for our construction in [2] of a contact invariant in sutured instanton
Floer homology.

We end with a synopsis of our bypass exact triangle in SHM. A bypass move
is a certain local modification of the dividing set of a sutured manifold (see
Figure 23). Every such move can be achieved by attaching a bypass (roughly,
half of a thickened overtwisted disk) to the manifold along an arc in its boundary.
In turn, this bypass attachment can be achieved by attaching a contact 1-handle
followed by a contact 2-handle in a manner determined by the arc (see Figure 24).
So, the contact handle attachment maps of Theorem 1.5 allow us to define similar
maps for bypass attachments.

In [17], Honda studies a certain 3-periodic sequence of bypass moves which
he calls a bypass triangle (see Figure 25), and he shows that the SFH groups
of sutured manifolds related by a bypass triangle fit into an exact triangle. This
bypass exact triangle is the main feature of his contact category, which is
envisioned as an algebraic approach to contact geometry. This contact category,
though still a work in progress, has been studied for a variety of purposes,
including as an approach to categorifying certain quantum groups [49–51].

In this paper, we establish a monopole Floer analogue of Honda’s bypass exact
triangle (see Theorem 5.2 for a more precise statement):

THEOREM 1.8. Suppose Γ1, Γ2, Γ3 ⊂ ∂M is a 3-periodic sequence of sutures
related by the moves in a bypass triangle. Then there is an exact triangle

SHM(−M,−Γ1) // SHM(−M,−Γ2)

zz
SHM(−M,−Γ3)

dd
,
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in which each arrow is the corresponding bypass attachment map. (We only prove
this over R⊗ Z/2Z.)

Recall that each bypass attachment map is the composition of a 1-handle
map with a 2-handle map. But, on the level of closures, a 1-handle map is
essentially the identity and a 2-handle map is the cobordism map associated
to integral surgery on a knot. It is perhaps not surprising then that our bypass
exact triangle is really just the usual surgery exact triangle in monopole Floer
homology in disguise. This suggests that Honda’s contact category may be
a natural subcategory of some larger category of closed 3-manifolds defined
without reference to contact structures (perhaps one with an interesting A∞
structure).

1.3. Related work. Below, we describe some related results and several goals
for future work. In our article [3], we prove that our contact invariant ‘agrees’
with Honda, Kazez, and Matić’s E H invariant. Forgetting about naturality, we
can view ψ(M, Γ, ξ) as given by

ψ(M, Γ, ξ) := ψ(Y, ξ̄ ) ∈

̂
HM•(−Y |−R;Γ−η) =: SH M(−M,−Γ )

for any contact closure (Y, R, η, ξ̄ ) of (M, Γ, ξ). We prove the following:

THEOREM 1.9 [3]. There exists an isomorphism

SH M(−M,−Γ )→ SFH(−M,−Γ )⊗R

which sends ψ(M, Γ, ξ) to E H(M, Γ, ξ)⊗ 1.

This theorem leads to a new proof of the invariance of E H up to isomorphism,
independent of the less understood ‘uniqueness’ part of the relative Giroux
correspondence. Combined with our work in [4], it also shows that the ‘LOSS’
invariant in knot Floer homology satisfies a certain functoriality with respect to
Lagrangian concordance.

Unsurprisingly, our strategy for proving Theorem 1.9 relies on the combined
work of Taubes [44–48] and Colin et al. [6–8], which shows that there is an
isomorphism ̂

HM•(−Y |−R;Γ−η)→ H F+(−Y |−R;Γ−η)
sending ψ(Y, ξ̄ ) to c+(Y, ξ̄ ), together with the work of Lekili [35], which
establishes an isomorphism

H F+(−Y |−R;Γ−η)→ SFH(−M,−Γ )⊗R.
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To prove Theorem 1.9, it thus suffices to prove that Lekili’s isomorphism sends
c+(Y, ξ̄ ) to E H(M, Γ, ξ)⊗1. In fact, we prove this using a slight modification of
Lekili’s isomorphism, together with a characterization of c+(Y, ξ̄ ) similar to that
of ψ(M, Γ, ξ) = ψ(Y, ξ̄ ) in (4).

Another immediate goal involves Kronheimer and Mrowka’s monopole knot
homology, defined in [28]. Their theory assigns to a knot K in a closed 3-manifold
Y the isomorphism class of R-modules

K H M(Y, K ) := SH M(Y r ν(K ),m ∪ −m),

where ν(K ) is a tubular neighborhood of the knot and m is an oriented meridian
on the boundary of this knot complement (see [1] for our ‘natural’ refinement of
this construction.) It follows from the work of Taubes et al. that monopole knot
homology is isomorphic to the ‘hat’ version of knot Floer homology,

K H M(Y, K ) ∼= Ĥ F K (Y, K )⊗R.

Our aim is to use the bypass attachment maps defined here to construct a version
of monopole knot homology analogous to the more powerful ‘minus’ version of
knot Floer homology. Our approach is based on the work of Etnyre et al. [12]
described below.

Suppose K is an oriented Legendrian knot in (Y, ξ) and let Mn = (Y r ν(K ),
Γn) be the complement of the n-fold negative stabilization of K . Then Mn can
be thought of as obtained from Mn−1 by gluing on a layer (T 2 × I, ξ−) called a
negative basic slice. Etnyre, Vela-Vick, and Zarev define SF H−−−→(−Y, K ) to be the
direct limit of the sequence

SFH(−M0)
Φξ−−−→ SFH(−M1)

Φξ−−−→ SFH(−M2)→ . . . ,

where theΦξ− are the gluing maps associated to these basic slice attachments. This
limit SF H−−−→(−Y, K ) is a module over (Z/2Z)[U ], where the U -action is induced
by maps

Φξ+ : SFH(−Mn)→ SFH(−Mn−1)

associated to gluing on layers (T 2× I, ξ+) called positive basic slices. The authors
of [12] show that SF H−−−→(K ) is isomorphic to H F K−(−Y, K ) as a (Z/2Z)[U ]-
module.

Since these basic slice attachments are equivalent to bypass attachments, we
can use our bypass attachment maps to define a similar limit module in SHM.
To define an R[U ]-module structure on this limit, one must show that the bypass
attachment maps corresponding to the positive and negative basic slices commute.
This is work in progress. Once complete, it will be interesting to compare
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this limit theory with H F K−(−Y, K ) and with a similar invariant defined by
Kutluhan [29] in terms of filtrations on the monopole Floer complex of −Y .

Another major goal is to prove Conjecture 1.7, which posits that the map
Φξ,H in (3) is independent of H . This would imply, in particular, that the maps
associated to the positive and negative basic slice attachments above commute
as desired. More importantly, it would allow us to to assign well-defined maps
to cobordisms between sutured manifolds in the monopole Floer setting—in the
language of [1], to extend SHM to a functor from CobSut to R-PSys. Our
approach is based on the work of Juhász [22] outlined below.

As defined in [22], a cobordism from (M1, Γ1) to (M2, Γ2) consists of a smooth
4-manifold W with boundary ∂W = −M1 ∪ Z ∪ M2, together with a contact
structure ξ on Z with dividing set Γ1 ∪Γ2 on ∂Z = −∂M1 ∪ ∂M2. Juhász assigns
to such a cobordism a map

FW : SFH(−M1,−Γ1)→ SFH(−M2,−Γ2),

defined as the composition FW = F ′W ◦Φξ , where

Φξ : SFH(−M1,−Γ1)→ SFH(−M1 ∪ H,−Γ2) (5)

is the contact gluing map defined by Honda, Kazez, and Matić, and

F ′W : SFH(−M1 ∪ H,−Γ2)→ SFH(−M2,−Γ2) (6)

is a map defined via more standard Heegaard Floer techniques.
Once we prove Conjecture 1.7, we will have an SH M analogue of the map

in (5). Moreover, we can already define a monopole Floer analogue of the map
in (6). Indeed, since the sutured manifolds (−M1 ∪ H,−Γ2) and (−M2,−Γ2)

have the same (sutured) boundaries, there is a natural way of turning W into a
cobordism W between their closures. We define the analogue of F ′W to be the
map in monopole Floer homology induced by W . With analogues of the maps in
(5) and (6), we can then define an analogue of Juhász’s map FW via composition
as above.

The last project we mention here concerns defining a monopole Floer version of
bordered Heegaard Floer homology. In [53], Zarev showed that the homologies of
Lipshitz, Ozsváth, and Thurston’s bordered Heegaard Floer invariants [36] can be
expressed as direct sums of certain sutured Floer homology groups. Furthermore,
he showed that the multiplication in the homology of the DGA associated to a
parametrized surface in bordered Floer homology can be expressed in terms of
the sutured cobordism maps defined by Juhász in [22]. Once we define analogous
sutured cobordism maps in SHM, as described above, we will be able to define
corresponding homology-level bordered invariants in the monopole Floer setting.
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Of course, simply knowing the homology-level multiplications for the surface
DGA and the bordered modules is not enough for a pairing theorem (a central
feature of any good bordered theory), but it would be an important start.

As mentioned previously, the ideas in this paper are used to define similar
contact handle attachment maps in the instanton Floer setting in [2]. These maps
give rise to an analogous bypass exact triangle in that setting. We plan to use
them in future work to construct sutured cobordism maps and bordered invariants
in instanton Floer homology as well, following the strategy outlined above.

1.4. Organization. In Section 2, we review projectively transitive systems,
the construction of sutured monopole homology, Kronheimer and Mrowka’s
invariant of closed contact 3-manifolds, and some convex surface theory. In
Section 3, we define the classes ψ g(M, Γ, ξ) and ψ(M, Γ, ξ) and establish some
of their basic properties. Much of Section 3 is devoted to preliminary work
on contact preclosures that is used in Section 4 to prove Theorem 1.1—that
ψ g(M, Γ, ξ) is well defined for each g. In Section 4, we prove Theorem 1.1 and
define the contact handle attachment maps in SH M . We then use these maps
to prove Theorem 1.2—that ψ(M, Γ, ξ) is well defined. In Section 5, we prove
Theorem 1.8—that SHM satisfies a bypass exact triangle.

2. Preliminaries

In this section, we review the notion of a projectively transitive system, the
construction of sutured monopole homology, and basic properties of Kronheimer
and Mrowka’s contact invariant, and we collect some facts from convex surface
theory.

2.1. Projectively transitive systems. In [1] we introduced projectively
transitive systems to make precise the idea of a collection of modules being
canonically isomorphic up to multiplication by a unit. We recount their definition
and related notions below.

DEFINITION 2.1. Suppose Mα and Mβ are modules over a unital commutative
ring R. We say that elements x, y ∈ Mα are equivalent if x = u · y for some
u ∈ R×. Likewise, homomorphisms

f, g : Mα → Mβ

are equivalent if f = u · g for some u ∈ R×.
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REMARK 2.2. We will write x .= y or f .= g to indicate that two elements or
homomorphisms are equivalent, and will denote their equivalence classes by [x]
or [ f ].

Note that composition of equivalence classes of homomorphisms is well
defined, as is the image of the equivalence class of an element under an
equivalence class of homomorphisms.

DEFINITION 2.3. Let R be a unital commutative ring. A projectively transitive
system of R-modules consists of a set A together with:

(1) a collection of R-modules {Mα}α∈A and

(2) a collection of equivalence classes of homomorphisms {gαβ }α,β∈A such that:

(a) elements of the equivalence class gαβ are isomorphisms from Mα to Mβ ,

(b) gαα = [idMα
],

(c) gαγ = gβγ ◦ gαβ .

REMARK 2.4. The equivalence classes of homomorphisms in a projectively
transitive system of R-modules can be thought of as specifying canonical
isomorphisms between the modules in the system that are well defined up to
multiplication by units in R.

The class of projectively transitive systems of R-modules forms a category
R-PSys with the following notion of morphism.

DEFINITION 2.5. A morphism of projectively transitive systems of R-modules

F : (A, {Mα}, {gαβ })→ (B, {Nγ }, {hγδ })
is a collection of equivalence classes of homomorphisms F = {Fα

γ }α∈A, γ∈B such
that:

(1) elements of the equivalence class Fα
γ are homomorphisms from Mα to Nγ ,

(2) Fβ

δ ◦ gαβ = hγδ ◦ Fα
γ .

Note that F is an isomorphism iff the elements in each equivalence class Fα
γ are

isomorphisms.

REMARK 2.6. A collection of equivalence classes of homomorphisms {Fα
γ } with

indices ranging over any nonempty subset of A × B can be uniquely completed
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to a morphism as long as this collection satisfies the compatibility in (2.5) where
it makes sense.

DEFINITION 2.7. An element of a projectively transitive system of R-modules

x ∈M = (A, {Mα}, {gαβ })
is a collection of equivalence classes of elements x = {xα}α∈A such that:

(1) elements of the equivalence class xα are elements of Mα,

(2) xβ = gαβ (xα).

REMARK 2.8. As in Remark 2.6, a collection of equivalence classes of elements
{xα} with indices ranging over any nonempty subset of A can be uniquely
completed to an element of M as long as this collection satisfies the compatibility
in (2.7) where it makes sense.

We say that x is a unit in M if each Mα is isomorphic to R and each xα
is the equivalence class of a generator. As there is a well-defined notion of scalar
multiplication for projectively transitive systems, we may also talk about primitive
elements of M. The zero element 0 ∈M is the collection of equivalence classes
of the elements 0 ∈ Mα. Finally, it is clear how to define the image F(x) of an
element x ∈M under a morphism F :M→N of projectively transitive systems
of R-modules.

REMARK 2.9. In an abuse of notation, we will also use R to denote the
distinguished system in R-PSys given by

R = ({?}, {R}, {[idR]})
consisting of the single R-module R together with the equivalence class of
the identity map. There is an obvious correspondence between elements of a
projectively transitive system of R-modules M and morphisms R→M.

As the category R-PSys contains kernels and images, there is a straightforward
notion of an exact sequence of projectively transitive systems of R-modules.
Concretely, suppose

M = (A, {Mα}, {gαβ }), N = (B, {Nγ }, {hγδ }), P = (C, {Pε}, {i εζ })
are projectively transitive systems of R-modules. It is easy to see that a sequence

M F−→ N G−→ P

https://doi.org/10.1017/fms.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.11


J. A. Baldwin and S. Sivek 16

is exact at N if there exist α ∈ A, γ ∈ B, ε ∈ C and representatives F̂α
γ , Ĝγ

ε of
the equivalence classes Fα

γ , Gγ
ε such that the sequence of R-modules

Mα

F̂αγ−→ Nγ

Ĝγ
ε−→ Pε

is exact at Nγ .

2.2. Sutured monopole homology. In this subsection, we describe our
refinement of Kronheimer and Mrowka’s sutured monopole homology, as defined
in [1].

DEFINITION 2.10. A balanced sutured manifold (M, Γ ) is a compact, oriented,
smooth 3-manifold M with a collection Γ of disjoint, oriented, smooth curves in
∂M called sutures. Let R(Γ ) = ∂M r Γ , oriented as a subsurface of ∂M . We
require that:

(1) neither M nor R(Γ ) has closed components,

(2) R(Γ ) = R+(Γ ) t R−(Γ ) with ∂R+(Γ ) = −∂R−(Γ ) = Γ ,

(3) χ(R+(Γ )) = χ(R−(Γ )).

An auxiliary surface for (M, Γ ) is a compact, connected, oriented surface F
with g(F) > 0 and π0(∂F) ∼= π0(Γ ). Suppose F is an auxiliary surface for (M,
Γ ), A(Γ ) is a closed tubular neighborhood of Γ in ∂M , and

h : ∂F × [−1, 1] → A(Γ )

is an orientation-reversing diffeomorphism which sends ∂F×{±1} to ∂(R±(Γ )r
A(Γ )). The preclosure of M associated to F , A(Γ ), and h is the smooth 3-
manifold

M ′ = M
⋃

h

F × [−1, 1]

formed by gluing F × [−1, 1] to M according to h and rounding corners.
Condition (3) in Definition 2.10 ensures that M ′ has two diffeomorphic boundary
components, ∂+M ′ and ∂−M ′. In particular, an easy calculation shows that

g(∂±M ′) = |Γ | − χ(R+(Γ ))+ 2g(F)
2

. (7)

We may glue ∂+M ′ to ∂−M ′ by some diffeomorphism to form a closed manifold
Y containing a distinguished surface

R := ∂+M ′ = −∂−M ′ ⊂ Y.
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In [28], Kronheimer and Mrowka define a closure of (M, Γ ) to be any pair (Y, R)
obtained in this way. Our definition of closure, as needed for naturality, is slightly
more involved.

DEFINITION 2.11 [1]. A marked closure of (M, Γ ) is a tuple D = (Y, R, r,m, η)
consisting of:

(1) a closed, oriented, 3-manifold Y ,

(2) a closed, oriented, surface R with g(R) > 2,

(3) an oriented, nonseparating, embedded curve η ⊂ R,

(4) a smooth, orientation-preserving embedding r : R × [−1, 1] ↪→ Y ,

(5) a smooth, orientation-preserving embedding m : M ↪→ Y r int(Im(r)) such
that:

(a) m extends to a diffeomorphism

M
⋃

h

F × [−1, 1] → Y r int(Im(r))

for some A(Γ ), F , h, as above,

(b) m restricts to an orientation-preserving embedding

R+(Γ )r A(Γ ) ↪→ r(R × {−1}).

The genus g(D) refers to the genus of R.

REMARK 2.12. It follows from the formula in (7) that (M, Γ, ξ) admits a genus
g marked closure for every

g > max
(

2,
|Γ | − χ(R+(Γ ))+ 2

2

)
.

We will denote this maximum by g(M, Γ ).

REMARK 2.13. For a marked closure D as in Definition 2.11, the pair (Y, r(R ×
{t})) is a closure of (M, Γ ) in the sense of Kronheimer and Mrowka for any
t ∈ [−1, 1].
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REMARK 2.14. Suppose D = (Y, R, r,m, η) is a marked closure of (M, Γ ).
Then, the tuple

−D := (−Y,−R, r,m,−η),
obtained by reversing the orientations of Y , R, and η, is a marked closure of−(M,
Γ ) := (−M,−Γ ), where, r and m are the induced embeddings of −R× [−1, 1]
and −M into −Y .

NOTATION 2.15. For the rest of this paper, R will be the Novikov ring over Z,
given by

R =
{∑

α

cαtα
∣∣∣∣α ∈ R, cα ∈ Z, #{β < n|cβ 6= 0} <∞ for all n ∈ Z

}
.

Following Kronheimer and Mrowka [28], we made the following definition
in [1].

DEFINITION 2.16. Given a marked closure D = (Y, R, r,m, η) of (M, Γ ), the
sutured monopole homology of D is the R-module

SH M(D) :=̂ HM•(Y |R;Γη).

Here,

̂

HM•(Y |R;Γη) is shorthand for the monopole Floer homology of Y in
the ‘bottom-most’ Spinc structures relative to r(R × {0}),̂

HM•(Y |R;Γη) :=
⊕

s∈Spinc(Y )
〈c1(s),[r(R×{0})]〉=2−2g(R)

̂

HM•(Y, s;Γr(η×{0})), (8)

where, for each Spinc structure s, Γr(η×{0}) is the local system on the Seiberg–
Witten configuration space B(Y, s) with fiber R specified by the curve r(η ×
{0}) ⊂ Y , as defined in [28, Section 2.2]. (As mentioned in the introduction,
both [28] and [1] used top-most Spinc structures, but this makes no difference
in the construction or proofs of invariance and naturality.)

In [28], Kronheimer and Mrowka proved that the isomorphism class of
SH M(D) is an invariant of (M, Γ ). We strengthened this in [1], proving that
the sutured monopole homology groups of any two marked closures of (M, Γ )
are canonically isomorphic, up to multiplication by a unit in R. Specifically, for
any two marked closures D,D ′ of (M, Γ ), we construct an isomorphism

ΨD,D ′ : SH M(D)→ SH M(D ′),
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well defined up to multiplication by a unit in R, such that the modules in
{SH M(D)}D and the equivalence classes of maps in {ΨD,D ′}D,D ′ form a
projectively transitive system of R-modules. (The collection of marked closures
is a proper class rather than a set and so cannot technically serve as the indexing
object for a projectively transitive system. One can remedy this by requiring that Y
and R be submanifolds of Euclidean space. We will not worry about such issues.)
We will review the construction of these maps in Section 4.

DEFINITION 2.17. The sutured monopole homology of (M, Γ ) is the projectively
transitive system of R-modules SHM(M, Γ ) given by the modules and the
equivalence classes above.

Sutured monopole homology is functorial in the following sense. Suppose

f : (M, Γ )→ (M ′, Γ ′)

is a diffeomorphism of sutured manifolds and D ′ = (Y ′, R′, r ′,m ′, η′) is a marked
closure of (M ′, Γ ′). Then

D ′f := (Y ′, R′, r ′,m ′ ◦ f, η′) (9)

is a marked closure of (M, Γ ). Let

idD ′f ,D ′ : SH M(D ′f )→ SH M(D ′)

be the identity map on SH M(D ′f ) = SH M(D ′). The equivalence classes of these
identity maps can be completed to a morphism (as in Remark 2.6)

SHM( f ) : SHM(M, Γ )→ SHM(M ′, Γ ′),

which is an invariant of the isotopy class of f . We proved in [1] that these
morphisms behave as expected under composition of diffeomorphisms, so that
SHM defines a functor from DiffSut to R-PSys, where DiffSut is the category
of balanced sutured manifolds and isotopy classes of diffeomorphisms between
them.

Recall that a product sutured manifold is a sutured manifold (M, Γ ) obtained
from a product (S × [−1, 1], ∂S × {0}) by rounding corners, for some surface
S with boundary. Product sutured manifolds have simple Floer homology, as
expressed below. This fact will be important for us at several points in this paper.

PROPOSITION 2.18. If (M, Γ ) is a product sutured manifold, then SHM(M,
Γ ) ∼= R.
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Proof. Let F be an auxiliary surface for (M, Γ ) with g(F) > 2. Thinking of (M,
Γ ) as obtained from (S × [−1, 1], ∂S × {0}) by rounding corners, we can form a
preclosure of (M, Γ ) by gluing F × [−1, 1] to S × [−1, 1] according to a map

h : ∂F × [−1, 1] → ∂S × [−1, 1]
of the form f ×id for some diffeomorphism f : ∂F→ ∂S. This preclosure is then
a product M ′ = (S∪ F)×[−1, 1]. To form a marked closure, we take R = S∪ F
and glue R × [−1, 1] to M ′ by the ‘identity’ maps

R × {±1} → S × {∓1}.
An oriented, nonseparating curve η ⊂ S ∪ F gives a marked closure

D = ((S ∪ F)× S1, (S ∪ F), r,m, η).

Here, we are thinking of S1 as the union of two copies of [−1, 1], and r and m as
the obvious embeddings. Therefore,

SH M(D) :=

̂

HM•((S ∪ F)× S1|(S ∪ F);Γη) ∼= R,

by [28, Lemma 4.7]. The proposition follows.

REMARK 2.19. In Section 5, we will work over the Novikov field

R/2R := R⊗Z Z/2Z

in order to use the surgery exact triangle in monopole Floer homology, which
has not been established in characteristic 0. This might alarm the reader familiar
with [28], where, when working with local coefficients, Kronheimer and Mrowka
require that R (which is not necessarily the Novikov ring in their case) have no
Z-torsion. This condition is imposed to ensure that certain Tor terms arising in the
Künneth theorem vanish. It turns out, however, that we are safe when working in
characteristic 2 and using the Novikov field R/2R, as these Tor terms still vanish;
see [42, Section 2.2] for details.

2.3. The monopole Floer contact invariant. In [26], Kronheimer and
Mrowka defined an invariant of contact structures on closed 3-manifolds which
assigns to a closed contact manifold (Y, ξ) a class

ψ(Y, ξ) ∈

̂

HM•(−Y, sξ )

which depends only on the isotopy class of the contact structure ξ . We will use
the same notation for the version of this invariant in monopole Floer homology
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with coefficients in a local system. Below, we review three important properties
of this invariant.

The first is that the invariant vanishes for overtwisted contact structures.

THEOREM 2.20 [26]. If (Y, ξ) is overtwisted, then ψ(Y, ξ) = 0.

Next, recall that a weak symplectic filling of a closed contact 3-manifold (Y, ξ)
is a symplectic manifold (X, ω) such that Y = ∂X and ω|ξ > 0.

THEOREM 2.21 [25, 26]. If (Y, ξ) has a weak symplectic filling (X, ω), then

ψ(Y, ξ) ∈

̂

HM•(−Y, sξ ;Γ−η)
is a primitive class (in particular, nonzero) for any local system Γ−η with fiber R
given by a curve η ⊂ Y which is Poincaré dual to [ω] ∈ H 2(Y ;R).

Finally, suppose (Y−, ξ−) and (Y+, ξ+) are closed contact 3-manifolds and
recall that an exact symplectic cobordism from (Y−, ξ−) to (Y+, ξ+) is an exact
symplectic manifold (X, ω = dλ) with boundary ∂X = Y+ t −Y− for which the
restrictions λ|Y± are contact forms for ξ±.

THEOREM 2.22 [21]. Suppose (X, ω) is an exact symplectic cobordism from (Y−,
ξ−) to (Y+, ξ+). Then, viewing X as a cobordism from −Y+ to −Y−, the induced
map ̂

HM•(X) :

̂

HM•(−Y+)→

̂

HM•(−Y−)

sends ψ(Y+, ξ+) to ±ψ(Y−, ξ−).

We will frequently apply this theorem via the following corollary.

COROLLARY 2.23. Suppose (Y ′, ξ ′) is the result of contact (+1)-surgery on a
Legendrian knot in (Y, ξ) and let W be the corresponding 2-handle cobordism
from Y to Y ′. Then, the map̂

HM•(−W ) :

̂

HM(−Y )→

̂

HM(−Y ′)

sends ψ(Y, ξ) to ±ψ(Y, ξ ′).

Proof. If (Y ′, ξ ′) is the result of contact (+1)-surgery on K ⊂ (Y, ξ), then (Y,
ξ) is the result of contact (−1)-surgery on a parallel knot K ′ ⊂ (Y ′, ξ ′). Let
X be the Weinstein 2-handle cobordism corresponding to the latter surgery. By
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Theorem 2.22, the map ̂

HM•(X) :

̂

HM(−Y )→

̂

HM(−Y ′)

sends ψ(Y, ξ) to ±ψ(Y, ξ ′). But, as a cobordism from −Y to −Y ′, X is
isomorphic to −W .

REMARK 2.24. In [21], Theorem 2.22 is stated for monopole Floer homology
with coefficients in F2. However, the theorem also holds over Z and with local
coefficients, up to multiplication by a unit in both cases (the same proof extends
to these settings without modification).

2.4. Convex surfaces and contact manifolds with boundary. Here, we
record some facts about characteristic foliations and convex surfaces, largely
in order to standardize vocabulary. We will assume our reader is familiar with
most of this material, and any proofs are postponed until Appendix A. For more
comprehensive treatments, see [15, 16, 18].

Suppose S is a smooth surface and F is a singular foliation of S. An embedded
multicurve Γ ⊂ S is said to divide F if:

(1) Γ is transverse to the leaves of F,

(2) S r Γ is a disjoint union of positive and negative regions S+ t S−,

(3) there is a volume form ω and vector field w on S such that

(a) w directs F,

(b) w points transversely out of S+ along Γ ,

(c) ±Lw(ω) > 0 on S±.

Given an embedded surface S ⊂ (M, ξ), the characteristic foliation Sξ is
the singular foliation of S obtained by integrating the vector field T S ∩ ξ .
Giroux showed in [15] that Sξ determines ξ in a neighborhood of S, up to
contactomorphism fixing S.

A contact vector field is one whose flow preserves ξ . An embedded surface
S ⊂ M is convex if there exists a contact vector field transverse to S. Given a
contact vector field v transverse to S, the dividing set on S associated to v is the
multicurve

Γ = {p ∈ S | vp ∈ ξp}.
This multicurve divides Sξ in the sense above. In particular, we orient Γ so that

∂S+ = −∂S− = −Γ.
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Conversely, any multicurve which divides Sξ is the dividing set of some
contact vector field (see [13, Theorem 4.8.5]). The space of such multicurves is
contractible (see [38]); in particular, the isotopy class of Γ is independent of v.

A contact structure on S×R is called vertically invariant if ∂t is a contact vector
field. A contact vector field v transverse to S ⊂ (M, ξ) defines (after cutting off v
away from S using a Hamiltonian) a tubular neighborhood S×R of S = S×{0} in
which v is identified with ∂t . We will refer to such a neighborhood as a vertically
invariant neighborhood of S.

Giroux’s Flexibility Theorem below expresses the idea that the crucial
information about a contact structure in the neighborhood of a convex surface S
is encoded by the dividing set.

THEOREM 2.25 [15]. Suppose S ⊂ (M, ξ) is a convex surface with dividing set Γ
for some contact vector field v. Let F be a singular foliation divided by Γ and let
N be any neighborhood of S. Then there is an isotopy of embeddings ϕr : S→ N,
r ∈ [0, 1], such that

(1) ϕ0 is the inclusion S ⊂ M,

(2) each ϕr (S) is transverse to v (hence, convex) with dividing set ϕr (Γ ) = Γ ,

(3) the characteristic foliation (ϕ1(S))ξ agrees with ϕ1(F).

We will rely heavily on Giroux’s Uniqueness Lemma below.

LEMMA 2.26 [16]. Suppose S is a surface and ξ0 and ξ1 are two contact
structures on S×[0, 1] which induce the same characteristic foliations on S×{0,
1}. Suppose each S × {t} is convex with respect to both ξ0 and ξ1, and contains
a multicurve Γt which varies continuously with t and divides the characteristic
foliations (S × {t})ξ0 and (S × {t})ξ1 . Then ξ0 and ξ1 are isotopic by an isotopy
which is stationary on S × {0, 1}.

REMARK 2.27. The isotopy Giroux constructs is not necessarily stationary on
S × {0, 1}. However, one can arrange this (see [13, Lemma 4.9.2]).

Suppose M is a manifold with boundary and F is a singular foliation of ∂M .
Let Cont(M,F) be the set of contact structures on M for which ∂M is convex
with (∂M)ξ = F. The following is due to Honda [18, Proposition 4.2].

PROPOSITION 2.28. If F0 and F1 are two characteristic foliations of ∂M divided
by the same multicurve Γ , then there is a canonical bijection f01 : π0(Cont(M,
F0))→ π0(Cont(M,F1)).
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Figure 1. The neighborhood ∂S × [0, 1]s × [−1, 1]t ⊂ S × [−1, 1]t for a convex
surface S with collared Legendrian boundary. The arcs in bold belong to the
dividing sets associated to the contact vector fields ∂t and ∂s ; the others are rulings
and divides. Note that the divides share endpoints with the dividing sets.

In the above proposition, the term ‘canonical’ means that f00 = id and f02 =
f12 ◦ f01. Moreover, this bijection sends tight contact structures to tight contact
structures. We outline the proof of this proposition in Appendix A (our proof is
slightly different in form but not in substance from Honda’s) as elements of the
proof will be useful later on.

The convex surfaces considered to this point have been closed. A convex
surface in (M, ξ) with collared Legendrian boundary is a properly embedded
surface S ⊂ M with Legendrian boundary, equipped with a collar neighborhood
∂S×[0, 1] of ∂S = ∂S×{0} on which ξ is [0, 1]-invariant (see [18]). In particular,
the curves ∂S × {s} are Legendrian; these curves are called rulings. Moreover,
there is an even number of Legendrian arcs in ∂S×[0, 1] of the form {p}× [0, 1]
for p ∈ ∂S; these are called divides. Note that, for any transverse contact vector
field v, the dividing set on ∂S × [0, 1] consists of arcs parallel to and alternating
with the divides, as in Figure 1.

LEMMA 2.29. Suppose S is a surface with boundary, and let Γ be a nonempty
collection of oriented, disjoint, properly embedded curves and arcs on S such that
S r Γ = S+ t S− with

∂S+ = −∂S− = Γ.
Then there exists a [−1, 1]-invariant contact structure on S × [−1, 1] for which
each S × {t} is convex with collared Legendrian boundary ∂S × [0, 1] × {t} and
dividing set Γ × {t}.

Although this result is well known to experts, we sketch a proof in Appendix A
since we could not find one in the literature.

REMARK 2.30. Note that, for any contact structure as in Lemma 2.29, ∂t and ∂s

are contact vector fields on ∂S × [0, 1]s × [−1, 1]t ⊂ S × [−1, 1]t .
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The lemma below asserts that, for a given Γ , there is essentially only one
contact structure on S × [−1, 1] satisfying the conditions in Lemma 2.29.

LEMMA 2.31. Suppose ξ and ξ ′ are contact structures on S × [−1, 1] as in
Lemma 2.29. Then, up to flexibility, ξ and ξ ′ are isotopic.

See Remark A.3 for a precise definition of the phrase ‘up to flexibility’.
Although Lemma 2.31 is also familiar to experts, we include a proof in Appendix
A in order to more precisely describe the isotopy alluded to in the lemma; see the
following remark.

REMARK 2.32. It will be clear from the proof that the isotopy alluded to in
Lemma 2.31 can be taken to be of the form ϕr × id near ∂S × [−1, 1], for some
isotopy ϕr of (S, Γ ).

3. A contact invariant in sutured monopole homology

Suppose (M, Γ ) is a balanced sutured manifold and ξ is a contact structure
on M such that ∂M is convex and Γ divides the characteristic foliation of ∂M
induced by ξ . We will refer to the triple (M, Γ, ξ) as a sutured contact manifold.
In this section, we construct the contact invariants

ψ g(M, Γ, ξ) ∈ SHM(−M,−Γ ).
(We will show that these elements are well defined and agree for large g in
Section 4.) As mentioned in the introduction, the rough idea is to extend ξ to
a contact structure ξ̄ on a genus g closure of (M, Γ ) and define ψ g(M, Γ, ξ)
in terms of the monopole Floer contact invariant of this closed contact manifold,
which we call a contact closure of (M, Γ, ξ). We will make this precise below.

Since parts of this section are rather long and technical, we summarize their
content here. In Subsection 3.1 we discuss the notion of a contact preclosure, a
manifold with boundary constructed by gluing an auxiliary thickened surface of
fixed genus to (M, Γ, ξ), and show that it is well defined up to contactomorphisms
fixing nearly all of (M, Γ ). In Subsection 3.2 we use this to produce contact
closures and define ψ g(M, Γ, ξ) as their monopole Floer contact invariants,
where g is determined by the above choice of genus. In the remaining subsections
we prove some basic properties of ψ g(M, Γ, ξ) (having postponed the proof of
invariance to Section 4) and compute the invariants for a class of product sutured
manifolds.

https://doi.org/10.1017/fms.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.11


J. A. Baldwin and S. Sivek 26

3.1. Contact preclosures. We begin by studying a certain class of contact
structures on preclosures of M . Our goal is to extend a contact structure on
(M, Γ, ξ) across a preclosure in as simple a way as possible, so that the contact
invariant of the eventual contact closure (constructed in Subsection 3.2) will be
insensitive to any choices we have to make. In particular, we have to make several
careful perturbations of contact structures, appeals to Giroux flexibility, and edge-
rounding arguments along the way so that we can glue contact manifolds together
along portions of their convex boundaries which contain dividing arcs. The fact
that the end result is well defined, regardless of how we choose to arrange these
dividing arcs, is the content of Theorem 3.3, whose proof is rather lengthy and
technical as a result of these details. Since these arguments are not revisited in the
rest of the paper, a casual reader may wish to skip the proof of Theorem 3.3 for
now.

DEFINITION 3.1. Let F be a connected, orientable surface with nonempty
boundary and positive genus. An arc configuration A on F consists of an
embedded, nonseparating curve c on F together with disjoint embedded arcs a1,

. . . , an such that:

(1) every ai has one endpoint on ∂F and another on c,

(2) int(ai) ∩ (c ∪ ∂F) = ∅ for each i ,

(3) every component of ∂F contains an endpoint of some ai .

Suppose A is an arc configuration on F and let N (A) be a regular
neighborhood of A. Let ΓA be the collection of oriented, properly embedded arcs
in F given by

ΓA = −(∂N (A)r ∂F). (10)

Let ΞA be a [−1, 1]-invariant contact structure on F × [−1, 1] for which each
F × {t} is convex with collared Legendrian boundary and dividing set ΓA × {t}.
There is a unique such ΞA up to flexibility and isotopy, by Lemma 2.31. Note
that the dividing set on ∂F × [−1, 1] is of the form {p1, . . . , p2n} × [−1, 1] for
points pi ∈ ∂F . Moreover, the negative region on F × {1} is N (A) × {1}. See
Figure 2 for an example in which this and the negative region ∂F × [−1, 1] have
been shaded.

Suppose the surface F above is an auxiliary surface for (M, Γ ), and consider
the preclosure M ′ = M

⋃
h F × [−1, 1] associated to some neighborhood A(Γ )

and diffeomorphism
h : ∂F × [−1, 1] → A(Γ ).
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Figure 2. Left, an arc configuration on a genus one surface with two boundary
components. Right, the thickened surface with the negative regions on F × {1}
and ∂F × [−1, 1] shaded.

We would like to define a contact structure ξ ′ on M ′ in terms of ΞA and ξ . To
do so, we first perturb ξ in a neighborhood of A(Γ ) so that h identifies ΞA with
this perturbed contact structure. This enables us to glue F × [−1, 1] to M via
h contact geometrically. We will show (Theorem 3.3) that the resulting contact
preclosure (M ′, ξ ′) is independent, up to flexibility and contactomorphism, of the
arc configuration A and the other choices involved.

We start by describing the perturbation of ξ . Label the components of Γ by Γ1,

. . . , Γm . Each Γi has an annular neighborhood Bi ⊂ ∂M on which the leaves of the
characteristic foliation are cocores with no singularities. Let B(Γ ) be the union
of these Bi . Let Ai be the component of A(Γ ) containing Γi . We will assume that
Ai ⊂ int(Bi). The map h identifies Ai with ∂i F × [−1, 1] for some component
∂i F of ∂F . In this way, the ordering on the components of Γ induces an ordering
on the components of ∂F . Let ki be the number of arcs in A with an endpoint on
∂i F . The dividing set on the annulus ∂i F × [−1, 1] thus consists of 2ki cocores.

The rough idea is to perturb ξ to a contact structure ξh whose dividing set Γh

restricts to 2ki cocores of Ai , such that h identifies the positive region of ∂F×[−1,
1] with the negative region of A(Γ ) determined by Γh . We do essentially this, but
work on the level of characteristic foliations rather than dividing curves for added
control on the eventual contactomorphisms between different preclosures.

For i = 1, . . . ,m, let Ci ⊂ int(Ai) be an annulus such that the intersection
Γi ∩ Ci consists of 2ki cocores of Ci . We next choose an isotopy

ϕr : ∂M → ∂M, r ∈ [0, 1]

which ‘straightens out’ these Ci , as shown in Figure 3. Precisely, we require that
ϕ0 = id, that ϕ1(Ci) = Ai , that h identifies the positive region of ∂F × [−1, 1]
with the negative region of A(Γ ) determined by the dividing set ϕ1(Γ ), and that
each ϕr restricts to the identity outside of B(Γ ).
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Figure 3. Left, a view of Ci ⊂ Bi , where ki = 3. Right, ϕ(Γi) = ϕ1(Γi) and
ϕ1(Ci) = Ai . The negative regions are shaded.

Choose a vertically invariant collar ∂M×(−∞, 0] of ∂M = ∂M×{0} such that
Γ is the dividing set associated to ∂t . The isotopy ϕr induces a diffeomorphism

ϕ : M → M

as follows. Let
r : (−∞, 0] → [0, 1]

be a smooth function with

r(t) =
{

0 for t 6 −2
1 for t > −1.

We define ϕ to be the map defined by

ϕ(x, t) = (ϕr(t)(x), t) (11)

for (x, t) ∈ ∂M × (−∞, 0] and by the identity outside of ∂M × (−∞, 0]. Note
that ϕ restricts to ϕ1 on ∂M and to the identity outside of B(Γ )× [−2, 0].

Define ξ0 := ϕ∗(ξ). Let F1 be a foliation of ∂M divided by ϕ(Γ ) = ϕ1(Γ )

which agrees with h(∂F × [−1, 1])ΞA on A(Γ ) and with F0 = (∂M)ξ0 outside of
B(Γ ), as illustrated in Figure 4. We apply flexibility, as in Proposition 2.28, with
respect to the collar determined by the contact vector field ϕ∗(∂t) for ξ0, to obtain
a contact structure ξ1 = f01(ξ0) with (∂M)ξ1 = F1. In doing so, we can arrange
that ξ1 = h∗(ΞA) on A(Γ ) (see Remark A.1). Since F0 and F1 agree outside of
B(Γ ), we can assume that ∂t is a contact vector field for ξ01 on the complement
of B(Γ ) × [0, 1] in the product ∂M × [0, 1] used to define the map f01. It then
follows from the construction of f01 that ξ1 = ξ outside of B(Γ )× [−3, 0], since
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Figure 4. Left, a view of Ai , Bi , and ϕ(Γi) = ϕ1(Γi). Right, a view of the foliation
F1 in the portion of Bi contained within the dotted rectangle.

Figure 5. Left, gluing ∂F × [−1, 1] to M along A(Γ ), as viewed near some
Bi × (−∞, 0]. Middle, the glued manifold. Right, the contact preclosure with
convex boundary after rounding corners.

ξ0 and ϕ∗(∂t) agree with ξ and ∂t , respectively, outside of B(Γ ) × [−2, 0]. We
will hereafter denote ξ1 by ξh to indicate its dependence on h. We may now glue
(F×[−1, 1], ΞA) to (M, ξh) via h contact geometrically. We perform this gluing,
rounding corners as illustrated in Figure 5, to obtain a contact preclosure

(M ′, ξ ′) =
(

M
⋃

h

F × [−1, 1], ξh ∪ΞA

)
of (M, Γ, ξ).

REMARK 3.2. The dividing set for ξ ′ consists of two parallel nonseparating
curves on each component ∂±M ′ of ∂M ′. The negative region on ∂+M ′ is the
annulus bounded by these curves and retracts onto a regular neighborhood of
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c × {1}, where c is the curve in A. Likewise, the positive region on ∂−M ′ is an
annulus which retracts onto a neighborhood of c × {−1}.

The rest of this subsection is devoted to proving the well definedness of (M ′, ξ ′).
Our main result is the following.

THEOREM 3.3. Suppose (M ′1, ξ
′
1) and (M ′2, ξ

′
2) are contact preclosures of (M,

Γ, ξ) defined using auxiliary surfaces of the same genus. Then, up to flexibility,
(M ′1, ξ

′
1) and (M ′2, ξ

′
2) are contactomorphic by a map isotopic to one that restricts

to the identity on M r N (Γ ) for some regular neighborhood N (Γ ) of Γ .

Proof. First, suppose all choices in the constructions of (M ′1, ξ
′
1) and (M ′2, ξ

′
2) are

the same except for that of the vertically invariant collar of ∂M used to define ξh .
Suppose ξh,1 and ξh,2 are the contact structures on M defined from two different
collars. The connectedness of the space of such collars implies that ξh,1 and ξh,2

are isotopic by an isotopy stationary on ∂M . It follows that (M ′1, ξ
′
1) and (M ′2, ξ

′
2)

are contactomorphic by a map isotopic to one that restricts to the identity on M ,
as desired. It therefore suffices to prove Theorem 3.3 in the case that (M ′1, ξ

′
1)

and (M ′2, ξ
′
2) are defined using the same collar. We will assume below that this

is the case. We will also continue to think of the contact structure ΞA as being
completely determined by the arc configuration A. This is fine for the purpose
of this proof: since any two such ΞA are related by flexibility and isotopy as in
Lemma 2.31 and Remark 2.32, the contact preclosures formed from any two such
ΞA are related as claimed in the theorem, assuming all other choices are the same.

Below, we prove Theorem 3.3 in the case that (M ′1, ξ
′
1) and (M ′2, ξ

′
2) are built

using auxiliary surfaces with isomorphic arc configurations.

DEFINITION 3.4. Suppose A1 and A2 are arc configurations on F1 and F2, and
suppose the boundary components of each F j have been ordered. We say that A1

and A2 are isomorphic if there is a diffeomorphism from (F1,A1) to (F2,A2)

which respects these boundary orderings.

For k = 1, 2, suppose (M ′k, ξ
′
k) is defined using the auxiliary surface Fk , the

arc configuration Ak , the neighborhoods A(Γ )k =
⋃

i Ai,k and B(Γ )k =
⋃

i Bi,k ,
and the diffeomorphism hk . For i = 1, . . . ,m, let Bi be an annular neighborhood
of Γi containing Bi,1 ∪ Bi,2 on which the leaves of (∂M)ξ are cocores with no
singularities, and let B(Γ )=⋃i Bi . Let us assume that A1 and A2 are isomorphic
(where the boundary components of Fk are ordered according to hk and the
ordering of the components of Γ , as usual) by an isomorphism

g : (F1,A1)→ (F2,A2).
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Note that g induces a canonical isotopy class of contactomorphisms

g̃ : (F1 × [−1, 1], ΞA1)→ (F2 × [−1, 1], ΞA2)

for which h2 ◦ g̃ ◦ h−1
1 restricts to a diffeomorphism from Ai,1 to Ai,2 for i = 1,

. . . ,m. Let
ϕr : ∂M → ∂M, r ∈ [0, 1],

be an isotopy supported in B(Γ ), such that ϕ0 = id and ϕ1 restricts to the map

h2 ◦ g̃ ◦ h−1
1 : A(Γ )1 → A(Γ )2.

Let
ϕ : M → M

be the diffeomorphism of M extending ϕ1 defined as in (11). By construction, the
characteristic foliations of ξh1 and (ϕ∗)−1(ξh2) on ∂M agree on A(Γ )1 and outside
of B(Γ ). Let ξ ′h1

be a contact structure obtained from ξh1 by flexibility such that

(∂M)ξ ′h1
= (∂M)(ϕ∗)−1(ξh2 )

and such that ξ ′h1
agrees with ξh1 on A(Γ )1×[−3, 0] and outside of B(Γ )×[−3, 0].

The contact preclosure (M ′1, ξ
′′
1 ) constructed from ξ ′h1

is then related to (M ′1, ξ
′
1)

by flexibility.
To complete the proof of Theorem 3.3 in this case, it therefore suffices to show

that (M ′1, ξ
′′
1 ) is contactomorphic to (M ′2, ξ

′
2) by a map isotopic to one that restricts

to the identity outside of B(Γ ) × [−3, 0]. For this, it suffices to show that (M,
ξ ′h1
) is contactomorphic to (M, ξh2) by a map isotopic to one which restricts to the

identity outside of B(Γ ) × [−3, 0], through maps which restrict to h2 ◦ g̃ ◦ h−1
1

on A(Γ )1. Indeed, a contactomorphism from (M, ξ ′h1
) to (M, ξh2) of this form

extends to the desired contactomorphism from (M ′1, ξ
′′
1 ) to (M ′2, ξ

′
2) by the map

g̃. Since (ϕ∗)−1(ξh2) is already contactomorphic to ξh2 by such a map (namely, ϕ),
it suffices to show that ξ ′h1

and (ϕ∗)−1(ξh2) are isotopic by an isotopy stationary
on ∂M . To see this, let di be one of the boundary components of Bi . For each
t , the multicurve

⋃
i (di × {t}) divides the characteristic foliations on ∂M × {t}

induced by ξ ′h1
and (ϕ∗)−1(ξh2). Since these two contact structures induce the same

characteristic foliations on ∂M and agree outside of ∂M × [−3, 0], Lemma 2.26
implies that ξ ′h1

and (ϕ∗)−1(ξh2) are isotopic by an isotopy stationary on ∂M (and
outside of ∂M × [−3, 0]), as desired.

It remains to prove Theorem 3.3 in the case that (M ′1, ξ
′
1) and (M ′2, ξ

′
2)

are defined using auxiliary surfaces of the same genus with nonisomorphic
arc configurations. For this, we will need a way of relating nonisomorphic
configurations.
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Figure 6. A standard arc configuration in a neighborhood of c.

DEFINITION 3.5. Suppose A = {c, a1, . . . , am} is an arc configuration on a
surface F with ordered boundary components ∂1 F, . . . , ∂m F , and suppose the
arcs have been labeled so that ai is the (unique) arc meeting ∂i F . Suppose further
that when c is traversed according to one of its two orientations, the arcs a1, . . . ,

am appear ‘locally’ to the left of c and in that cyclic order, as depicted in Figure 6.
Such an arc configuration is called standard.

LEMMA 3.6. If A1 and A2 are standard arc configurations on surfaces F1 and
F2 of the same genus and with the same number of boundary components, then
A1 and A2 are isomorphic.

Proof. For k = 1, 2, let F ′k be the surface obtained by cutting Fk open along the
curve and arcs in Ak . The first condition in Definition 3.5 implies that F ′1 and F ′2
have the same genus and two boundary components. Moreover, one boundary
component of F ′k is partitioned into segments labeled by elements of Ak and
boundary components of Fk ; the other is labeled solely by the curve in Ak . The
second condition in Definition 3.5 implies that there is an orientation-preserving
homeomorphism from F ′1 to F ′2 which preserves this labeling (with respect to the
natural bijections between elements of A1 and A2 and between components of
∂F1 and ∂F2). The lemma follows.

We now define two ‘moves’ on arc configurations: addition is the process
of adding one arc to a configuration while deletion is the process of deleting
arcs from a configuration until there is exactly one arc meeting each boundary
component. It is easy to see that one can transform any arc configuration into
a standard one via a finite sequence of these moves: one first uses deletion to
obtain a configuration in which there is exactly one arc meeting each boundary
component and then alternates additions with deletions to turn this configuration
into a standard one, as illustrated in Figure 7. It follows that arbitrary arc
configurations on surfaces of the same genus and with the same number of
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Figure 7. Making an arc configuration standard through an alternating sequence
of additions and deletions. The four boundary components are labeled as shown
on the left.

boundary components can be made isomorphic after finitely many additions and
deletions. Thus, to complete the proof of Theorem 3.3, it suffices to show that
the theorem holds for contact preclosures built from arc configurations related
by deletion (for an arc configuration with exactly one arc meeting each boundary
component, an addition is the inverse of a deletion).

Fix an auxiliary surface F , the neighborhoods A(Γ ) and B(Γ ), and the
diffeomorphism h. Let A1 be an arbitrary arc configuration on F and suppose
A2 is obtained from A1 by deletion. The dividing set ΓA2 is normally defined in
terms of the boundary of a regular neighborhood of A2, as in (10). Below, we will
instead imagine ΓA2 as coming from the boundary of a regular neighborhood of a
certain graph A′1on F ,

ΓA2 = −(∂N (A′1)r ∂M).

This graph A′1 is obtained by retracting arcs of A1 a short distance into F
until there is exactly one arc meeting each boundary component, as shown in
Figure 8. We retract precisely those arcs that are deleted when forming A2 from
A1. Although A′1 is not an arc configuration in general, a neighborhood of this
graph retracts onto a neighborhood of A2, so these two ways of defining ΓA2

result in isotopic dividing sets.
Below, we will use the notation ξh,k in place of ξh to denote the contact structure

on M defined using the map h and the arc configuration Ak . Our goal is to prove
Theorem 3.3 for the contact preclosures

(M ′1, ξ
′
1) =

(
M
⋃

h

F × [−1, 1], ξh,1 ∪ΞA1

)
(12)

(M ′2, ξ
′
2) =

(
M
⋃

h

F × [−1, 1], ξh,2 ∪ΞA2

)
. (13)

We start by specifying the data needed to define the contact structures ξh, j . As
usual, we will assume that the dividing set of ΞA1 on the annulus ∂i F × [−1, 1]
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Figure 8. Top: left, the arc configuration A1 near a component ∂i F ; right, the
corresponding portion of (F×[−1, 1], ΞA1). Bottom: left, the graph A′1 obtained
from A1 by retracting all but one of the arcs meeting each boundary component
of F ; right, the corresponding portion of (F × [−1, 1], ΞA2).

consists of 2ki cocores. Note that the dividing set of ΞA2 on each ∂i F × [−1, 1]
consists of just 2 cocores.

For i = 1, . . . ,m, let Di ⊂ int(Ai) be an annulus which intersects Γi in 2
cocores, and let D(Γ ) =⋃i Di . Let Ci,1 ⊂ int(Di) be an annulus which intersects
Γi in 2ki cocores. In particular, we require that one component of Di∩Γi intersects
Ci,1 in 1 cocore while the other intersects Ci,1 in 2ki − 1 cocores. Finally, let
Ci,2 ⊂ int(Di) be an annulus which intersects Γi in 2 cocores. See Figure 9 for an
illustration of these annuli after straightening below. The annuli Ci,1 and Ci,2 will
be used to define the contact structures ξh,1 and ξh,2 in the usual way while the Di

are auxiliary annuli that will be used to relate (M ′1, ξ
′
1) and (M ′2, ξ

′
2).

Let F be a foliation of ∂M divided by Γ which contains the boundary
components d±i of Di as unions of leaves and agrees with (∂M)ξ outside of B(Γ ).
Let ξ ′ be the contact structure with (∂M)ξ ′ = F obtained from ξ by flexibility.
Note that the curves d±i are Legendrian with respect to ξ ′. Choose a vertically
invariant collar ∂M × (−∞, 0] of ∂M with respect to ξ ′. We can arrange (by
choosing F more carefully) that ξ ′ is invariant in the [−ε, ε]-direction for some
small tubular neighborhoods d±i × [−ε, ε] ⊂ ∂M of the d±i = d±i × {0}. This
implies that the annuli (with corners) given by

Ei = (d+i × [−4, 0]t) ∪ (Di × {−4}t) ∪ (d−i × [−4, 0]t) ⊂ ∂M × (−∞, 0]t
are convex.
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Figure 9. A view from within Bi of the annuli Di , Ci,1, and Ci,2 after straightening
by ϕ1 on the left and ϕ2 on the right. In particular, ϕ1(Ci,1) = ϕ2(Ci,2) = Ai and
ϕ1(Di) = ϕ2(Di).

We now construct the isotopies of ∂M which ‘straighten out’ the annuli Ci,1

and Ci,2. For k = 1, 2, let

ϕr,k : ∂M → ∂M, r ∈ [0, 1],
be an isotopy supported in B(Γ ) such that ϕ0,k = id, ϕ1,k(Ci,k) = Ai , and h
identifies the positive region on ∂i F × [−1, 1] with respect to ΞAk with the
negative region on Ai determined by ϕ1,k(Γ ). We will additionally require that
ϕr,1 = ϕr,2 in a neighborhood of the curves d±i and outside D(Γ ). Let

ϕk : M → M

be the diffeomorphism of M extending ϕ1,k defined as in (11)), and define ξ0,k :=
(ϕk)∗(ξ ′). Note that ξ0,1 = ξ0,2 outside of

ϕ1(D(Γ )× [−3, 0]) = ϕ2(D(Γ )× [−3, 0]) (14)

and in neighborhoods of the annuli G i = ϕ1(Ei) = ϕ2(Ei).

For k = 1, 2, let F1,k be a foliation of ∂M divided by ϕk(Γ ) which agrees on
A(Γ ) with the image of the characteristic foliation (∂F × [−1, 1])ΞAk

under h
and with F0,k := (∂M)ξ0,k outside of B(Γ ). We will additionally require that F1,1

and F1,2 agree outside of ϕ1(D(Γ )) = ϕ2(D(Γ )). Let ξ1,k be the contact structure
with (∂M)ξ1,k = F1,k obtained from ξ0,k by flexibility, using the collar determined
by the contact vector field (ϕk)∗(∂t) for ξ0,k . As usual, we let ξh,k := ξ1,k . We can
arrange that the annuli G i are convex for both ξh,1 and ξh,2 and, moreover, that ξh,1

and ξh,2 agree in neighborhoods of these annuli and outside the neighborhood of
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Figure 10. Left and right, the regions ∂F × [0, 1] × [−1, 1] in ΞA1 and ΞA2 .

Γ in (14). Let N (Γ ) denote the component of M r
⋃

i G i containing Γ . Then, in
particular, ξh,1 = ξh,2 on M r N (Γ ). We will record this fact as

(M r N (Γ ), ξh,1) = (M r N (Γ ), ξh,2) (15)

for later use.
We now prove Theorem 3.3 for the contact preclosures (M ′1, ξ

′
1) and (M ′2, ξ

′
2)

formed from ξh,1 and ξh,2 as in (12) and (13). Since the convex surfaces

F × {t} ⊂ (F × [−1, 1], ΞA1)

have collared Legendrian boundary, there is a collar ∂F × [0, 1] ⊂ F such that
ΞA1 is invariant in the [0, 1]-direction on

∂F × [0, 1] × [−1, 1] ⊂ F × [−1, 1].
We can arrange that ΞA2 is invariant in the same direction on the smaller
neighborhood

∂F × [0, 1/2] × [−1, 1] ⊂ F × [−1, 1],
and that

((Fr(∂F×[0, 1]))×[−1, 1], ΞA1)= ((Fr(∂F×[0, 1]))×[−1, 1], ΞA2). (16)

Note that the annuli

Hi = ∂i F × {1} × [−1, 1] and H ′i = ∂i F × {1/2} × [−1, 1]
are convex with collared Legendrian boundary with respect to both ΞA1 and ΞA2 .
See Figure 10 for an illustration of these annuli.
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Figure 11. Top: left, (M, ξh,1) on a portion of Bi × (−∞, 0]; right, the
corresponding portion of (M ′, ξ ′1) gotten by attaching (F×[−1, 1], ΞA1). Bottom,
the analogous pictures for (M, ξh,2) and (M ′, ξ ′2). The lightly shaded regions on
the top and bottom are meridional disks for the tori Ti,1 and Ti,2.

For k = 1, 2, the annuli G i and Hi , together with two annuli in ∂M ′k , bound a
solid torus Ti,k in M ′k , as shown in Figure 11. Moreover, the complement (M ′k r⋃

i Ti,k, ξ
′
k) is the union of the pieces in (15) and (16), which implies that(

M ′1 r
⋃

i

Ti,1, ξ
′
1

)
=
(

M ′2 r
⋃

i

Ti,2, ξ
′
2

)
.

To prove Theorem 3.3, it therefore suffices to show that, after rounding corners,
(Ti,1, ξ

′
1) is contactomorphic to (Ti,2, ξ

′
2), up to flexibility. But after rounding

corners, Ti,1 and Ti,2 are solid tori with convex boundaries with dividing sets
consisting of two parallel curves of slope −1, as shown in Figure 12 for Ti,2. As
there is a unique tight solid torus with these boundary conditions, up to flexibility
and contactomorphism, all that remains is to show that (Ti,1, ξ

′
1) and (Ti,2, ξ

′
2) are

tight.
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Figure 12. Left, the dividing set on ∂Ti,2. Right, the dividing set after rounding
corners; it consists of two curves of slope −1 drawn in red and blue.

LEMMA 3.7. For k = 1, 2, the solid torus (Ti,k, ξ
′
k) is tight.

Proof. For k = 1, this follows from the fact that (Ti,1, ξ
′
1) can be embedded as

a contact submanifold of some vertically invariant neighborhood of Bi in which
the characteristic foliation on each copy of Bi agrees with that of ξh,1. To see that
such a neighborhood is tight, note that it is related by flexibility to a vertically
invariant neighborhood of Bi in which the characteristic foliation on each copy of
Bi consists of cocores. The latter is, in some sense, a standard neighborhood of a
dividing curve: it embeds as a neighborhood of any dividing curve on any convex
surface in any contact manifold, and is therefore tight. The former neighborhood
of Bi is thus tight as well since flexibility preserves tightness. To see that (Ti,1, ξ

′
1)

embeds into such a neighborhood, note that Ti,1 is contained in a union(
Bi × (−∞, 0]s

⋃
h

∂F × [0, 1]s × [−1, 1], ξh,1 ∪ΞA1

)
, (17)

where ξh,1 on Bi × (−∞, 0]s is invariant in the ∂s-direction. Here, ∂s = (ϕ1)∗(∂t),

where ∂t is the contact vector field for the vertically invariant collar ∂M × (−∞,
0] for ξ ′ discussed earlier. SinceΞA1 is invariant in the [0, 1]s-direction, the union
in (17) can be embedded in a vertically invariant neighborhood Bi × (−∞, 1]s .

For k = 2, let T ′i,2 be the solid torus in M ′2 bounded by G i , H ′i , and two
annuli in ∂M ′2. By the reasoning above (considering ΞA2 rather than ΞA1 ),
the solid torus (T ′i,2, ξ

′
2) embeds into a vertically invariant neighborhood of Bi

and is therefore tight. Note that (Ti,2, ξ
′
2) is obtained by gluing (∂i F × [1/2,

1] × [−1, 1], ΞA2) to (T ′i,2, ξ
′
2) along H ′i . After rounding corners, the first piece

is contactomorphic to the [1/2, 1]-invariant contact structure specified by the
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dividing set ofΞA2 on H ′i . Indeed, both are tight solid tori with convex boundaries
and dividing sets consisting of two parallel curves of slope −1. It follows that
(Ti,2, ξ

′
2) is contactomorphic to the torus obtained from (T ′i,2, ξ

′
2) by attaching

a vertically invariant neighborhood of some portion of ∂T ′i,2. Thus, (Ti,2, ξ
′
2) is

contactomorphic to (T ′i,2, ξ
′
2), and, hence, tight.

This concludes the proof of Theorem 3.3.

The corollary below follows easily from the proof of Theorem 3.3.

COROLLARY 3.8. Suppose (M, Γ, ξ1) and (M, Γ, ξ2) are related by flexibility,
with contact preclosures (M ′1, ξ

′
1) and (M ′2, ξ

′
2) defined using auxiliary surfaces of

the same genus. Then, up to flexibility, (M ′1, ξ
′
1) and (M ′2, ξ

′
2) are contactomorphic

by a map smoothly isotopic to one that restricts to the identity on M r N (Γ ) for
some regular neighborhood N (Γ ) of Γ .

3.2. Contact closures and the invariants ψ g(M, Γ, ξ) and ψ(M, Γ,

ξ). Suppose (M ′, ξ ′) is a contact preclosure of (M, Γ, ξ). As mentioned in
Remark 3.2, the dividing set for ξ ′ consists of two parallel nonseparating curves
on each component ∂±M ′ of ∂M ′. One can therefore glue ∂+M ′ to ∂−M ′ (after
applying flexibility, of course) by a map which identifies the positive region
on ∂+M ′ with the negative region on ∂−M ′ to form a closed contact manifold
(Y, ξ̄ ) with a distinguished convex surface R := ∂+M ′ = −∂−M ′. We call a triple
(Y, R, ξ̄ ) formed in this way a simple contact closure of (M, Γ, ξ). One might
then attempt to define an invariant of ξ in terms of the contact invariant ψ(Y, ξ̄ ).
We do essentially this but, for naturality purposes, need the following slightly
more involved notion of contact closure.

DEFINITION 3.9. A contact closure of (M, Γ, ξ) consists of a closure D = (Y,
R, r,m) of (M, Γ ) together with a contact structure ξ̄ on Y such that

(1) m restricts to a contact embedding of (M r N (Γ ), ξ) into (Y, ξ̄ ) for some
regular neighborhood N (Γ ) of Γ ,

(2) this restriction of m extends to a contactomorphism

(M ′, ξ ′)→ (Y r int(Im(r)), ξ̄ )

for some contact preclosure (M ′, ξ ′) of (M, Γ, ξ).

(3) r∗(ξ̄ ) is a contact structure on R × [−1, 1] obtained, via flexibility, from one
that is invariant in the [−1, 1]-direction.
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REMARK 3.10. Note that (M, Γ, ξ) admits a genus g contact closure for every
g > g(M, Γ ).

REMARK 3.11. For a contact closure (D, ξ̄ ) as in Definition 3.9, the triple (Y,
r(R × {t}), ξ̄ ) is a simple contact closure of (M, Γ, ξ) as described at the top for
any t ∈ [0, 1]. In particular, each r(R × {t}) is convex with negative region an
annulus bounded by essential curves.

DEFINITION 3.12. A marked contact closure of (M, Γ, ξ) is a marked closure
D = (Y, R, r,m, η) of (M, Γ ) together with a contact structure ξ̄ on Y such that
((Y, R, r,m), ξ̄ ) is a contact closure as in Definition 3.9 and r(η × {0}) is dual to
the core of the negative annular region of r(R × {0}).

Suppose (D = (Y, R, r,m, η), ξ̄ ) is a marked contact closure of (M, Γ, ξ) of
genus g. Let r(R × {0})± denote the positive and negative regions of r(R × {0}).
It is a standard result in convex surface theory that

〈c1(sξ̄ ), r(R × {0})〉Y = χ(r(R × {0})+)− χ(r(R × {0})−),
which is equal to 2 − 2g in this case since r(R × {0})− is an annulus. It follows
that

〈c1(sξ̄ ), r(−R × {0})〉−Y = 2− 2g,

which implies that̂

HM•(−Y, sξ̄ ;Γ−η) ⊂

̂

HM•(−Y |−R;Γ−η) = SH M(−D),

where −D is the corresponding marked closure of (−M,−Γ ). In particular,

ψ(Y, ξ̄ ) ∈ SH M(−D).

This leads to the following definition.

DEFINITION 3.13. Given a marked contact closure (D = (Y, R, r,m, η), ξ̄ ) of
(M, Γ, ξ) of genus g > g(M, Γ ), we define ψ g(M, Γ, ξ) to be the element of
SHM(−M,−Γ ) determined by the equivalence class of

ψ(D, ξ̄ ) := ψ(Y, ξ̄ ) ∈ SH M(−D),

in the sense of Remark 2.8.

In Section 4, we will prove that ψ g(M, Γ, ξ) is well defined for each g, per the
following theorem.
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THEOREM 3.14. If (D, ξ̄ ) and (D ′, ξ̄ ′) are two marked contact closures of (M,
Γ, ξ) of the same genus, then

Ψ −D,−D ′(ψ(D, ξ̄ ))
.= ψ(D ′, ξ̄ ′).

Furthermore, we will show that for g sufficiently large, the contact elements
ψ g(M, Γ, ξ) are equal, per the following theorem.

THEOREM 3.15. For every (M, Γ, ξ), there is an integer N (M, Γ, ξ) such that
if (D, ξ̄ ) and (D ′, ξ̄ ′) are marked contact closures of (M, Γ, ξ) of genus at least
N (M, Γ, ξ), then

Ψ −D,−D ′(ψ(D, ξ̄ ))
.= ψ(D ′, ξ̄ ′).

This theorem motivates the following definition.

DEFINITION 3.16. We define

ψ(M, Γ, ξ) := ψ g(M, Γ, ξ) ∈ SHM(−M,−Γ )
for any g > N (M, Γ, ξ).

We will prove Theorems 3.14 and 3.15 in Section 4.

3.3. Properties. Below, we assume Theorems 3.14 and 3.15 hold in order to
state and prove some basic properties about our contact invariants. We state these
results for the invariants ψ g. By Theorem 3.15, they also hold for the invariant ψ .

LEMMA 3.17. Suppose f is a contactomorphism from (M, Γ, ξ) to (M ′, Γ ′, ξ ′).
Then the induced map

SHM( f ) : SHM(−M,−Γ )→ SHM(−M ′,−Γ ′)
sends ψ g(M, Γ, ξ) to ψ g(M ′, Γ ′, ξ ′).

Proof. Essentially, a contactomorphism gives rise to contactomorphic closures.
More precisely, suppose (D ′, ξ̄ ′) is a marked contact closure of (M ′, Γ ′, ξ ′). Since
f is a contactomorphism, (D ′f , ξ̄

′), as defined in (9), is a marked contact closure
of (M, Γ, ξ). According to the definition of SHM( f ) in Subsection 2.2, it suffices
to show that the identity map

id−D ′f ,−D ′ : SH M(−D ′f )→ SH M(−D ′)
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sends ψ(D ′f , ξ̄
′) to ψ(D ′, ξ̄ ′). But this is immediate since

ψ(D ′f , ξ̄
′) = ψ(Y ′, ξ̄ ′) = ψ(D ′, ξ̄ ′).

Since the map SHM( f ) only depends on the isotopy class of f , we have the
following.

COROLLARY 3.18. Suppose (M, Γ, ξ) and (M, Γ, ξ ′) are sutured contact
manifolds such that ξ and ξ ′ are isotopic through diffeomorphisms fixing Γ . Then
ψ g(M, Γ, ξ) = ψ g(M, Γ, ξ ′).

The following corollary should be thought of as saying that ψ g(M, Γ, ξ) is
essentially independent of the particular choice of multicurve Γ dividing (∂M)ξ .

COROLLARY 3.19. Suppose (M, Γ, ξ) and (M, Γ ′, ξ) are sutured contact
manifolds with the same underlying contact manifold but different dividing sets.
Then there is a canonical isomorphism

Ψ ξ,Γ,Γ ′ : SHM(−M,−Γ )→ SHM(−M,−Γ ′)
sending ψ g(M, Γ, ξ) to ψ g(M, Γ ′, ξ).

Proof. Since the set of multicurves dividing (∂M)ξ is connected, there is an
isotopy

ϕr : ∂M → ∂M, r ∈ [0, 1],
such that ϕ0 = id, each ϕr preserves (∂M)ξ , and ϕ1(Γi) = Γ ′i . Suppose ∂M ×
(−∞, 0] is a vertically invariant collar of ∂M , and extend ϕr to a diffeomorphism

ϕ : M → M

as in (11). It is easy to see, using Lemma 2.26, that ξ and ϕ∗(ξ) are isotopic by an
isotopy stationary on ∂M . It then follows from Lemma 3.17 and Corollary 3.18
that

Ψ ξ,Γ,Γ ′ := SHM(ϕ) : SHM(−M,−Γ )→ SHM(−M,−Γ ′)
sends ψ g(M, Γ, ξ) to ψ g(M, Γ ′, ξ). That this isomorphism is ‘canonical’
amounts to showing that it does not depend on the choices of ϕ or the collar (that
it is well defined), and that

Ψ ξ,Γ,Γ ′′ = Ψ ξ,Γ ′,Γ ′′ ◦ Ψ ξ,Γ,Γ ′ (18)

for any three multicurves Γ, Γ ′, Γ ′′ dividing (∂M)ξ . The connectedness of the
space of such collars implies that ϕ is independent, up to isotopy stationary on ∂M ,
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of the collar. Thus, SHM(ϕ) is independent of the collar. With that established, let
us fix some collar, and suppose ϕ1 and ϕ2 are diffeomorphisms of M as defined
above. The contractibility of the space of multicurves dividing (∂M)ξ implies that
ϕ1 and ϕ2 are isotopic. It follows that

SHM(ϕ1) = SHM(ϕ2).

Thus, Ψ ξ,Γ,Γ ′ is well defined. Now, suppose ϕ and ϕ′ are diffeomorphisms of M
of the sort used to define the maps Ψ ξ,Γ,Γ ′ and Ψ ξ,Γ ′,Γ ′′ . The transitivity in (18)
follows immediately from the fact that ϕ′′ := ϕ′ ◦ ϕ is a diffeomorphism of the
sort used to define Ψ ξ,Γ,Γ ′′ .

The corollary below indicates the invariance of ψ g with respect to flexibility.

COROLLARY 3.20. Suppose (M, Γ, ξ) and (M, Γ, ξ ′) are related by flexibility.
Then ψ g(M, Γ, ξ) = ψ g(M, Γ, ξ ′).

Proof. Suppose (D = (Y, R, r,m, η), ξ̄ ) is a marked contact closure of (M, Γ, ξ).
Corollary 3.8, together with Theorem 2.25, implies that ξ̄ is isotopic to a contact
structure ξ̄ ′ for which (D, ξ̄ ′) is a marked contact closure of (M, Γ, ξ ′). Then
ψ g(M, Γ, ξ) = ψ g(M, Γ, ξ ′) since ψ(D, ξ̄ ) = ψ(D, ξ̄ ′).

REMARK 3.21. The results above allow us to largely ignore, when dealing
with the invariants ψ g and ψ , the differences between contact structures related
by flexibility or isotopy. Accordingly, we will frequently work on the level of
dividing sets rather than characteristic foliations and will often think of dividing
sets as isotopy classes of multicurves.

Note if (M, Γ, ξ) is overtwisted, then so is any contact closure (D, ξ̄ ) of (M, Γ,
ξ). This implies that ψ(D, ξ̄ ) = 0, by Theorem 2.20. The theorem below follows
immediately.

THEOREM 3.22. If (M, Γ, ξ) is overtwisted, then ψ g(M, Γ, ξ) = 0.

Given a closed contact 3-manifold (Y, ξ), let Y (p) denote the sutured contact
manifold obtained from Y by removing a Darboux ball centered at p. It is not
hard to show that there is a canonical isotopy class of contactomorphisms relating
any two such manifolds for a given point p, justifying our notation. When it is not
important to keep track of p, we will write Y (1) instead (as in the introduction),
indicating that we have removed one Darboux ball. More generally, Y (n) will
refer to the (contactomorphism type of the) sutured contact manifold obtained by
removing n disjoint Darboux balls.
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We will prove the following in Section 4.

PROPOSITION 3.23. There is a morphism

Fp : SHM(−Y (p))→

̂

HM•(−Y )⊗Z R

which sends ψ g(Y (p)) to ψ(Y, ξ)⊗ 1, where 1 refers to the equivalence class of
1 ∈ R.

Since the monopole Floer invariant ψ(Y, ξ) is nonzero for strongly
symplectically fillable contact structures (see [21]), we have the following
immediate corollary.

COROLLARY 3.24. If (Y, ξ) is strongly symplectically fillable, then ψ g(Y (p)) 6=
0.

REMARK 3.25. The morphism in Proposition 3.23 can be thought of an analogue
of the natural map in Heegaard Floer homology,

Ĥ F(−Y )→ H F+(−Y ),

which sends c(Y, ξ) to c+(Y, ξ). Indeed, the modules comprising the systems
SHM(−Y (p)) and

̂
HM•(−Y ) ⊗Z R are isomorphic to Ĥ F(−Y ) ⊗Z R and

H F+(−Y )⊗Z R, respectively.

Suppose K is a Legendrian knot in the interior of (M, Γ, ξ) and that (M ′, Γ ′,
ξ ′) is the result of contact (+1)-surgery on K . We will prove the following in
Section 4.

PROPOSITION 3.26. There is a morphism

FK : SHM(−M,−Γ )→ SHM(−M ′,−Γ ′)
which sends ψ g(M, Γ, ξ) to ψ g(M ′, Γ ′, ξ ′).

3.4. Examples. Below, we compute the contact invariants of the Darboux ball
and product sutured contact handlebodies more generally. As above, we state
these results in terms of the invariants ψ g, but they also hold for the invariant ψ
by Theorem 3.15.

We start by constructing a genus g marked contact closure of the Darboux ball
(B3, S1, ξstd) for each

g > g(B3, S1) = 2
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Figure 13. Left, (D2 × [−1, 1], ξD2) with the negative region shaded. Right, the
Darboux ball obtained by rounding corners.

(where the dividing set S1 is a single equatorial curve on ∂B3). Consider the [−1,
1]-invariant contact structure ξD2 on D2×[−1, 1] for which each D2×{t} is convex
with collared Legendrian boundary and the dividing set on D2 × {1} consists of a
single properly embedded arc, as shown in Figure 13. The product sutured contact
manifold (D2×[−1, 1], ∂D2×{0}, ξD2) is contactomorphic to (B3, S1, ξstd) after
rounding corners. One advantage of thinking of the Darboux ball in this way is
that, in doing so, we have, in effect, automatically perturbed ξstd as required for
forming contact preclosures.

Indeed, let F be a genus g > 2 surface with one boundary component, and let
A = {c, a} be an arc configuration on F with a single arc. We may form a contact
preclosure of the Darboux ball by gluing (F×[−1, 1], ΞA) to (D2×[−1, 1], ξD2)

according to a map

h : ∂F × [−1, 1] → ∂D2 × [−1, 1]
of the form f × id for some diffeomorphism f : ∂F → ∂D2, as in Figure 14. The
result is a [−1, 1]-invariant contact structure ξ ′ on M ′ = (D2∪F)×[−1, 1]. Each
(D2∪F)×{t} is convex with negative region an annular neighborhood A(c)×{t}
of the curve c × {t}. To form a marked contact closure, we take R = (D2 ∪ F)
and glue R × [−1, 1], equipped with the [−1, 1]-invariant contact structure with
negative region A(c)× {t} on each R × {t}, to M ′ by the ‘identity’ maps

R × {±1} → (D2 ∪ F)× {∓1}.
Let η be a curve in R dual to the core of A(c). The resulting contact closure is
(D, ξ̄ ) with

D = ((D2 ∪ F)× S1, (D2 ∪ F), r,m, η),

where ξ̄ is an S1-invariant contact structure for which the negative region on each
fiber is a copy of A(c). Here, we are thinking of S1 as the union of two copies of
[−1, 1], and r and m as the obvious embeddings.
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Figure 14. Left, the arc configuration A on F with g(F) = 2. Middle, gluing
(F × [−1, 1], ΞA) to (D2 × [−1, 1], ξD2) with the negative region shaded. Right,
(D2 ∪ F) with the annulus A(c) shaded.

PROPOSITION 3.27. The invariant ψ g(B3, S1, ξstd) is a unit in SHM(−B3,

−S1) ∼= R.

Proof. It follows from work of Niederkrüger and Wendl (see [39, Theorem 5])
that the contact manifold ((D2 ∪ F) × S1, ξ̄ ) is weakly symplectically fillable
by some (W, ω). According to their construction, we may choose the curve η
so that r(η × {0}) is, up to a scalar multiple, the Poincaré dual of [ω|(D2∪F)×S1].
Since SH M(−D) is defined with respect to the local system Γ−η, it follows
from Theorem 2.21 that the contact class ψ(D, ξ̄ ) is a primitive element of
SH M(−D). The proposition then follows from the fact that SH M(−D) ∼= R,
by Proposition 2.18.

REMARK 3.28. The proof of Proposition 3.27 highlights the need for working
with twisted coefficients: the contact structure ξ̄ above is only weakly fillable and,
indeed, Wendl shows in [52, Corollary 2] that its untwisted ECH contact invariant
vanishes, from which it follows that ψ(D, ξ̄ ) ∈ SHM(−D) vanishes as well.

Below, we compute the contact invariants of product manifolds built from
general surfaces.

Let S be a genus k surface with l > 1 boundary components. Consider the
[−1, 1]-invariant contact structure ξS on S × [−1, 1] for which each S × {t} is
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Figure 15. Left, (S × [−1, 1], ξS), with negative region shaded, for k = 2, l =
3. Right, the convex boundary of the product sutured contact handlebody H(S)
obtained by rounding corners.

convex with collared Legendrian boundary and the dividing set on S×{1} consists
of k boundary parallel arcs, one for each component of ∂S, oriented in the same
direction as the boundary. See Figure 15. Let H(S) be the product sutured contact
handlebody of genus 2k + l − 1 obtained from (S × [−1, 1], ∂S × {0}, ξS) by
rounding corners. Note that H(S) is precisely the sort of contact handlebody that
appears in the Heegaard splitting associated to an open book with page S.

We have the following generalization of Proposition 3.27.

PROPOSITION 3.29. The invariant ψ g(H(S)) is a unit in SHM(−H(S)) ∼= R.

Proof. This proof is virtually identical to that of Proposition 3.27. We start by
constructing a genus g marked contact closure of H(S) for every

g > g(H(S)) = max{2, k + l} = max{2, g(S)+ |∂S|}. (19)

Let F be a surface with l boundary components, and let A = {c, a1, . . . , al} be an
arc configuration on F with one arc meeting each boundary component. We form
a genus k + l + g(F) − 1 contact preclosure of H(S) by gluing (F × [−1, 1],
ΞA) to (S × [−1, 1], ξS) and then proceed as in the case of the Darboux ball to
construct a marked contact closure of the form (D, ξ̄ ) with

D = ((S ∪ F)× S1, (S ∪ F), r,m, η),

where ξ̄ is an S1-invariant contact structure for which the negative region on
each fiber is a nonseparating annulus. These are exactly the same S1-invariant
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contact manifolds as were considered in the proof of Proposition 3.27. Thus, for
an appropriate choice of η, the contact class ψ(D, ξ̄ ) is a unit in SH M(−D) ∼=
R.

4. The well definedness of ψ g(M, Γ, ξ) and ψ(M, Γ, ξ)

We prove Theorems 3.14 and 3.15 in the next several subsections. Before
proving Theorem 3.15, we use Subsection 4.2 to define maps on SHM associated
to contact handle attachments and prove Propositions 3.26 and 3.23.

4.1. The well definedness of ψ g(M, Γ, ξ). We start by describing the
isomorphism Ψ −D1,−D2

for g(D1) = g(D2), as given in [1] but tailored slightly
to our setting. We then prove Theorem 3.14, which implies that ψ g(M, Γ,
ξ) ∈ SHM(−M,−Γ ) is well defined.

Suppose

(D1, ξ̄1) = ((Y1, R1, r1,m1, η1), ξ̄1)

(D2, ξ̄2) = ((Y2, R2, r2,m2, η2), ξ̄2)

are two marked contact closures of (M, Γ, ξ) of genus g > g(M, Γ ). To define
Ψ −D1,−D2

, we first choose a contactomorphism

C : (Y1 r int(Im(r1)), ξ̄1)→ (Y2 r int(Im(r2)), ξ̄2)

which restricts to m2 ◦ m−1
1 on m1(M r N (Γ )) for some neighborhood N (Γ )

of Γ . A contactomorphism of this form exists by Theorem 3.3. (Technically,
Theorem 3.3 says that there is a contactomorphism of this form after applying
flexibility to one of the complements above. However, we will ignore this point,
as we can achieve the same effect by modifying one of the ξ̄i via an arbitrarily
small isotopy supported away from m i(M).) Let ϕ± and ϕ be the diffeomorphisms
defined by

ϕ± = (r±2 )−1 ◦ C ◦ r±1 : R1 → R2

ϕ = (ϕ+)−1 ◦ ϕ− : R1 → R1,

where r±i is the composition

Ri
id×{±1}−−−−→ Ri × {±1} ri−→ Yi .

Remark 3.2 implies that the negative region of ξ̄i on each ri(Ri × {t}) is of the
form ri(Ai × {t}) for some annulus Ai ⊂ Ri . Since C is a contactomorphism, ϕ±
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sends A1 to A2, which implies that ϕ sends A1 to itself. Let

ψ : R1 → R1

be any diffeomorphism such that ψ sends A1 to itself and

(ϕ− ◦ ψ)(η1) = η2.

REMARK 4.1. The diffeomorphisms above are defined so that the triple (Y2,

r2(R2 × {0}), η2) is diffeomorphic to that obtained from (Y1, r1(R1 × {0}), η1)

by cutting the latter open along the surfaces r1(R1 × {t}) and r1(R1 × {t ′}) for
some t < 0 < t ′ and regluing by the maps r1 ◦ψ−1 ◦ r−1

1 and r1 ◦ (ϕ ◦ψ)◦ r−1
1 . By

expressing these maps as compositions of Dehn twists, we can realize this cutting
and regluing operation via surgery. The isomorphism Ψ −D1,−D2

is then defined in
terms of 2-handle cobordism maps associated to such surgeries, as below.

Since ϕ ◦ ψ and ψ−1 fix the annulus A1, these diffeomorphisms are isotopic to
compositions of Dehn twists about nonseparating curves a1, . . . , am ⊂ R1 r ∂A1,

ϕ ◦ ψ ∼ De1
a1
◦ · · · ◦ Den

an

ψ−1 ∼ Den+1
an+1
◦ · · · ◦ Dem

am
.

Here Dai is a positive Dehn twist about ai , and ei ∈ {±1}.
We next choose real numbers

−3/4 < tm < · · · < tn+1 < −1/4 < 1/4 < tn < · · · < t1 < 3/4,

and pick some t ′i between ti and the next greatest number in this list for every i
such that ei = +1. Let (Y1)− be the 3-manifold obtained from Y1 by performing
(−1)-surgeries on the curves r1(ai × {ti}) for which ei = +1, with respect to the
framings induced by the surfaces r1(R1×{ti}). Let X− be the 4-manifold obtained
by attaching (+1)-framed 2-handles to (Y1)− × [0, 1] along the curves r1(ai ×
{t ′i }) × {1} for which ei = +1. One boundary component of X− is −(Y1)−. The
other is canonically (up to isotopy) diffeomorphic to Y1 since the (+1)-surgery on
r1(ai ×{t ′i }) cancels the (−1)-surgery on r1(ai ×{ti}). We may therefore view X−
as a cobordism from (Y1)− to Y1. This cobordism gives rise to a map̂

HM•(−X−|−R1;Γ−ν) :

̂

HM•(−(Y1)−|−R1;Γ−η1)→

̂

HM•(−Y1|−R1;Γ−η1),

where ν is the cylinder ν = r1(η1 × {0})× [0, 1] ⊂ X−.
Similarly, let X+ be the 4-manifold obtained from (Y1)− × [0, 1] by attaching

(+1)-framed 2-handles along the curves r1(ai × {ti}) × {1} for which ei = −1.
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The boundary of X+ is the union of −(Y1)− with the 3-manifold (Y1)+ obtained
from (Y1)− by performing (+1)-surgeries on the curves r1(ai × {ti}) for which
ei = −1. Thus, X+ gives rise to a map̂

HM•(−X+|−R1;Γ−ν) :

̂

HM•(−(Y1)−|−R1;Γ−η1)→

̂

HM•(−(Y1)+|−R1;Γ−η1),

where ν = r1(η1 × {0}) × [0, 1] ⊂ X+ in this case. This map and the one above
are shown to be isomorphisms in [1].

As suggested in Remark 4.1, there is a unique isotopy class of diffeomorphisms

C̄ : (Y1)+→ Y2

which restricts to C on Y1 r int(Im(r1)) ⊂ (Y1)+. Let

Θ C̄ :

̂

HM•(−(Y1)+|−R1;Γ−η1)→

̂

HM•(−Y2|−R2;Γ−η2)

be the isomorphism on monopole Floer homology induced by C̄ . The map

Ψ −D1,−D2
:

̂

HM•(−Y1|−R1;Γ−η1)→

̂

HM•(−Y2|−R2;Γ−η2)

is defined to be the composition

Ψ −D1,−D2
= Θ C̄ ◦

̂
HM•(−X+|−R1;Γ−ν) ◦
̂

HM•(−X−|−R1;Γ−ν)−1.

In [1], we proved that this map is independent of the choices made in its
construction, up to multiplication by a unit in R. Having defined Ψ −D1,−D2

, we
may now prove Theorem 3.14.

Proof of Theorem 3.14. It suffices to show that

Ψ −D1,−D2
(ψ(D1, ξ̄1))

.= ψ(D2, ξ̄2)

for the marked contact closures (D1, ξ̄1) and (D2, ξ̄2) above. Note that the curves
r1(ai × {ti}) and r1(ai × {t ′i }) are nonisolating in r1(R1 × {ti}) and r1(R1 × {t ′i })
since each component of R1 r ai intersects ∂A1. We can therefore make these
curves Legendrian for all i = 1, . . . ,m by isotoping ξ̄1 slightly, according to the
Legendrian Realization Principle [18, 24]. In a slight abuse of notation, let us
simply assume that these curves are Legendrian with respect to ξ̄1. The surface
framings on these Legendrian curves agree with their contact framings since
the curves are disjoint from the dividing sets on their respective surfaces (each
ai is disjoint from ∂A1). In particular, we can arrange that the (±1)-surgeries
performed in defining Ψ −D1,−D2

are actually contact (±1)-surgeries. Let (ξ̄1)± be
the contact structures on (Y1)± induced by these surgeries. Since (+1)-surgery on
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r1(ai × {t ′i }) cancels (−1)-surgery on r1(ai × {ti}) contact geometrically as well
as topologically, we have that̂

HM•(−X−|−R1;Γ−ν)(ψ((Y1)−, (ξ̄1)−))
.= ψ(D1, ξ̄1)

by Corollary 2.23. The same corollary tells us that̂

HM•(−X+|−R1;Γ−ν)(ψ((Y1)−, (ξ̄1)−))
.= ψ((Y1)+, (ξ̄1)+).

Finally, we can arrange that the diffeomorphism C̄ is a contactomorphism, which
implies

Θ C̄(ψ((Y1)+, (ξ̄1)+))
.= ψ(D2, ξ̄2).

Putting these pieces together, we have that

Ψ −D1,−D2
(ψ(D1, ξ̄1))

.= ψ(D2, ξ̄2).

completing the proof.

4.2. Contact handle attachment maps for SHM. In this subsection, we
define maps on SHM associated to contact 0-, 1-, 2-, and 3-handle attachments
and show that these maps preserve ψ g(M, Γ, ξ). We also construct the map Fp

of Proposition 3.23, relating ψ g(Y (p)) to the contact class ψ(Y, ξ). We will use
the 2-handle attachment maps in Subsection 4.3 to prove Theorem 3.15, which
implies that the elementsψ g(M, Γ, ξ) are equal for large g and, hence, thatψ(M,
Γ, ξ) is well defined.

In the proofs that each of these maps are well defined, we will use the
isomorphisms Ψ −D1,−D2

for arbitrary marked contact closures (D1, ξ̄1) and (D2,

ξ̄2). In the case g(D1) = g(D2) these are exactly as defined in Subsection 4.1, and
so the reader will already see that the handle maps are well defined for closures of
a fixed genus. However, when g(D1) 6= g(D2) the maps Ψ −D1,−D2

involve certain
‘splicing’ cobordisms, whose precise description we postpone until Subsection 4.3
for readability; the reader will see that the proof in this case is identical.

4.2.1. 0-handle attachments. Attaching a contact 0-handle to (M, Γ, ξ) is
equivalent to taking the disjoint union of (M, Γ, ξ)with the Darboux ball (B3, S1,

ξstd). Let (M0, Γ0, ξ0) be this disjoint union. We claim that every marked contact
closure of (M0, Γ0, ξ0) is a marked contact closure of (M, Γ, ξ). To see this,
think of the Darboux ball as the product sutured contact manifold (D2 × [−1,
1], ∂D2 × {0}, ξD2), as in Subsection 3.4. Let F0 be an auxiliary surface for (M0,

Γ0, ξ0) with arc configuration A0 = {c, a1, . . . , am} so that a1 is the unique arc
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meeting the boundary component ∂1 F0. We form a contact preclosure (M ′0, ξ
′
0) of

(M0, Γ0, ξ0) by attaching F0 × [−1, 1] to M0 such that ∂1 F0 × [−1, 1] is glued to
∂D2 × [−1, 1] by a map

h : ∂1 F0 × [−1, 1] → ∂D2 × [−1, 1]
of the form f × id for some diffeomorphism f : ∂1 F0 → ∂D2. Let A(c) denote
the negative annular region on ∂+M ′0. Let R be a copy of ∂+M ′0. Let (Y0, ξ̄0) be
the closed contact manifold obtained by gluing R × [−1, 1], equipped with the
[−1, 1]-invariant contact structure with negative region A(c)×{t} on each R×{t},
to M ′0 by diffeomorphisms

R × {±1} → ∂∓M ′0

which identify dividing sets. Let η be a curve in R dual to the core of A(c). Then

(D0 = (Y0, R, r,m0, η), ξ̄0)

is a marked contact closure of (M0, Γ0, ξ0), where r and m0 are the obvious
embeddings of R × [−1, 1] and M0 into Y .

Note that (M ′0, ξ
′
0) is a contact preclosure of (M, Γ, ξ) as well, formed from the

auxiliary surface F = F0
⋃

f D2 and the arc configuration A = {c, a2, . . . , am}.
Thus,

(D = (Y0, R, r,m, η), ξ̄ = ξ̄0)

is a marked contact closure of (M, Γ, ξ), where m is the restriction of m0 to M . In
particular, SH M(−D) = SH M(−D0). We define the 0-handle attachment map

H0 : SHM(−M,−Γ )→ SHM(−M0,−Γ0)

to be the morphism determined by the equivalence class of the identity map from
SH M(−D) to SH M(−D0), which we will denote in this case by

id−D,−D0 : SH M(−D)→ SH M(−D0).

To prove that H0 is well defined, we need only show that if (D0, ξ̄0) and (D ′0,
ξ̄ ′0) are marked contact closures of (M0, Γ0, ξ0) constructed as above, and (D, ξ̄ )
and (D ′, ξ̄ ′) are the corresponding marked contact closures of (M, Γ, ξ), then the
diagram

SH M(−D)
id−D,−D0 //

Ψ−D,−D′

��

SH M(−D0)

Ψ−D0,−D′0
��

SH M(−D ′)
id−D′,−D′0

// SH M(−D ′0)
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Figure 16. Left, a portion of a vertical invariant neighborhood of ∂M near the
disks D−, D+ ⊂ ∂M , whose boundaries are dotted. Middle, attaching the contact
1-handle. Right, the 1-handle attachment after rounding corners.

commutes, up to multiplication by a unit in R. But this is clear: Ψ −D0,−D ′0
is a composition of maps associated to 2-handle and splicing cobordisms, and
Ψ −D,−D ′ can be defined via the exact same composition. Note that

id−D,−D0(ψ(D, ξ̄ ))
.= ψ(D0, ξ̄0)

since ψ(D, ξ̄ ) = ψ(D0, ξ̄0) in SH M(−D) = SH M(−D0). We therefore have
the following.

PROPOSITION 4.2. H0(ψ
g(M, Γ, ξ)) = ψ g(M0, Γ0, ξ0) for each g > g(M, Γ ).

4.2.2. 1-handle attachments. Suppose D− and D+ are disjoint embedded disks
in ∂M which each intersect Γ in a single properly embedded arc. To attach a
contact 1-handle to (M, Γ, ξ) along these disks, we glue (D2 × [−1, 1], ξD2) to
(M, Γ, ξ) by diffeomorphisms

D2 × {−1} → D− and D2 × {+1} → D+,

which preserve and reverse orientations, respectively, and identify dividing sets,
and then we round corners, as illustrated in Figure 16. Let (M1, Γ1, ξ1) be the
resulting sutured contact manifold. As in the 0-handle case, we claim that every
marked contact closure of (M1, Γ1, ξ1) is also a marked contact closure of (M, Γ,
ξ).

The rough idea is that if F1 is an auxiliary surface for (M1, Γ1), then, in the
corresponding preclosure M ′1, the union of F1×[−1, 1] with the contact 1-handle
is a product F×[−1, 1], where F is an auxiliary surface for (M, Γ ), so that M ′1 is
also a preclosure of (M, Γ ). We make this precise as follows. Choose an auxiliary
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Figure 17. Upper left, a portion of a vertically invariant neighborhood of ∂M
near D+, D− showing A(Γ ) and the perturbed dividing set. Upper right, the
corresponding portions of M1 and A(Γ1). Lower left, a portion of F × [−1, 1]
with the negative regions on F × {1} and ∂F × [−1, 1] shaded. Lower right, the
corresponding portion of F1 × [−1, 1]. The 3-balls N ⊂ M ′ and N1 ⊂ M ′1 are
obtained by gluing the portions of F × [−1, 1] and F1 × [−1, 1] shown here to
the portions of M and M1 shown here via the maps h and h1.

surface F1 for (M1, Γ1), a neighborhood A(Γ1), and a diffeomorphism

h1 : ∂F1 × [−1, 1] → A(Γ1).

We perturb ξ1 as usual, so that, near the contact 1-handle, the resulting dividing
set intersects A(Γ1) as shown in the upper right of Figure 17. We choose an arc
configuration A1 on F1 so that the negative region of ΓA1 on a portion of the
convex surface F1 × {1} ⊂ (F1 × [−1, 1], ΞA1) glued near the 1-handle consists
of neighborhoods of four arcs, as shown in the lower right of Figure 17. Let (M ′1,
ξ ′1) denote the resulting contact preclosure of (M1, Γ1, ξ1).

Let γ+ and γ− be the arcs of ∂F1 such that γ± × {1} ⊂ ∂F1 × {1} are mapped
to the contact 1-handle by h1. Let F be the surface obtained by attaching a two-
dimensional 1-handle to F1 with feet at γ±. Note that F is an auxiliary surface
for (M, Γ ). We use it to construct a contact preclosure of (M, Γ, ξ) as follows.
Let A(Γ ) ⊂ ∂M be a neighborhood of Γ which agrees with A(Γ1) outside of the
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attaching disks D±. We perturb ξ so that the resulting dividing set agrees with that
of the perturbed ξ1 outside of D± and is disjoint from A(Γ ) inside these disks, as
shown in the upper left of Figure 17. By choosing h1 more carefully to begin with,
we can assume that it extends to a map

h : ∂F × [−1, 1] → A(Γ )

which agrees with h1 away from γ± × [−1, 1]. Let A be the arc configuration
on F induced by A1, and let (M ′, ξ ′) be the corresponding contact preclosure of
(M, Γ, ξ).

Let N ⊂ M ′ be the 3-ball obtained by gluing the portion of F × [−1, 1] shown
in Figure 17 to the portion of M shown there, and define N1 ⊂ M ′1 analogously.
Note that

(M ′ r N , ξ ′) = (M ′1 r N1, ξ
′
1). (20)

We claim that, after rounding corners, N and N1 are Darboux balls. This will
imply that the identity map on the manifold in (20) extends (uniquely, up to
isotopy) to a contactomorphism

(M ′, ξ ′)→ (M ′1, ξ
′
1).

For the claim, it is enough to show that N and N1 are tight (as there is a unique
tight ball). But since N and N1 only depend on ξ on a vertically invariant
neighborhood of ∂M , it suffices to find some (M, Γ, ξ) such that all contact
preclosures of (M, Γ, ξ) and (M1, Γ1, ξ1) are tight. We can take (M, Γ, ξ) to
be the Darboux ball (B3, S1, ξstd), in which case (M1, Γ1, ξ1) is the product
sutured contact handlebody H(S) for a surface S with genus 0 and 2 boundary
components. It follows from the results in Subsections 3.4 and 4.1 that contact
preclosures of both the Darboux ball and this handlebody are always tight, settling
the claim.

Now, let R be a copy of ∂+M ′1, and let (Y1, ξ̄1) be the closed contact manifold
obtained by gluing R × [−1, 1], equipped with the appropriate [−1, 1]-invariant
contact structure, to M ′1 in the usual way. Consider the marked contact closure

(D1 = (Y1, R, r,m1, η), ξ̄1)

of (M1, Γ1, ξ1), where η is an appropriately chosen curve on R, and r and m1

are the obvious embeddings of R × [−1, 1] and M1 into Y1. Since (M ′, ξ ′) and
(M ′1, ξ

′
1) are contactomorphic by the identity map outside of balls, we have that

(D = (Y1, R, r,m, η), ξ̄ = ξ̄1)

is a marked contact closure of (M, ξ), where m is the restriction of m1 to M . In
particular, SH M(−D) = SH M(−D1). We define the 1-handle attachment map

H1 : SHM(−M,−Γ )→ SHM(−M1,−Γ1)
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Figure 18. Left, a portion of a vertically invariant neighborhood of ∂M near
A(γ ) ⊂ ∂M , whose boundary is dotted. This portion is a neighborhood N of the
Legendrian curve γ ′. Middle, attaching the contact 2-handle. Right, the 2-handle
attachment after rounding corners.

to be the morphism determined by the equivalence class of the identity map from
SH M(−D) to SH M(−D1). The proof that H1 is well defined is then exactly as
in the 0-handle case. Since the identity map id−D,−D1 sendsψ(D, ξ̄ ) toψ(D1, ξ̄1),
we have the following.

PROPOSITION 4.3. H1(ψ
g(M, Γ, ξ)) = ψ g(M1, Γ1, ξ1) for each g > g(M, Γ ).

4.2.3. 2-handle attachments. Suppose γ is an embedded curve in ∂M which
intersects Γ in two points. Let A(γ ) be an annular neighborhood of γ intersecting
Γ in two cocores. To attach a contact 2-handle to (M, Γ, ξ) along A(γ ), we glue
(D2 × [−1, 1], ξD2) to (M, Γ, ξ) by an orientation-reversing diffeomorphism

∂D2 × [−1, 1] → A(γ )

which identifies positive regions with negative regions, and then round corners, as
illustrated in Figure 18. Let (M2, Γ2, ξ2) be the resulting sutured contact manifold.

Now, consider the sutured contact manifold (M1, Γ1, ξ1) obtained from (M2,

Γ2, ξ2) by attaching a contact 1-handle along disks in the interiors of the D2×{±1}
boundary components of the contact 2-handle, as indicated in Figure 19, and let

H1 : SHM(−M2,−Γ2)→ SHM(−M1,−Γ1)

be the corresponding 1-handle attachment map, as defined in Subsubsection 4.2.2.
It is easy to see that (M1, Γ1) is diffeomorphic to the sutured manifold obtained
from (M, Γ ) by performing ∂M-framed surgery on a copy γ ′ of γ in the
interior of M . By the Legendrian Realization Principle, we can assume that γ ′
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Figure 19. Attaching a contact 1-handle to form M1. The circles on D2 × {±1}
indicate where the feet of this handle are to be attached. The union of the 1-handle
below with the portion of M1 shown above is the solid torus N1.

is Legendrian in (M, Γ, ξ) since γ is nonisolating in ∂M . Moreover, since γ
intersects Γ in exactly two points, the ∂M-framing on γ ′ is one more than its
contact framing. Below, we argue that (M1, Γ1, ξ1) is in fact contactomorphic (by
a canonical isotopy class of contactomorphisms) to the result of contact (+1)-
surgery on γ ′.

To see this, let N ⊂ M be the solid torus on the left in Figure 18 and let N1 ⊂ M1

be the solid torus obtained from N by attaching the 1- and 2-handles as indicated
in Figures 18 and 19. After slight modification, N and N1 can be made to have
convex boundaries. Note that

(M r N , Γ, ξ) = (M1 r N1, Γ1, ξ1). (21)

Furthermore, the identity map, restricted to ∂MrN = ∂M1rN1, extends uniquely
(up to isotopy) to a diffeomorphism

(∂M, Γ )→ (∂M1, Γ1).

It follows that the identity map on the manifold in (21) extends uniquely (up to
isotopy) to a contactomorphism
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(M r N ′, Γ, ξ)→ (M1 r N ′1, Γ1, ξ1),

where N ′ ⊂ int(N ) is the solid torus with convex boundary obtained by removing
a vertically invariant collar ∂N × [−∞, 0) from N , and N ′1 is defined from
N1 analogously. In other words, there is a canonical contactomorphism (up to
isotopy),

f : (M ′, Γ ′, ξ ′)→ (M1, Γ1, ξ1),

where (M ′, Γ ′, ξ ′) is the contact manifold obtained from (M, Γ, ξ) by removing
the solid torus neighborhood N ′ of γ ′ and gluing back in a solid torus
contactomorphic to N ′1 according to the contact framing on γ ′ plus one. To
show that this operation is actually a contact (+1)-surgery, all that remains is to
show that N and N1 are tight (as there is a unique tight solid torus with the given
dividing set on its boundary).

Since N and N1 only depend on ξ on a vertically invariant neighborhood of
∂M , it suffices to find some (M, Γ, ξ) such that both (M, Γ, ξ) and some sutured
contact manifold obtained from (M, Γ, ξ) by attaching contact 2- and 1-handles
as above are tight. We can take (M, Γ, ξ) to be the tight solid torus H(S) for a
surface S with genus 0 and 2 boundary components. Etgü and Özbağcı show in
[10, Example 3] that one can obtain the Darboux ball by attaching a contact 2-
handle to this solid torus. We proved in Proposition 3.27 that any marked contact
closure (D, ξ̄ ) of (B3, S1, ξstd) has nonzero invariant ψ(D, ξ̄ ). This then implies,
by the earlier results in this section, that any marked contact closure of the sutured
contact manifold obtained from the Darboux ball by attaching a contact 1-handle
also has nonzero invariant. The manifold resulting from this 1-handle attachment
is therefore tight as well.

Thus, (M ′, Γ ′, ξ ′) is obtained from (M, Γ, ξ) via contact (+1)-surgery along
the Legendrian curve γ ′.

In order to define the 2-handle map H2, we first define the morphism FK in
Proposition 3.26. Suppose

(D = (Y, R, r,m, η), ξ̄ )

is a marked contact closure of (M, Γ, ξ). Let (Y ′, ξ̄ ′) be the contact 3-manifold
obtained from Y by performing contact (+1)-surgery on m(K ) for some
Legendrian knot K ⊂ M . Then

(D ′ = (Y ′, R, r ′,m ′, η), ξ̄ ′)

is a contact closure of (M ′, Γ ′, ξ ′), where r ′ is the map induced by r and m ′ is the
embedding of M ′ into Y ′ induced by m. Let W be the 2-handle cobordism from
Y to Y ′ corresponding to the above surgery. We define

FK : SHM(−M,−Γ )→ SHM(−M ′,−Γ ′)
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to be the morphism induced by the map̂

HM•(−W |−R;Γ−ν) : SH M(−D)→ SH M(−D ′),

where ν ⊂ W is the natural cylindrical cobordism from r(η× {0}) ⊂ Y to r ′(η×
{0}) ⊂ Y ′. To prove that FK is well defined, we must show that the diagram

SH M(−D1)

̂

HM•(−W1|−R1;Γ−ν1 ) //

Ψ−D1,−D2

��

SH M(−D ′1)

Ψ−D′1,−D′2
��

SH M(−D2) ̂

HM•(−W2|−R2;Γ−ν2 )

// SH M(−D ′2)

commutes, up to multiplication by a unit in R, for any two marked contact
closures (D1, ξ̄1) and (D2, ξ̄2) of (M, Γ, ξ), where (D ′i , ξ̄

′
i ) is the marked contact

closure of (M ′, Γ ′, ξ ′) induced by (Di , ξ̄i) and Wi is the 2-handle cobordism from
Yi to Y ′i . But this follows from the commutativity of the cobordisms used to define
these maps: W1 and W2 are built by attaching 2-handles along curves in the regions
m1(M) and m2(M), while the vertical isomorphisms are defined from cobordisms
built by attaching 2-handles or splicing along tori outside of these regions. Sincê
HM•(−W |−R;Γ−ν) sends ψ(D, ξ̄ ) to ψ(D ′, ξ̄ ′), by Corollary 2.23, we have the
following, which proves Proposition 3.26.

PROPOSITION 4.4. FK (ψ
g(M, Γ, ξ)) = ψ g(M ′, Γ ′, ξ ′) for each g > g(M, Γ ).

We now define the 2-handle attachment map

H2 : SHM(−M,−Γ )→ SHM(−M2,−Γ2),

to be the composition of morphisms

H2 =H −1
1 ◦ SHM( f ) ◦ Fγ ′ .

That H2 is independent of γ ′ follows from the fact that any two such Legendrian
realizations of γ are related by an ambient isotopy of M supported in N .
Unpacking the composition above, we see that H2 may also be formulated as
follows. Suppose (D, ξ̄ ) is a marked contact closure of (M, Γ, ξ) and let (D ′,
ξ̄ ′) be the induced marked contact closure of the surgered manifold (M ′, Γ ′, ξ ′).
Then

(D2 = (Y ′, R′, r ′,m2, η
′), ξ̄2 = ξ̄ ′)
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is a marked contact closure of (M2, Γ2, ξ2), where m2 is the restriction of m ′ ◦ f −1

to M2 ⊂ M1. Let

id−D ′,−D2 : SH M(−D ′)→ SH M(−D2)

be the identity map on SH M(−D ′) = SH M(−D2). Then H2 is the morphism
induced by the map

id−D ′,−D2 ◦

̂

HM•(−W |−R;Γ−ν) : SH M(−D)→ SH M(−D2).

Note that Propositions 4.4 and 4.3 imply the following.

PROPOSITION 4.5. H2(ψ
g(M, Γ, ξ)) = ψ g(M2, Γ2, ξ2) for each g > g(M, Γ ).

4.2.4. 3-handle attachments. Attaching a contact 3-handle to (M, Γ, ξ)
amounts to gluing the Darboux ball to (M, Γ, ξ) along an S2 boundary component
of M with one dividing curve. Let (M3, Γ3, ξ3) be the result of this gluing. We
will first assume that ∂M is disconnected, so that M3 has boundary. Let p be a
point in M3 in the interior of this Darboux ball. Then there is a canonical isotopy
class of contactomorphisms

f : (M, Γ, ξ)→ (M ′, Γ ′, ξ ′),

where (M ′, Γ ′, ξ ′) is the sutured contact manifold obtained by taking the contact
connected sum of (M3, Γ3, ξ3) with (B3, S1, ξstd) at the point p. Let (M0, Γ0, ξ0)

be the disjoint union of (M3, Γ3, ξ3) with (B3, S1, ξstd), and let

H0 : SHM(−M3,−Γ3)→ SHM(−M0,−Γ0)

be the corresponding 0-handle attachment map, as defined in Subsubsection 4.2.1.
Suppose

(D0 = (Y0, R, r,m, η), ξ̄0)

is a marked contact closure of (M0, Γ0, ξ0). Then

(D ′ = (Y ′, R, r,m ′, η), ξ̄ ′)

is a marked contact closure of (M ′, Γ ′, ξ ′), where (Y ′, ξ̄ ′) is the self contact
connected sum obtained from (Y0, ξ̄0) by removing Darboux balls around m(p)
and some point in m(B3) ⊂ Y0 and gluing in S2 × I , equipped with a tight, I -
invariant contact structure, and m ′ is the embedding of M ′ into Y ′ induced by m.
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In particular, (Y ′, ξ̄ ′) is a contact connected sum of (Y0, ξ̄0) with the tight S1× S2.
Now, there is a natural Stein 1-handle cobordism

(W, ω) : (Y0, ξ̄0)→ (Y ′, ξ̄ ′).

Let ν ⊂ W be a cylindrical cobordism from r(η) ⊂ Y0 to r(η) ⊂ Y ′. Then the
map ̂

HM•(W |−R;Γ−ν) : SH M(−D ′)→ SH M(−D0)

sends ψ(D ′, ξ ′) to ψ(D0, ξ0), up to multiplication by a unit in R, by
Theorem 2.22. We define

F# : SHM(−M ′,−Γ ′)→ SHM(−M0,−Γ0)

to be the morphism determined by the equivalence class of this map. That F# is
well defined follows from similar considerations as before; namely, these Stein
1-handle cobordisms are attached along balls in the interiors of Y ′ and Y0 and
therefore commute with the 2-handle and splicing cobordisms used to define
the isomorphisms in the systems SHM(−M ′,−Γ ′) and SHM(−M0,−Γ0). We
define the 3-handle attachment map

H3 : SHM(−M,−Γ )→ SHM(−M3,−Γ3)

to be the composition

H3 =H −1
0 ◦ F# ◦ SHM( f ).

By Proposition 4.2, we have the following.

PROPOSITION 4.6. H3(ψ
g(M, Γ, ξ)) = ψ g(M3, Γ3, ξ3) for each g > g(M, Γ ).

Suppose now that (Y, ξ) is a closed contact manifold, and let Y (p) be the
sutured contact manifold obtained from (Y, ξ) by removing a Darboux ball around
p. Below, we use similar ideas to construct the morphism

Fp : SHM(−Y (p))→

̂

HM•(−Y )⊗Z R

in Proposition 3.23. Note that (Y, ξ) is obtained from Y (p) by a contact 3-handle
attachment. Hence, there is a canonical isotopy class of contactomorphisms

f : Y (p)→ M,
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where M is the sutured contact manifold obtained as the contact connected sum
of (Y, ξ) with (B3, S1, ξstd) at the point p. Suppose

(D = (YB3, R, r,m, η), ξ̄ )

is a marked contact closure of (B3, S1, ξstd). This naturally gives rise to a marked
contact closure

(DM = (Y #YB3, R, r,mM , η), ξ#ξ̄ )

of M , where mM is the obvious extension of m. Let

(W, ω) : (Y, ξ) t (YB3, ξ̄ )→ (Y #YB3, ξ#ξ̄ )

be the natural Stein 1-handle cobordism, and let ν ⊂ W be a cylindrical cobordism
from r(η) ⊂ YB3 to r(η) ⊂ Y #YB3 . The map̂

HM•(W |−R;Γ−ν) : SH M(−DM)→

̂

HM•(−Y )⊗Z SH M(−D) (22)

sends ψ(DM , ξ#ξ̄ ) to ψ(Y, ξ)⊗ψ(D, ξ̄ ), up to multiplication by a unit in R, by
Theorem 2.22. Let

F# : SHM(−M)→
̂

HM•(−Y )⊗Z SHM(−B3,−S1)

be the morphism determined by the equivalence class of this map. Since
SHM(−B3,−S1) ∼= R, we may define Fp to be the composition

Fp = F# ◦ SHM( f ).

We then have the following, which proves Proposition 3.23.

PROPOSITION 4.7. Fp(ψ
g(Y (p)))= ψ(Y, ξ)⊗1 for each g > g(Y (p))= 2.

REMARK 4.8. For the map in (22), we are viewing W as a cobordism with
one incoming and two outgoing boundary components. Reducible monopoles
make defining maps associated to cobordisms with multiple incoming or outgoing
boundary components difficult. This difficulty is typically overcome by restricting
to nontorsion Spinc structures on the boundary. In (22), however, we are not
restricting the Spinc structures on Y . Fortunately for us, Bloom has recently
worked out the combinatorics needed to define maps on

̂

HM• associated to
cobordisms with a single incoming boundary component and multiple outgoing
boundary components [5].
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4.3. The well definedness of ψ(M, Γ, ξ). We start by describing the
isomorphism Ψ −D1,−D2

in the case that g(D1) 6= g(D2). The exposition here
is tailored to the setting of contact closures and therefore differs slightly from
that in [1]. We then use these isomorphisms and the contact handle attachment
maps of Subsection 4.2 to prove Theorem 3.15, which implies that ψ(M, Γ,
ξ) ∈ SHM(−M,−Γ ) is well defined.

Suppose (D1, ξ̄1) and (D2, ξ̄2) are marked contact closures of (M, Γ, ξ). Let us
first consider the case in which

g(D2) = g(D1)+ 1 = g + 1.

To define Ψ −D1,−D2
, we first construct two additional marked contact closures as

follows. Let F be an auxiliary surface such that the closed surface formed by
gluing F to R+(Γ ) has genus g + 1. Then F has genus at least two since D1 is
formed from an auxiliary surface of genus at least one and g(D1) = g. It follows
that there is an embedded subsurfaceΣ ⊂ int(F) of genus one with two boundary
components c1, c2 ⊂ int(F) such that F r Σ is connected. Let A = {c, a1, . . . ,

am} be an arc configuration on F contained in F rΣ . Let (M ′, ξ ′) be the contact
preclosure formed from F , A, and some choices of A(Γ ) and

h : ∂F × [−1, 1] → A(Γ ).

Note that the boundary components ∂±M ′ have genus g+1. As usual, the negative
region on ∂+M ′ is an annular neighborhood A(c) of c, by Remark 3.2. Let R be
a copy of ∂+M ′ and let (Y, ξ̄ ) be the closed contact manifold obtained by gluing
R × [−1, 1], equipped with the [−1, 1]-invariant contact structure with negative
region A(c)× {t} on each R × {t}, to M ′ by diffeomorphisms

R × {±1} → ∂M ′∓ (23)

which restrict to the ‘identity’ maps from Σ × {±1} ⊂ R × {±1} to Σ × {∓1} ⊂
∂M ′∓. Let η be a curve in R dual to the core of A(c) which restricts to a properly
embedded arc on Σ . Then

(D = (Y, R, r,m, η), ξ̄ )

is a genus g + 1 marked contact closure of (M, Γ, ξ), where r and m are the
obvious embeddings of R × [−1, 1] and M into Y .

Let F ′ be the surface obtained from F rΣ by gluing c1 to c2 via an orientation-
reversing diffeomorphism

f : c1 → c2

which sends c1 ∩ η to c2 ∩ η, as shown in Figure 20. Since A is disjoint from Σ ,
it descends to an arc configuration on F ′. Let (M ′′, ξ ′′) be the contact preclosure
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Figure 20. Left, a portion of the surface F with the region Σ shaded. Right, the
surface F ′. The arc configuration A is shown in red, intersecting η and η′ along
the curve c.

formed from F ′, A, A(Γ ), and h. Note that the boundary components ∂M ′′± are
obtained from ∂M ′± by removingΣ×{±1} and gluing c1×{±1} to c2×{±1} by f .
Let R′ be a copy of ∂M ′′± and let (Y ′, ξ̄ ′) be the closed contact manifold obtained
by gluing R′×[−1, 1], equipped with the [−1, 1]-invariant contact structure with
negative region A(c)× {t} on each R × {t}, to M ′′ by the diffeomorphisms

R′ × {±1} → ∂M ′′∓

induced by those in (23). Then

(D ′ = (Y ′, R′, r ′,m ′, η′), ξ̄ ′)

is a genus g marked contact closure of (M, Γ, ξ), where r ′ and m ′ are the
embeddings naturally induced by r and m and η′ ⊂ R′ is the curve induced by η.

The isomorphism Ψ −D ′,−D is defined in terms of a splicing cobordism W ,
described below. Once we have defined this isomorphism, we define Ψ −D1,−D2

as in (24). In defining W , the important observation is that the union of annuli

(ci × [−1, 1] ⊂ F × [−1, 1] ⊂ M ′) ∪ (ci × [−1, 1] ⊂ R × [−1, 1])
is an embedded torus Ti = ci × S1 ⊂ Y for i = 1, 2. Together, these tori cut Y
into pieces YM and YΣ with

−∂YM = ∂YΣ = T1 ∪ T2.
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Figure 21. Left, the saddle S. Right, a schematic of the splicing cobordism W .

In particular, YM is the piece that contains M and YΣ is the mapping torus of some
diffeomorphism of Σ . Note that the closed manifold obtained from YM by gluing
T1 to T2 by f × id is precisely Y ′, while the manifold obtained from YΣ in this
way is a mapping torus M(Σ ′) of some diffeomorphism of Σ ′, where Σ ′ is the
closed genus two surface obtained from Σ by gluing c1 to c2 by f . Let ηΣ ′ ⊂ Σ ′
be the curve induced by η. The splicing cobordism

W : Y ′ t M(Σ ′)→ Y

is then defined by gluing the products YM×[0, 1] and YΣ×[0, 1] to T1× S, where
S is the saddle cobordism depicted in Figure 21. We glue these pieces along the
‘horizontal’ portions of their boundaries according to the schematic in that figure,
making use of the map f × id. This cobordism induces a map̂

HM•(−W |−R′;Γ−ν) :

̂

HM•(−Y ′|−R′;Γ−η′)⊗R

̂

HM•(−M(Σ ′)|−Σ ′;Γ−ηΣ ′ )
→

̂

HM•(−Y |−R;Γ−η),
where ν ⊂ W is a pair-of-pants cobordism from η′ t ηΣ ′ to η. We define

Ψ −D ′,−D(−) =

̂

HM•(−W |−R′;Γ−ν)(−⊗ 1),

where 1 is a generator of

̂

HM•(−M(Σ ′)|−Σ ′;Γ−ηΣ ′ ) ∼= R. We then define

Ψ −D1,−D2
= Ψ −D,−D2

◦ Ψ −D ′,−D ◦ Ψ −D1,−D ′ . (24)

Here, Ψ −D,−D2
and Ψ −D1,−D ′ are the maps defined in Subsection 4.1 for closures

of the same genus.
In the case that g(D2) = g(D1)− 1, we define

Ψ −D1,−D2
= Ψ −1

−D2,−D1
.
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For the general case, we choose a sequence (D 1, ξ̄ 1), . . . , (D n, ξ̄ n) of marked
contact closures of (M, Γ, ξ) such that (D 1, ξ̄ 1) = (D1, ξ̄1), (D n, ξ̄ n) = (D2, ξ̄2),
and

|g(D i+1)− g(D i)| 6 1

for all i = 1, . . . , n − 1. Then we define

Ψ −D1,−D2
= Ψ −Dn−1,−Dn ◦ · · · ◦ Ψ −D1,−D2 .

We proved in [1] that this map is independent of the choices made in its
construction, up to multiplication by a unit in R.

REMARK 4.9. It is clear from the description of this splicing cobordism that the
mapsΨ −D1,−D2

commute with the handle attachment maps Hi , 0 6 i 6 3, defined
in Subsection 4.2, even when the contact closures D1 and D2 do not have the same
genus. Thus the maps Hi are indeed well defined, as originally claimed.

Having constructed the maps Ψ −D1,−D2
, we can now use the ‘existence’ part

of the relative Giroux correspondence between partial open books and sutured
contact manifolds, together with our contact 2-handle attachment maps, to prove
Theorem 3.15. Our discussion of this correspondence differs slightly in style but
not in substance from the discussions in [11, 20].

DEFINITION 4.10. A partial open book is a quadruple (S, P, h, c), where:

(1) S is a surface with nonempty boundary,

(2) P is a subsurface of S,

(3) h : P → S is an embedding which restricts to the identity on ∂P ∩ ∂S,

(4) c = {c1, . . . , cn} is a set of disjoint, properly embedded arcs in P such that
S r c deformation retracts onto S r P .

REMARK 4.11. The collection c of basis arcs for P is not typically recorded
in the data of a partial open book. Usually, it is just required that S be obtained
from S r P by successive 1-handle attachments. The basis arcs specify a 1-handle
decomposition of P .

Let H(S) be the product sutured contact handlebody obtained from (S × [−1,
1], ∂S × {0}, ξS) by rounding corners, as defined in Subsection 3.4.

Let γi be the curve on ∂H(S) corresponding to

(ci × {1}) ∪ (∂ci × [−1, 1]) ∪ (h(ci)× {−1}) ⊂ ∂(S × [−1, 1]). (25)
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Let M(S, P, h, c) be the sutured contact manifold obtained from H(S) by
attaching contact 2-handles along the curves in

γ (h, c) := {γ1, . . . , γn}. (26)

DEFINITION 4.12. A partial open book decomposition of (M, Γ, ξ) is a partial
open book (S, P, h, c) together with a contactomorphism

f : M(S, P, h, c)→ (M, Γ, ξ).

The theorem below represents the ‘existence’ part of the relative Giroux
correspondence between partial open books and sutured contact manifolds,
proven by Honda et al. [20].

THEOREM 4.13. Every sutured contact manifold admits a partial open book
decomposition.

DEFINITION 4.14. We define N (M, Γ, ξ) to be the minimum of

{g(H(S)) = max{2, g(S)+ |∂S|}}
over all partial open book decompositions (S, P, h, c, f ) of (M, Γ, ξ). This is the
constant in Theorem 3.15.

Proof of Theorem 3.15. Let (D, ξ̄ ) and (D ′, ξ̄ ′) be marked contact closures of
(M, Γ, ξ) with genus at least N (M, Γ, ξ). It suffices to show that

Ψ −D,−D ′(ψ(D, ξ̄ ))
.= ψ(D ′, ξ̄ ′). (27)

Suppose (S, P, h, c, f ) is a partial open book for (M, Γ, ξ) with g(H(S)) =
N (M, Γ, ξ). Let (D f , ξ̄ ) and (D ′f , ξ̄

′) be the induced marked contact closures
of M(S, P, h, c). Let (DS, ξ̄S) and (D ′S, ξ̄

′
S) be marked contact closures of H(S)

with
g(DS) = g(D) = g(D f ) and g(D ′S) = g(D ′) = g(D ′f ). (28)

Since M(S, P, h, c) is obtained from H(S) by attaching contact 2-handles, there
is a morphism

H : SHM(−H(S))→ SHM(−M(S, P, h, c))

obtained by composing the corresponding 2-handle morphisms defined in
Subsubsection 4.2.3. Let
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H−DS ,−D f : SH M(−DS)→ SH M(−D f )

H−D ′S ,−D ′f : SH M(−D ′S)→ SH M(−D ′f )

be the induced (equivalence classes of) maps. Then the diagram

SH M(−DS)
H−DS ,−D f //

Ψ−DS ,−D′S

��

SH M(−D f )

Ψ−D f ,−D′f

��

id−D f ,−D
// SH M(−D)

Ψ−D,−D′

��
SH M(−D ′S) H−D′S ,−D′f

// SH M(−D ′f ) id−D′f ,−D′
// SH M(−D ′)

commutes, up to multiplication by a unit in R. Furthermore, the genus equalities
in (28), combined with Proposition 4.5, imply that

H−DS ,−D f (ψ(DS, ξ̄S))
.= ψ(D f , ξ̄ )

H−D ′S ,−D ′f (ψ(D
′
S, ξ̄

′
S))

.= ψ(D ′f , ξ̄ ′).
We know that

Ψ −DS ,−D ′S
(ψ(DS, ξ̄S))

.= ψ(D ′S, ξ̄ ′S)
since these two contact classes generate

SH M(−DS) ∼= SH M(−D ′S) ∼= R,

by Proposition 3.29. The commutativity of the leftmost square in the diagram
above then implies that

Ψ −D f ,−D ′f
(ψ(D f , ξ̄ ))

.= ψ(D ′f , ξ̄ ′).
But this fact, combined with the commutativity of the rightmost square and the
obvious equalities

id−D f ,−D(ψ(D f , ξ̄ )) = ψ(D, ξ̄ )
id−D ′f ,−D ′(ψ(D

′
f , ξ̄
′)) = ψ(D ′, ξ̄ ′),

implies (27).

In particular, Theorem 3.15 implies that the elements ψ g(M, Γ, ξ) are equal
for all g > N (M, Γ, ξ). As in Definition 3.16, we denote this common element
by

ψ(M, Γ, ξ) ∈ SHM(−M,−Γ ).
The following are then immediate corollaries of Propositions 4.2–4.7. We refer to
those propositions for the notation.
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COROLLARY 4.15. For i = 0, . . . , 3, the morphism

Hi : SHM(−M,−Γ )→ SHM(−Mi ,−Γi)

sends ψ(M, Γ, ξ) to ψ(Mi , Γi , ξi).

COROLLARY 4.16. The morphism
FK : SHM(−M,−Γ )→ SHM(−M ′,−Γ ′)

sends ψ(M, Γ, ξ) to ψ(M ′, Γ ′, ξ ′).

COROLLARY 4.17. The morphism

Fp : SHM(−Y (p))→

̂

HM•(−Y )⊗Z R

sends ψ(Y (p)) to ψ(ξ)⊗ 1.

The following corollary provides the inspiration for our construction in [2] of a
contact invariant in sutured instanton homology.

COROLLARY 4.18. Suppose (S, P, h, c, f ) is a partial open book decomposition
of (M, Γ, ξ). Let

H : SHM(−H(S))→ SHM(−M(S, P, h, c))

be the composition of contact 2-handle morphisms associated to c. Then

ψ(M, Γ, ξ) = SHM( f )(H (1)) ∈ SHM(−M,−Γ ),
where 1 is the generator of SHM(−H(S)) ∼= R.

Suppose (M, Γ ) is a sutured submanifold of (M ′, Γ ′), as defined in [19]. Let ξ
be a contact structure on M ′rint(M)with convex boundary and dividing set Γ on
∂M and Γ ′ on ∂M ′. The sutured contact manifold (M ′ r int(M), Γ ∪ Γ ′, ξ ′) can
be obtained from a vertically invariant contact structure on ∂M × I by attaching
contact handles. Given a contact handle decomposition H of this sort, we define

Φξ,H : SHM(−M,−Γ )→ SHM(−M ′,−Γ ′)
to be the corresponding composition of contact handle attachment maps, as in the
introduction. Note that if ξM is a contact structure on M which agrees with ξ near
∂M , then

Φξ,H (ψ(M, Γ, ξM)) = ψ(M ′, Γ ′, ξM ∪ ξ)
by Corollary 4.15.
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COROLLARY 4.19. If (M, Γ, ξ) embeds into (M ′, Γ ′, ξ ′) as a sutured contact
submanifold and ψ(M, Γ, ξ) = 0, then ψ(M ′, Γ ′, ξ ′) = 0.

We can use Corollary 4.19 to prove the following slightly weaker version
of Theorem 3.22 without relying on the fact that the monopole Floer invariant
vanishes for overtwisted contact structures on closed 3-manifolds (Theorem 2.20).

LEMMA 4.20. If (M, Γ, ξ) is overtwisted, then ψ(M, Γ, ξ) = 0.

Proof. By Corollary 4.19, it is enough to show that a standard neighborhood (M,
Γ, ξ) of an overtwisted disk has vanishing invariant. In [20], Honda et al. describe
a partial open book for (S, P, h, c) for (M, Γ, ξ) in which S is an annulus, c
consists of a single boundary parallel arc c, and h(c) is another boundary parallel
arc such that c ∪ h(c) is homotopic to a core curve α of the annulus S. As usual,
we let γ be the curve on ∂H(S) corresponding to

(c × {1}) ∪ (∂c × [−1, 1]) ∪ (h(c)× {−1}) ⊂ S × [−1, 1].
Then M(S, P, h, c) is obtained from H(S) by attaching a contact 2-handle along
γ . Let

H : SHM(−H(S))→ SHM(−M(S, P, h, c))
be the corresponding map. By Corollary 4.18, it suffices to show that H ≡ 0. In
fact, we will show that SHM(−M(S, P, h, c)) = 0.

To see this, let D = (Y, R, r,m, η) be any marked closure of H(S). Let γ ′ be
a parallel copy of γ in the interior of Y and let Y ′ be the result of 0-surgery on
m(γ ′) with respect to the framing induced by ∂H(S). By the construction of the
contact 2-handle map in the previous section, we know that there is an embedding

m ′ : M(S, P, h, c)→ Y ′

such that D ′ = (Y ′, R, r,m ′, η′) is a marked closure of M(S, P, h, c). Note that
γ is isotopic to the curve α′ ⊂ ∂H(S) corresponding to α × {1} ⊂ S × [−1, 1],
by an isotopy which sends the ∂H(S)-framing on γ to that of α′, as depicted in
Figure 22. The image m(α′) is isotopic to r(a × {t}) for some embedded curve
a ⊂ R and any t ∈ [0, 1], by an isotopy which sends the ∂H(S)-framing on m(α′)
to the r(R × {t})-framing on r(a × {t}). We can therefore view Y ′ as obtained
from Y by 0-surgery on r(a × {t}). Since r(a × {t}) compresses r(R × {t}),
the surface r(−R × {0}) ⊂ −Y ′ is homologous to a surface of genus g(R) − 1.
By the adjunction inequality in monopole Floer homology [27], this implies that̂

HM•(−Y ′, s;Γη) = 0 whenever

|〈c1(s), [r(−R × {0})]〉| = 2g(R)− 2.
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Figure 22. A partial open book for a standard neighborhood of an overtwisted disk.
The shaded regions represent P and h(P). The two rightmost diagrams show the
curves γ and α′ in ∂H(S), drawn as (c × {1}) ∪ (∂c × [−1, 1]) ∪ (h(c)× {−1})
and α × {1} in S × [−1, 1].

In particular, SH M(−D ′) = 0, which implies that SHM(−M(S, P, h, c)) = 0.

REMARK 4.21. With a bit of work, one should similarly be able to use
Corollary 4.19 to prove that if (M, Γ, ξ) has positive Giroux torsion, then
ψ(M, Γ, ξ) = 0 in analogy with [14].

REMARK 4.22. In [19], Honda et al. define a map similar to Φξ,H which depends
only on ξ . We expect that our map Φξ,H is likewise independent of H , as in
Conjecture 1.7.

5. The bypass exact triangle

In this section, we work over the Novikov field R/2R := R⊗Z Z/2Z in order
to use the surgery exact triangle in monopole Floer homology (see Remark 2.19).
The results of the previous sections, including the construction and invariance of
ψ(M, Γ, ξ) and the definition of the contact handle attachment maps, hold over
R/2R without modification.

Suppose (M, Γ ) is a sutured manifold and α ⊂ ∂M is an arc which intersects
Γ in three points, including both endpoints of α. A bypass move along α replaces
Γ with a new set of sutures Γ ′ which differ from Γ in a neighborhood of α, as
shown in Figure 23.

If Γ is the dividing set of a contact structure ξ on M , then a bypass move
is achieved by attaching an actual bypass along α, as defined by Honda in [18].
In [40], Özbağcı observed that attaching a bypass along α is equivalent to first
attaching a contact 1-handle along disks in ∂M centered at the endpoints of α
and then attaching a contact 2-handle along the union β of α with an arc on the
boundary of this 1-handle, as shown in Figure 24. There is a canonical isotopy
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Figure 23. A bypass move along the arc α.

Figure 24. Performing a bypass move by attaching a contact 1-handle at the
endpoints of α and a contact 2-handle along β.

class of diffeomorphisms between the resulting manifold and M which restrict to
the identity outside a neighborhood of these handles. A bypass move along α thus
gives rise to a morphism

Hα : SHM(−M,−Γ )→ SHM(−M,−Γ ′)
which is the composition of the corresponding contact 1- and 2-handle maps with
the map induced by this isotopy class of diffeomorphisms. Corollary 4.15 implies
the following.

PROPOSITION 5.1. Suppose (M, Γ ′, ξ ′) is obtained from (M, Γ, ξ) by attaching
a bypass along α and pulling back the resulting contact structure to M by the
canonical isotopy class of diffeomorphisms. Then the induced map Hα sends
ψ(M, Γ, ξ) to ψ(M, Γ ′, ξ ′).

Figure 25 shows a sequence of bypass moves, performed in some fixed
neighborhood in ∂M , resulting in a 3-periodic sequence of sutures on M . Such
a sequence of bypass moves is what Honda calls a bypass triangle. Work in
progress of Honda shows that a bypass triangle gives rise to a bypass exact
triangle in sutured (Heegaard) Floer homology. The main result of this section
is the analogous result in the monopole Floer setting, per the theorem below.
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Figure 25. The bypass triangle. Each picture shows the attaching arc used to
achieve the next set of sutures in the triangle.

THEOREM 5.2. Suppose Γ1, Γ2, Γ3 ⊂ ∂M is the 3-periodic sequence of sutures
resulting from successive bypass moves along arcs α1, α2, α3 as in Figure 25. Then
the maps Hα1,Hα2,Hα3 fit into an exact triangle

SHM(−M,−Γ1)
Hα1 // SHM(−M,−Γ2)

Hα2
{{

SHM(−M,−Γ3).

Hα3

cc

Proof. We will prove Theorem 5.2 by realizing the bypass exact triangle as the
usual surgery exact triangle in monopole Floer homology.

Note that by enlarging our local picture slightly, we can think of the arcs α1,

α2, α3 as being arranged as in Figure 26 with respect to Γ1. We may therefore
view

(M, Γ2) and (M, Γ3) and (M, Γ1)

as being obtained from (M, Γ1) by attaching bypasses along the arcs

α1 and α1, α2 and α1, α2, α3,

respectively. As described above, attaching a bypass along αi amounts to attaching
a contact 1-handle Hi along disks centered at the endpoints of αi and then
attaching a contact 2-handle along a curve βi which extends αi over the handle.
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Figure 26. Another view of the arcs of attachment for the bypasses in the triangle.
The suture drawn here is Γ1.

Figure 27. A view of (Z1, γ1), obtained by attaching the contact 1-handles H1, H2,

H3 to (M, Γ1). Middle, the attaching curves β1, β2, β3 for the contact 2-handles.
Right, the curves a and b.

Let (Z1, γ1) be the sutured manifold obtained by attaching all three H1, H2, H3

to (M, Γ1), as in Figure 27. We will view β1, β2, β3 as curves in ∂Z1, as shown
in the figure. For i = 1, 2, 3, let (Z i+1, γi+1) be the result of attaching a contact
2-handle to (Z i , γi) along βi . We thus have the following canonical (up to isotopy)
identifications:

(Z1, γ1) ∼= (M, Γ1) ∪ H1 ∪ H2 ∪ H3

(Z2, γ2) ∼= (M, Γ2) ∪ H2 ∪ H3

(Z3, γ3) ∼= (M, Γ3) ∪ H3

(Z4, γ4) ∼= (M, Γ1).

Recall that contact 1-handle attachment has little effect on the level of closures.
Specifically, if D = (Y, R, r,m, η) is a marked closure of sutured manifold
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after the 1-handle attachment, then there is a marked closure of the sutured
manifold before the 1-handle attachment of the form D ′ = (Y, R, r,m ′, η). The
corresponding 1-handle attachment morphism is induced by the identity map from
SH M(−D ′) to SH M(−D). We thus have canonical isomorphisms

SHM(−Z i ,−γi) ∼= SHM(−M,−Γi),

for i = 1, 2, 3, 4, where the subscript of Γi is taken mod 3. In particular,
SHM(−Z4,−γ4) is canonically identified with SHM(−Z1,−γ1). Therefore, to
prove Theorem 5.2, it suffices to prove that there is an exact triangle

SHM(−Z1,−γ1)
Hβ1 // SHM(−Z2,−γ2)

Hβ2
{{

SHM(−Z3,−γ3),

Hβ3

cc

where Hβi is the morphism associated to contact 2-handle attachment along βi .
Recall that on the level of closures, contact 2-handle attachment corresponds

to surgery. Specifically, if Di = (Yi , R, ri ,m i , η) is a marked closure of (Z i , γi),
then there is a marked closure of (Z i+1, γi+1) of the form Di+1 = (Yi+1, R, ri+1,

m i+1, η), where Yi+1 is the result of 0-surgery on m i(β
′
i ) with respect to the (∂Z i)-

framing, where β ′i is a pushoff of βi into the interior of Z i . The morphism Hβi is
induced by the 2-handle cobordism map

Fi :=

̂

HM•(−Wi |−R;Γ−ν) : SH M(−Di)→ SH M(−Di+1)

corresponding to this surgery. So, to prove the exact triangle above, and, therefore,
Theorem 5.2, it suffices to find a closure D1 of (Z1, γ1) such that the surgeries
relating the −Yi are exactly those that one encounters in the usual surgery exact
triangle in monopole Floer homology. More precisely, it suffices to arrange that:

• F1 is the map associated to 0-surgery on some K ⊂ −Y1,

• F2 is the map associated to (−1)-surgery on a meridian µ1 ⊂ −Y2 of K ,

• F3 is the map associated to (−1)-surgery on a meridian µ2 ⊂ −Y3 of µ1.

Let D = (Y, R, r,m, η) be a marked closure of (Z1, γ1). Let a and b be
embedded curves in the positive and negative regions of ∂Z1 as shown in
Figure 27. Since neither curve intersects γ1, we can assume that a and b are
contained in r(R × {−1}) and r(R × {+1}), respectively. Let Y1 be the manifold
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Figure 28. Top left, the curves β ′1, β
′
2, β

′
3, a′, b′ in a neighborhood of ∂Z1 ⊂ Y .

Red indicates curves that have been surgered along. Top middle, sliding β ′2 ⊂ Y2

over b′ to produce β ′′2 . Top right, showing that β ′′2 bounds a meridional disk of
β ′1 disjoint from the other surgery curves. Bottom left, β ′3 ⊂ Y3. Bottom middle,
sliding β ′3 over a′ and β ′1 to produce β ′′3 . Bottom right, showing that β ′′3 bounds a
meridional disk of β ′′2 disjoint from the other surgery curves.

obtained from Y by performing (+1)-surgeries on pushoffs a′ and b′ of a and b
into the interior of r(R×[−1, 1]), with respect to their ∂Z1-framings. Then D1 =
(Y1, R, r1,m1, η) is a marked closure of (Z1, γ1), where m1 is the embedding
induced by m and r1 is the canonical (up to isotopy) embedding induced by r .
For ease of notation, we will think of the m i as being inclusions, and simply
write x for m i(x) for points x ∈ Z i . In particular, Wi is the 2-handle cobordism
corresponding to 0-surgery on β ′i ⊂ Yi .

Recall that Y2 is the result of 0-surgery on β ′1 ⊂ Y1. Let β ′′2 be the curve in Y2

obtained by handlesliding β ′2 across the surgered curve b′, as shown in the top
middle of Figure 28. Note that the 0-framing on β ′2 corresponds to the (+1)-
framing on β ′′2 under this isotopy. We may therefore think of Y3 as the result
of (+1)-surgery on β ′′2 and W2 as the corresponding 2-handle cobordism. We
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claim that β ′′2 is a meridian of the surgered curve β ′1. This is apparent once we
handleslide the surgered curve b′ over the surgered curve β ′1, as shown in the top
right of Figure 28.

Let β ′′3 be the curve in Y3 obtained by handlesliding β ′3 over the surgered curve
a′ and then over the surgered curve β ′1, as shown in the bottom middle of Figure 28.
The 0-framing on β ′3 corresponds to the (+1)-framing on β ′′3 under this isotopy,
so we may therefore think of Y4

∼= Y1 as the result of (+1)-surgery on β ′′3 and
W3 as the corresponding 2-handle cobordism. We claim that β ′′3 is a meridian of
the surgered curve β ′′2 . This is apparent once we handleslide the surgered curve
a′ over the surgered curve β ′′2 , as shown in the bottom right of Figure 28, noting
that we are free to isotope β ′′2 through the 1-handle H2. It follows from these
considerations that the maps F1, F2, F3 are of the form described above for K =
β ′1, µ1 = β ′′2 , µ2 = β ′′3 . This completes the proof of Theorem 5.2.
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Appendix A. Some facts about contact manifolds with boundary

In this appendix, we provide proofs of some of the results from Subsection 2.4.
We repeat the statements of each result here for convenience.

PROPOSITION 2.28. If F0 and F1 are two characteristic foliations of ∂M divided
by the same multicurve Γ , then there is a canonical bijection f01 : π0(Cont(M,
F0))→ π0(Cont(M,F1)).

Proof. Suppose ξ0 is a contact structure on M with characteristic foliation
(∂M)ξ0 = F0. We claim that there exists a contact structure ξ01 on ∂M × [0, 1]
such that:

(1) the restriction ξ01|∂M×{0} = ξ0|∂M ,

(2) the characteristic foliation (∂M × {1})ξ01 = F1,

(3) each ∂M × {t} is convex and Γ × {t} divides (∂M × {t})ξ01 ,

(4) ∂t is a contact vector field near the boundary.

This is a relatively easy application of Theorem 2.25.
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REMARK A.1. For any contact structure ξ1 defined near ∂M with (∂M)ξ1 = F1,
we can arrange that ξ01 restricts to ξ1 on ∂M × {1}.

REMARK A.2. If F0 agrees with F1 on some open subset A ⊂ ∂M , then we can
take ∂t to be a contact vector field on A × [0, 1].

To define f01, we first choose a vertically invariant collar neighborhood ∂M ×
(−∞, 0] of ∂M = ∂M × {0} such that Γ is the dividing set associated to ∂t . Let
(M ′, ξ ′) be the contact manifold formed by gluing (∂M × [0, 1], ξ01) to (M, ξ0)

along ∂M × {0} according to the identity map and the obvious collars. Let

ϕ : M ′→ M

be the smooth map which is the identity outside of ∂M × (−∞, 1] and sends (x,
t) to (x, t − 1) for (x, t) ∈ ∂M × (−∞, 1]. We define f01(ξ0) to be the contact
structure ξ1 = ϕ∗(ξ ′). Note that (∂M)ξ1 = F1, as desired.

REMARK A.3. We say that two contact structures ξ0 and ξ1 on M are related by
flexibility if ξ1 is obtained from ξ0 in this way.

REMARK A.4. Note that ξ1 = ξ0 outside of ∂M × [−1, 0]. If F0 = F1 on some
open subset A ⊂ ∂M , then we can arrange, per Remark A.2, that ξ1 = ξ0 outside
of (∂M r A)× [−1, 0].

Giroux’s Uniqueness lemma (Lemma 2.26) implies that the contact structure
ξ01 is unique, up to isotopy stationary on the boundary of ∂M × [0, 1]. If follows
that f01(ξ0) is independent of ξ01, up to isotopy stationary on ∂M . The fact that
the space of vertically invariant collars as above is connected (in fact, contractible)
implies that f01(ξ0) is independent of the chosen collar. Finally, it is clear that if
ξ0 and ξ ′0 are isotopic, then so are f01(ξ0) and f01(ξ

′
0). Thus, f01 is well defined as

a map from π0(Cont(M,F0)) to π0(Cont(M,F1)). It is clear that f00 = id. The
transitivity f02 = f12 ◦ f01 is an easy application of Lemma 2.26. Note that these
two relations imply that f01 is a bijection with inverse f10.

LEMMA 2.29. Suppose S is a surface with boundary, and let Γ be a nonempty
collection of oriented, disjoint, properly embedded curves and arcs on S such that
S r Γ = S+ t S− with

∂S+ = −∂S− = Γ.
Then there exists a [−1, 1]-invariant contact structure on S × [−1, 1] for which
each S × {t} is convex with collared Legendrian boundary ∂S × [0, 1] × {t} and
dividing set Γ × {t}.
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Proof. Let (S′ = S ∪−S, Γ ′ = Γ ∪−Γ ) be the double of (S, Γ ). Then S′ r Γ ′
is a disjoint union S′+ t S′− with

∂S′+ = −∂S′− = Γ ′,

and it is not hard to construct a [−1, 1]-invariant contact structure ξ ′ on S′×[−1,
1] for which each S′×{t} is convex with dividing set Γ ′×{t}. Note that ∂S ⊂ S′ is
nonisolating, meaning that each component of S′ r ∂S intersects Γ ′ nontrivially.
It follows that there is a singular foliation F of S′ which is divided by Γ ′ and
contains ∂S as a union of leaves (see [18]). In fact, we can assume that F restricts
to a [0, 1]-invariant foliation on ∂S × [0, 1] ⊂ S ⊂ S′. By Proposition 2.28, there
exists a contact structure ξ ′ on ∂S′ × [−1, 1] such that the characteristic foliation
of ξ ′ on S′×{1} is equal to F. Changing notation, let us now denote by (S′×[−1,
1], ξ ′) a vertically invariant neighborhood of S′×{1}. Then the restriction of ξ ′ to
S × [−1, 1] is the desired contact structure.

LEMMA 2.31. Suppose ξ and ξ ′ are contact structures on S × [−1, 1] as in
Lemma 2.29. Then, up to flexibility, ξ and ξ ′ are isotopic.

Proof. Let F and F′ be the characteristic foliations on S induced by ξ and ξ ′,
and let C and C ′ be the collars of ∂S associated to ξ and ξ ′. There exists an
isotopy ϕr : (S, Γ ) → (S, Γ ), r ∈ [0, 1], such that ϕ0 = id and ϕ1 sends the
restriction of F′ on C ′ to the restriction of F on C . Let F′′ = (ϕ1)

−1(F). Let ξ ′′ be
the contact structure, obtained from ξ ′ by flexibility, whose characteristic foliation
on S × {±1} agrees with F′′. Note that we can apply Proposition 2.28 here, even
though S has boundary, because F′′ agrees with F′ on C ′. In fact, we may assume
that ξ ′′ agrees with ξ ′ on C ′ × [−1, 1], as in Remark A.4. To prove the lemma, it
suffices to show that ξ ′′ is isotopic to ξ . We do this in three steps.

The isotopy ϕr extends to an isotopy ϕr × id of S × [−1, 1]. Let ξ ′′′ =
(ϕ1 × id)∗(ξ ′′). Then the characteristic foliation of ξ ′′′ on S × [−1, 1] agrees
with that of ξ . Moreover, ξ ′′′ is [−1, 1]-invariant on C × [−1, 1]. Thus, ξ ′′′ is
isotopic to a contact structure ξ ′′′′ which agrees with ξ on C×[−1, 1] by a [−1, 1]-
invariant isotopy which preserves the characteristic foliation on each S×{t}. This
is essentially Giroux’s Reconstruction lemma [16]. Since each S × {t} is convex
with dividing set Γ × {t} for both ξ ′′′′ and ξ and the characteristic foliations of
these two contact structures agree on S × {±1}, Lemma 2.26 asserts that ξ ′′′′ and
ξ are isotopic by an isotopy which is stationary on S × {±1}. In fact, we can take
this isotopy to be stationary on C × [−1, 1] since ξ ′′′′ and ξ agree there.
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