J. Functional Programming 6 (2): 329-354, March 1996 © 1996 Cambridge University Press 329

Formal basis for the refinement of rule based
transition systems

A. N. CLARK

Department of Computing, University of Bradford,
Bradford, West Yorkshire BD7 1DP, UK
(e~mail: a.n.clark@comp.brad.ac.uk)

Abstract

This paper makes a contribution to the refinement of systems which involve search by
proposing a simple non-deterministic model for rule based transition systems and using
this to define a meaning for rule based refinement which allows each stage of the software
development path to be verified with respect to the previous stage. The proposal allows a
system which involves search to be specified in terms of all the possible outcomes. Each stage
of refinement will introduce complexity to the rules and therefore develop the search space
in ever more sophisticated ways. At each stage of the refinement it will be possible to be
precise about which collections of outcomes have been deleted, thereby achieving a verified
(prototype) implementation.

Capsule Review

One of the neglected application areas for functional programming has been in Artificial
Intelligence, despite the obvious applicability of functional programming to the symbolic
processing involved, and despite (or maybe because of) the widespread use of LISP in this
domain. This paper brings functional programming into an Al application in two ways. Firstly,
it brings a formal rule-based analysis to the typical problem of controlling a searching through
a space for a solution which matches certain criteria. Traditionally, this is done by heuristics:
in this paper a more formal development is presented. Secondly, the implementation of this
technique is couched in a monadic style encapsulating the search strategy. Thus this paper
is a valuable contribution to bringing functional programming into this exciting application
area.

1 Introduction

Many computer programs involve search. A typical scenario is that at various
points during the calculation of the program a choice between several alternatives
is presented. Some of the alternatives may turn out to be incorrect, since they do
not compute an acceptable outcome. For each choice there may be more than one
alternative which will compute such an outcome. Often it will only be necessary to
select a single alternative at each point in the calculation, but the suitability of an
outcome may not depend upon the local context of its calculation.

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

330 A. N. Clark

When implementing programs which involve search, it would be convenient to be
able to describe a process which produces all possible outcomes and then applies a
filter which throws away those outcomes which do not meet the required acceptance
criteria. Unfortunately, a characteristic feature of many programs which involve
search is that the resources which would be required to produce all the possible
outcomes are at best beyond the scope of most computer systems.

Current practice deals with these problems using ‘heuristic’ rules which cut down
on the amount of outcomes which are produced by selecting one of the alternatives
at various choice points in the program. This is done by detecting patterns in
the program data which indicate that some of the alternatives will be superfluous
in generating acceptable outcomes. These systems have been termed ‘Knowledge
Based” or ‘Expert’ (Beynon-Davies, 1993) because of the way they take advantage
of information, often attributed to a person who has worked ‘in the field’ with such
systems for years, which indicates the most optimal way of navigating through a
graph of choices.

The literature (e.g. Rushby, 1988; Lopez et al., 1990; O’Keefe et al., 1987; Culbert
et al., 1987) describes the development of these systems as often being ad hoc,
where the rules are developed until the system produces an acceptable outcome.
In many cases these systems are not specified, but are developed interactively until
they produce acceptable outcomes for as many executions as possible. There is no
clear development path leading from a specification to an implementation and as a
consequence, there is often no way of knowing how complete the implementation is
with respect to all the possible acceptable outcomes.

The aims of this work are to propose methods which can be used to increase the
overall quality of Knowledge Based Systems. To this end, the following objectives
have been defined. To propose a simple model for KBS software development which
can be used to analyse the features affecting the quality of the system. To propose a
simple formalism for expressing Knowledge Based Systems and which is amenable
to analysis. To propose characteristic features of the development process which can
be controlled effectively. To propose an implementation mechanism for the KBS
formalism and to use this as the basis of an example development to give evidence
of the utility of the approach.

2 Guide to the paper

This paper is organised as follows: section 3 describes rule based transition systems
which are used to express systems involving search. The systems are given a simple
semantics by mapping them to a collection of indexed sets of chains and develop-
ment (or refinement) is defined as a rule set transformation which preserves certain
properties of its semantics. Section 4 describes how the rule sets are implemented
using a monad to deal with the non-determinism which occurs when rule patterns
match data values. Section 5 is an example refinement using the Blocks World as
a simple system involving search. Finally, section 6 concludes by describing the
performance of the mechanisms, related work and further research.

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 331

3 Rule based transition systems

Knowledge Based Systems (KBS) (e.g. Lucas and Van Der Gaag, 1991) is a branch
of Artificial Intelligence which is concerned with constructing computer programs
which perform some task which is traditionally thought of as requiring some degree
of human intelligence. For example, medical diagnosis, computer system configu-
ration, action planning and game playing are typical KBS application domains.
A number of programming paradigms have been developed which support the
construction of KBS software, one of the most widespread of which is production
system technology (e.g. Luger and Stubblefield, 1989). Typically, a production system
involves a collection of data items, referred to as working memory, a collection of
rules, a control strategy and a conflict resolution strategy. The control strategy defines
a mechanism by which a number of rules are selected in order to modify or deduce
information from the items in the working memory. Where more than one rule is
selected, the conflict resolution strategy is used to reduce the choice to the required
amount (usually a single rule). Production systems tend to be characterised by the
direction in which the rules are used, two distinct types are forward-, e.g. OPS5
(Brownston et al., 1985) and backward-, e.g. Prolog (Clocksin and Mellish, 1984),
chaining production systems, but in principle there is no limit to the complexity of
the control strategy (which can even be implemented in terms of a KBS).

An example of a very simple KBS is the Blocks World (Nilsson, 1980), which
consists of a flat surface supporting towers of differently coloured blocks. The aim
of a Blocks World system is to move blocks, one at a time, from the top of one
tower to the top of another and arrive at an arrangement of blocks in which one of
the blocks (the red, one for example) is directly on top of another (the green one,
for example). Our claim is that a simple view of KBS can be used as a model for
KBS program development. An initial executable specification for the system can
often be expressed easily and succinctly using a non-deterministic transition system.
In the case of the Blocks World:

(A) Given the current state of the table top, select a block, at random, from the top of a
tower and move it to another tower, again selected at random.

When this specification is executed, it will be repeatedly applied to the current
system state until the red block is on the green block. Although the specification
captures all the required behaviour, it is likely to be very inefficient in practice, since
there is no guarantee that a sensible move is made at any given instant, nor is there
a guarantee that the execution will terminate. A human would use some ‘“intelligence’
about the moves which are unlikely to succeed and those which step closer to the
overall aim. For example:

(B) Given the current state of the table top, if the red and green blocks are free then move
the red onto the green otherwise select a block and move it providing that the number of
blocks covering red and green are not increased in the process.

We wish to view the development of (B) from (A) as adding ‘knowledge’ to the
initial specification and aim to provide a formalism which will express such systems
and allow atomic development steps to be defined and formally justified.

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

332 A. N. Clark

We view KBS implementations as systems which can be described as sequences
of transitions. The permissible transitions are described as a collection of rules each
of which has an antecedent and consequent pattern. At any given time the system is
described as a single value which is referred to as its state. If the state matches any
of the antecedent patterns then it makes a transition to the state described by the
corresponding consequent pattern. More than one antecedent pattern may match
a state and an antecedent pattern may match a state in more than one way. We
describe the behaviour of such a system as non-deterministic when the intention
is that there is only one outcome from a sequence of transitions and there is no
mechanism for controlling which of the many possible outcomes this will be. Such
systems have the full power of Turing machines (Jounanaud and Dershowitz, 1990)
and hence will support all computations which can be performed by production
systems. The relationship between production systems and the transition systems
described in this paper is as follows:

e Working memory is represented as the entire state of the non-deterministic
transition system.

e Production system rules may involve repeated variables and unification. The
transition system rules involve only matching with singly occurring variables.

e Production system control may be quite elaborate whereas the control for the
transition system is very simple and corresponds closely to that of forward
chaining production systems.

e Production systems may have complex conflict resolution strategies whereas
the transition systems use non-deterministic selection.

Although the transition systems which we define are not as expressive as some
production systems, this allows the transition systems to have a formal semantics
which is essential for the aims of this work. In principle it will be possible to extend
the transition systems with more sophisticated features, such as unification.

3.1 Rule sets

Rule sets are collections of rules which consist of antecedent and consequent patterns
and a boolean expression. Section 3.1.1 describes the syntax of patterns and how they
are matched against data values. Section 3.1.2 describes the syntax and semantics of
rule sets.

3.1.1 Patterns

The construction of patterns and the values which they match follows the usual
description of terms as given in the literature on rewriting systems, with a slight
restriction. Let C and I be two disjoint sets, where C contains function symbols and
I contains variables. Each function symbol ¢ € C has an arity arity(c) and a symbol
of arity O is called a constant. A term is either a variable or consists of a function
symbol ¢ applied to »n terms c(tq,...,t,) where arity(c) = n. A term which contains
no variables is a ground term. The set of variables which are present in a term ¢ is

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 333

vars(t). The transition systems which we describe in this paper can be thought of as
rewriting ground terms which we refer to as values v € V. An antecedent pattern is
a term in which each variable may occur only once. A consequent pattern is simply
a term.

A substitution 0 is a finite mapping from variables to values. Given a variable
i € I the value of a substitution 6 for i is denoted 6(i). Such a substitution can be
uniquely extended to a homomorphism over terms, 6(c(t1,...,t,)) = c(6(t1),...,0(tn)),
which substitutes for all variables in the term. A substitution may be written
{i1 = vy,...,0n > vy} when 0(i;) = v;. A value v matches a pattern p when there is
at least one substitution such that 6(p) = v.

The values and constructors may be described by an equational algebra (Goguen,
1976), where the equations give rise to the ambiguities as to how a pattern matches
a value. For example the equational algebra describing lists: a list of values is either
the empty list [], a singleton list [v] or the concatenation of two lists /; #15. The
equations define that [] is the left and right identity of 4 and that 4 is associative:

D41=1=14[]
(h#bL)HLE=14(L+#k)

For convenience, the following notational sugar is defined in order to construct lists
of arbitrary length:

V1,02, ---,00] = [p1] H[v2] H#... H#[vs]

The predicate issingletonlist is true of any list of the form [v]. The head and tail
of lists are accessed using the following operators: the operator hd is defined by
hd([v] # -) = v and the operator tl is defined by ti([.]# 1) = I. A value v is an
element of a list I, v € [, when | = || #[v] # | for some lists I; and ;. Notice that
€ and the converse ¢ are relations which hold both between values and lists and
values and sets. A list is reversed using the operator rev, i.e. rev([vy,v2,...,0n—1,04)) =
[on, bp—1,...,02,01]. The operator pre is applied to a function f and a list ! to produce
a set, pre(f)(I), which contains values which are the result of applying f to all the
4 prefixes of the list I. For example:

pre(1)([1,2,3]) = {[1,2,3], [1,2], [1], [}

Similarly suff applies a function to all the suffixes.
Given a value [1] #[2] the pattern [; #(/; #I3) will match using the following
substitutions:
{hi—[1L,2L, L 0,— [}
{li—= (1, L [2],53— 0}
{li— (1L, Lh+— 0, [2]}
{hi—> [0, [1,2),5— [0}
{h= 0. 1], [2]}
{he Db 0. [1,2]}

which arise by manipulating the value/pattern in various ways using the two
equivalences. This is a special case of unification modulo the theory A1 as described

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

334 A. N. Clark

in Baader and Siekmann (1994), where A represents associativity and 1 represents
an identity element.

The examples in this paper will use the equational algebras for lists and sets. A
set of values is constructed from the empty set @, a singleton set {v} and set union
s1 U sy. The equations define that § is the left and right identity of U and that U is
both associative and commutative:

PUs=s=sUD
St Usy =5Us;
S1U(s2Us3)=(s1Usz)Us3

Matching set patterns is a special case of unification modulo the theory AC1 where A
represents associativity, C represents commutativity and 1 is an identity element. As
described in Baader and Siekmann (1994), AC1-unification is generally considered
non-trivial due to the rapid growth in complexity when computing unifiers. The
problem is greatly reduced by addressing the simpler problem of AC1-matching.

For convenience, the folowing notational sugar is defined to construct sets of
arbitrary size:

{vi,02,... o0} = {01} U {02} U:.. U {vn}

The infix operator — is used for set difference, the predicate issingletonset is true of
any set of the form {v}, the operator element is defined by element({v} U _) = v, the
operator pow is applied to a function f and a set s and produces a set, pow(f)(s),
which is constructed by applying f to each element of the power set of s and the
operator map is applied to a function f and a set s and produces a set, map(f)(s),
which is the result of applying f to each element of s: Notice that these extend the
operators described in Goguen (1976) to be higher order.

3.1.2 Rules
A rule r is a pair of patterns and a boolean expression:
p1 = p; when ¢ where vars(p,) = vars(p;) and vars(e) < vars(p))

The rule describes an atomic transformation for a collection of data values. Each
value which matches p; will give rise to a substitution for the identifiers in p;. p;
describes a new data value, given a substitution for its identifiers which must be a
subset of those for p;. A value v which matches p; is transformed to a value defined
by p» and the substitution providing that the boolean expression e holds for v. The
following are examples of rules (the boolean expression is omitted when it is the
constant true):

_Hl=1

L #1014 b = L#1

{x}Us=s when x> ¢s

{Sl} Usy = s; when 51 =35
The first rule transforms a list by arbitrarily discarding a prefix; the second rule
deletes an occurrence of 10 from a list and changes the order of the prefix and suffix

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 335

of the deleted element; the third rule deletes a number x from a set when the set
does not contain the square of the number; finally, the fourth rule produces a set
element s; when this contains all elements of the set s;.

The meaning of a rule is given as the set of all pairs (vy,v;) such that »; matches
p1 and satisfies e and v, is the corresponding value which is constructed by p;. A
rule is mapped to its meaning by the operator R which is defined below:

Rllp1 = p» when e]] = {(v1,12) | v1,02 € V AB(p1) =01 AB(p2) = v2 Ae(v1)}
Rules are collected into sets whose meaning is given by the operator RS:

RS(®) =0
RS({r}) = R(r)

RS(S; U S2) = RS(S1) U RS(S)

A chain ¢ is a sequence of values which is produced by repeatedly applying a rule
set to a value. We are interested 1n all the possible chains which a given rule set can
produce. This is generated as the set of chain sets which are indexed by the initial
values in the chains. Given a set of value pairs S and a value v then C(S,v) will be
the set of all chains which have the initial value v:

C(S,v) = {[v]#c | (v,v') €S AceCS,V)}U{p]}

Finally, the meaning of a rule set R is the indexed set of chain sets given by M(R)
(which is essentially the same as —* in conventional rewriting theory (Jounanaud
and Dershowitz, 1990)):

M(R) = {C(RS(R),v) | v € V}

Given an initial state, a rule set is to be viewed as producing a single chain
of transitions non-deterministically selected from the indexed set of chain sets
produced by M. Not all of the chains are likely to be acceptable; for example, some
do not terminate with a required state and some may be too long. A constraint
will generally be specified along with the rule set which dictates which subset of all
possible chains are acceptable; the rule set is viewed as producing a chain which is
non-deterministically selected from this subset.

3.2 Refinement

The development process from software specification to implementation is generally
referred to as refinement (Morgan, 1990). The particular formalisms which are used
to represent software descriptions and to transform them will differ from application
to application, but in general refinement is defined to preserve or achieve various
properties at each step in the development process. Morgan (1990) describes a
refinement system which is based upon viewing a software system in terms of
preconditions on its inputs and postconditions on its outputs, both of which are
described using predicate calculus. A refinement step is a modification to the system

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

336 A. N. Clark

description which weakens the preconditions and strengthens the postconditions.
Such a view of software is very general and abstracts away from the computational
mechanisms which are used to compute the specified relations. This paper can afford
to take a more restricted view of software since the computational mechanism is
known in advance, i.e. rule transitions. The problem which refinement addresses
here is not the search for an implementation mechanism, but the control of the
given implementation mechanism. A specification is viewed as a description of a
non-deterministic system without any regard for the efficiency of the calculations
which it performs. Refinement is viewed as the process by which a specification
is incrementally modified in order to increase the efficiency of the calculations by
reducing the number of steps which are taken and reducing the amount of choice
available at each step. The refinement which is described in this paper is performed
by a human. It is hoped that this work will form the basis of research into machine
assisted refinement.

3.2.1 The relation ~

A rule set R; may be transformed into a rule set Ry by adding, deleting or modifying
rules. The transformation preserves the meaning of R; when both rule sets denote
the same collection of chains, i.e. when M(R;) = M(R;). The transformation is a
refinement Ry ~» Ry when the collection of chains denoted by R, is consistent with
those denoted by R; in the following way: either the set of chains denoted by R;
is a subset of that denoted by R; or for each R, chain which differs, there exists a
corresponding R; chain which has been shortened to produce it, where a shortening
involves deleting an inner subchain. This is made more precise as follows.

The meaning of a rule set, M(R) is defined as a set of all the chains which can
possibly be performed when it is used to translate a ground term. The meaning may
also be viewed as a directed graph, (N, E, s, t), as follows:

t € Niff _4[(t,)] # - € M(R)V _#[(_,1)] # - € M(R)
s(e) = t) Atle) =t A _H-[(t1, 82)] # - € M(R) implies ¢ € E

e; € ENey € E Nt(ey) = s(e;) implies Je € E o 5(e) = s(ey) At(e) = t(ez)

where each ground term is defined as a node of the graph, each transition is an
edge and E is the smallest set satisfying the conditions. A graph also contains the
transitive closure of the edges between nodes, where e;; e, represents an edge from
s(ey) to t(ey;) when t(e;) = s(e;). Graph homomorphisms are used to transform one
graph into another. Given two graphs, G; = (N, E|,s1,t1) and G; = (N3, E;, 53, 12),
a graph homomorphism ¢ : Gy — G, is a pair of mappings: ¢, : Ny = N, and
¢. : E; — E; which obey the following law:

Ve, € E; o du(si(e1)) = sa(Peler)) A dulti(er)) = ta(Peler))

A refinement is defined to be a syntactic transformation on a rule set which is
constrained by the following relationship between the semantics of the rule set

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 337

before and after the transformation. Let R, and R, be rule sets, the transforma-
tion which is applied to R, in order to produce R; is a refinement, Ry ~ Ry,
when there exists a graph homomorphism ¢ such that ¢ : M(R2) — M(Ry), ie.
some possible values have been ‘forgotten’ (since they are not required); some
transitions have been ‘forgotten’ (since they do not compute a desired result or
they are duplicated elsewhere); the result of the modification is consistent (when
the result does something it agrees with the original rule set); and the number
of edges between nodes is reduced (computations between values are made more
efficient).

The following is a simple example of a graph transformation for which there
exists a homomorphism. The rule set R; gives rise to tree-shaped calculations with
the states 1,2,3,4,5,6,7 and transitions q, b, c,d, e, f. Completeness is defined so that
any modification must contain states 4 and 7. The rule set R; is a modification of
Ry which gives rise to states 1,2,4,5,6,7 and transitions a,b,d, e, g:

SN N
SN

3 4 5 7 4
the modification is a refinement because the following pair of mappings:

dn={1—1,2—2,4—4,5— 56— 6,7— T}

7

¢.={a— a,br> b,d— d,e— e,g— b;f}

is a homomorphism ¢ : M(R>) = M(R;) and the completeness criterion is satisfied.
The effect of the modification is to remove state 3, thereby reducing non-determinacy
at state 2. Non-determinacy at state 6 is also reduced, seemingly at the expense of
increasing non-determinacy at state 1 although on closer inspection this is not the
case since the new edge g expands to a pair b;f in M(R;). The length of the
calculation which reaches state 7 is reduced by introducing the new edge g.

The general condition for a modification m between two rule sets R; and R; being
a refinement R, ~» R; is represented by the following diagram:

M

R, G
m ¢
R, G,

where M is the semantic function for rule sets, G; and G, are the meanings of R,
and R, represented as graphs and ¢ is a graph homomorphism. The modification
must also shown to be complete with respect to the application specific completeness
criteria.

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

338 A. N. Clark

The definition of rule set refinement given above will allow the modifications to
increase the efficiency of the rule set whilst enforcing a degree of consistency between
the rule sets before and after modification. We are missing a corresponding definition
for the completeness of the refinement steps, i.e. a constraint which ensures that the
modifications do not produce a rule sets which is consistent and more efficient, but
which does not perform the required task. This involves the definition of a number
of terminal states for the transition system and some proof that the desired terminal
states are present after each modification. The completeness definition is less precise
than that for refinement since it is likely to differ from application to application.

The refinement relation ~» holds between sets of rules, however, to reduce the
amount of unnecessary notation the relation will be used to hold between single
rules and between single rules and sets of rules:r ~ R = {r} ~ R, R~ r = R~ {r}
and ry ~ ry = {r} ~ {r2}.

3.2.2 Example refinement transformations

To describe a transformation which is a refinement we will place a partial ordering
on patterns and prove that transformations which respect the pattern ordering
lead to refinements. The reflexive, transitive relation T between patterns is defined
to be the largest relation satisfying the following rules: for any identifier i and
composite pattern c(ps, ..., pn) the following holds c(p,. .., p.) E i; for any collection
of patterns p;y C py’...p, C p,' the following holds for any data constructor c,
c(p1s...,pn) E ¢(pt’,...,pn'). The rule set transformations shown in figure 1 all lead
to a refinement. Transformation R; splits a rule with no constraint into two rules

p1 = p; when e

R1p|=>p2'v>{ p1 = p; when —e

Ry p; = p> when e; ~s py = p, when e, if e(v) implies ¢;(v)
R3{rl,...,rj_l,rj,rj+1,...,r,,}«» {rl,...,rj_l,er,...,r,,}
Rypi = pa ~ p3 = ps providing that p; Cp; & ps C pa

p1 = p, when ¢

Rsp; = p» when ¢; | ez«»{ pi1 = p> when ¢,

Fig. 1. Refinement rules.

which have mutually disjoint constraints with the same antecedent and consequent
patterns. Any value which matched the antecedent pattern of the original rule will
satisfy the constraint on one or other of the refined rules. Transformation R, allows
the constraints on rules to be ‘tightened’. If a rule is transformed by changing the
constraint from the boolean expression e; to e, then e; must be true whenever e;
is for any value v, i.e. e;(v) implies e;(v). Transformation Rj allows any rule to be
deleted from a rule set. Note that this is only a refinement when the modification is

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 339

shown to be complete, i.e. to retain the desired outcomes. Transformation R, allows
the patterns in a rule to be replaced by corresponding patterns which match fewer
values, again providing that completeness is established. Transformation Rs allows
a single rule with a disjunctive condition to be replaced by two rules each of which
have different halves of the original condition.

The transformations R; — Rs are valid when they are shown to uphold the
refinement condition in section 3.2.1. In each case the validity is established using
the semantic functions R and RS and showing that the chain calculations which
are produced by the result of the modification are more efficient and exhibit less
non-determinism than those before the modification. The validity of each of the
refinement rules is proved in Appendix A as follows: R; is valid by theorem A.3,
R; is valid by lemma A.1, R; is valid by the definition of ~» and M, R4 is valid by
lemma A.2 and Rs is valid by theorem A.2.

The following is a simple example refinement of a single rule:

1 {XI#lus= {l}us

{[x] + 1 #-[20] -H-lz} Uus= {11 +[20] -H-lz} Us
2”{ (41 Us = {I}Us when 20 ¢ by Ri&Ry
3M{[X]-H-11-H-[20]-H-12}U53 {11%[20]'1'{'12}US by R3

4~ {[x] 1 #[20} # L} Us = {l; #[20) # L} Us when x €], # L, by R,

S~ {[x] 1 #[20] # L} Us = {I; #[20] #+ L} Us when x €, by R,

The rule 1 describes transformations on a set of lists. Given a set of lists, rule 1
will non-deterministically select one of the lists and produce a new set of lists in
which the head of the selected list has been discarded. It may be the case that this
rule is too general, for example when we want to select the head of only those
lists which contain 20. The first stage of the refinement shows rule 1 split into two
rules 2 which have mutually exclusive boolean expressions. The two rule sets can be
shown to denote the same chains. Next, the second rule at 2 is discarded because
for the purposes of our extra constraint it will never be required. This is a genuine
refinement because the set of chains denoted by 3 is a subset of those denoted by
2. Next, we restrict ourselves to selecting the head of just those lists which both
contain 20 and repeat the head of the list somewhere in the body, and this leads to
the refinement at 4. Finally, 5 shows the result of a further constraint which forces
the head of the list to occur before 20 in the tail.

At each stage in the refinement it is important to prove completeness. The com-
pleteness criteria will differ from application to application depending, for example,
on whether all of the correct calculations are to be preserved by each modification
or whether any one of them will do. Completeness for the example given above
could be defined as: it must be possible for all lists whose head is repeated before
20 to be transformed; or, it must be possible for at least one list whose head is

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

340 A. N. Clark

repeated before 20 to be transformed. Given the second definition of completeness,
it may be possible to tighten rule 5 further using knowledge about the structure of
lists in the set, e.g. ‘if candidate lists exist then there will be at least one candidate
whose last element is 20°, producing the refinement:

6 ~ {[x]4#!4[20]} Us= {I|#[20)}Us when x €]

which is complete given the criteria, but will not transform all candidate lists.

4 Implementation

Section 3 defines the syntax and semantics of rule based transition systems and uses
these to define the refinement relation ~». The semantics is denotational and does not
help in the execution of rule sets by a computational process. This section describes
an operational meaning for rule sets using a monad to capture the non-determinism
which occurs when values are matched against the antecedent patterns of the rules.
Section 4.1 gives a brief introduction to monads, section 4.2 defines the monad ND
which is used to implement pattern matching, section 4.3 defines a compiler which
compiles patterns to monad comprehension expressions and section 4.4 discusses the
issues which affect the efficiency of pattern matching. The programming language
which is used in this section is illustrative, its syntax reflects that of most modern
functional languages such as ML (Harper, 1986) and its semantics is call-by-value
(Plotkin, 1975) (reflecting its actual implementation in Common Lisp (Steele, 1990)).

4.1 Monads

The following is a very brief introduction to monads and is taken from Wadler (1990),
which describes monadic properties in greater detail and gives a large selection of
examples. Many functional languages provide a form of list comprehension analogous
to set comprehension. For example,

((x,p) | x« [1,2],y < [3,4]] = [(1,3),(1,4),(2,3),(2,4)]

In general a comprehension has the form [z | ¢q] where 1 is a term and ¢q is a
qualifier. A qualifier is either empty A; or a generator x «— u where x is a variable
and u is a list-valued term; or a composition of qualifiers (p, qg). Comprehensions are
translated into expressions which use the operators unit, map and join as defined by
the following rules:

1) [t] Al = unit(i)
2) | x—u = map(ix1)u
3 I el = join[li | q] | p]
Using a type operator M, the type of the three comprehension functions is as

follows:
map : (a — f) = (M(a) — M(B))
unit : o0 = M(a)
join : M(M(a)) - M(«)

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 341

when M = List then we get the list comprehension described above. In general a
monad is defined using a type constructor M and a triple of functions map™, unit™
and join™ which satisfy certain laws which are fully described in Wadler (1990).

4.2 The ND monad

A pattern /y 4 /; will match a value in a number of different ways. Each different
match corresponds to a choice point in the program. Given a list [, the following set
comprehension will produce a set of values:

[e | Iy pre(D(D),lr — sufiD)(D), 1 4 I = 1"
where e is an expression in terms of /; and ;. However, such a comprehension
will develop the search space depth first which may lead to problems if the wrong
alternative is selected. The ND monad is used to develop the search space breadth
first. A typical ND value is as follows:

o/.\o

s v » v N
U1 [%) U3 U4 Vs
where e represents a choice point in the program, v; represents a program value,
a full arrow represents a completed evaluation and a dotted arrow represents an
evaluation which has yet to occur. Each time an ND value is forced, all choice points
are developed by a single level thereby implementing a breadth first search.

The ND monad is implemented in terms of the three operations unit, map and join
whose behaviour with respect to typical ND values is shown in figure 2. The unit¥P
operator constructs a singleton ND value which immediately produces its result. The
mapNP operator maps a function f over the leaves of an ND value when they are
eventually produced. The join™” operator ‘flattens’ a nested ND value by grafting
the ND values found at the leaves onto the main structure of the parent ND value.
The ND monad is specified by

type ND(a) = Set(Delay) where data Delay = just(a) | delay(Unit — ND(x))
unitVP(x) = {just(x)}
map™P(f) = leaves(2x.{delay(X().{just(f (x))})})

join"P = leaves(I)

where the operator leaves will lazily map a function f over the leaves of a tree.
leaves is defined below and uses the operator \ which constructs set homomorphisms

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

342 A. N. Clark

unitND(v) = l

7N 7N
map? () .f e - -

: : PR » “
v vy v3 g Us fv) f(v2) f(vs) f(va) f(vs)

: /N
joinND / \ = . ‘ .

X y » \d » \ ‘a
[[25] U3 U4 Us
where
[
X = » £
Uy 2]
L)
y= » \ A
U3 U4 Us

Fig. 2. The ND monad operators.

\(@®)(f)(b) given a binary operator @, a unary operator f and a value b which is the
left and right identity of @.

leaves(f)(S) =
let rec g(x) =
case x of
Just(v) = f(v)
delay(h) = {delay(2().\(V)gd(h()))}
end
in \(U)g0s

Notice the use of Unit — ND(«) which is the type of a delayed expression, or ‘thunk’,
in a strict language such as Common Lisp. This is a trick used in strict functional
programming languages to delay the evaluation of an expression, for example if f(e)
is a function application expression then ordinarily e would be evaluated, f would
be evaluated and then the result of e would be supplied as the argument to the
result of f. Changing the expression to f(A().e) causes a function A().e to be supplied
as the argument to f; then f can choose whether or not to evaluate e. If f chooses

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 343

to evaluate e then it will do this by applying the supplied function to the unit
value ().

An ND value is a set whose elements are tagged either just or delayed. A value
which is tagged just requires no further calculation. An element which is tagged
delayed is an expression, delayed by turning it into a function of no arguments,
which will evaluate to produce an ND value. A search space is developed breadth
first by delaying each of the choices at every stage. A function forcefringe will
develop an ND value breadth first until at least one of the values is forced to
completion. The function forcefringe would be used by a program to continually
produce outcomes until the first acceptable one is found.

Jorcefringe(S) =
if any(isjust)(S)
then S
else forcefringe(forcefringeonce(S))
where forcefringeonce(S) =
let g(x) =
case x of
just(v) = {just(v)}
delay(h) = h()
end
in \(U)g0s

The predicate isjust is true of any value of the form just(v), the predicate any is
applied to a predicate p and a set S and is true when there is at least one element
of S which satisfies p.

4.3 Pattern compilation

A rule set is translated to a function which, when applied to an argument, will return
a set of outcomes resulting from the multiple matches between the argument and the
rule set patterns. The compiler C is used to translate a rule set to the corresponding
function; C is also used to translate A-functions whose formal parameter is a pattern.
The semantic brackets [[and] are used to delimit source code expressions; C is a
function which translates source code to source code:

C({{lp1 = p> when e[}) = [Ap; when e.p,]l

C(9) = K@)

C(Ry URy) = [Ax.(f(x)) U(g(x))]] where f = C(Ri) g =C(R,)

Cll’p when er.e;] = [[Ax.[ex | q1,...,qme)""] where [qi,...,q.] = P(p,x)

K is the combinator which is defined K(x)(y) = x. A function /p when e;.e; which
contains a pattern p as a formal parameter will be applied as usual to an argument
v but will produce more than one result since v may match p in more than one
way. The function is translated to have the following form: ix.[e | ql,qz,...,qn]N b
where the qualifiers qy,...,q, are the result of compiling the pattern p using the
pattern compiler P, P(p,x) = [p1,p3,...,pn}- The compiler P implements both A1-

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

344 A. N. Clark
and AC1-matching:

prefix = pre(just)
suffix = suff{just)
power = pow(just)
P(i,x) = [[i « unit"?(x)]]
P(k,x) = [[x = k]I]
P(llp1 4 p21l, x) = [[[i1 < prefix(x),
Iy « suffix(x),
(iy 4 i2) = x]) (P (p1, 1)) #(P(p2,i2))
P([[[p1], x) = [[issingletonlist(x)]] #(P (p, [hd(x)1]))
P([lp1 U pall, x) = [[l i1 « power(x),
iy « power(x),
(iy VU i2) = xT1 (P (p1,i1)) #(P(p2, i2))
P([I{p}1, x) = [[lissingletonset(x)]]] #-(P (p, [element(x)]))

The pattern compiler P is defined by case analysis on the first argument which is a
pattern. If the pattern is i, then the result will bind i to a value non-deterministically
selected from x. If the pattern is a constant k then, in order to proceed, the value
of x must be k. If the pattern is a concatenation of list patterns p; + p; then two
new identifiers are coined, i; is bound to a value non-deterministically selected from
the prefixes of x, and i, is bound to a value non-deterministically selected from the
suffixes of x, in order to proceed, the concatenation of the prefix and suffix must
be the original list x. This implements A 1-matching. If the pattern is a singleton list
[p] then x must also be a singleton list and p must match the contents of x. If the
pattern is a set union p; U p; then two new identifiers are coined, both of which are
bound to sets non-deterministically selected from the power set of x such that their
union is the original set x. This implements AC1-matching. Finally, if the pattern
is a singleton set, {p} then x must also be a singleton set and p must match the
contents of x. For example, compilation of the rule:

{[x]4 1 H[20] # 12} Us = {I; #[20] # L} Us when x €],
produces the following function:

i [{ly #[20) # L} Us | i « power(iy),s « power(iy),i» Us =iy,
issingletonset(iy), iy «— unit"P(element(iz)),
iy « prefix(iy),is < suffix(iy), is #is = iy,
issingletonlist(is),

l; « prefix(is), is < suffix(is), || 4 is = is,

iy < prefix(ig), ly « suffix(is), i7 4 2 = is,
issingletonlist(i7), 20 = hd(i7)]"?

4.4 Efficiency issues

As it stands, the pattern compiler P produces code which is very inefficient. P
may be made significantly more efficient by anticipating certain types of patterns
which will occur. For example, looking ahead with respect to the pattern [p;] # p2

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 345

reveals that there is no point in generating prefixes which are not singleton lists.
Furthermore, there 1s only one singleton list prefix which can possibly match p; and
that is the head of the list. The following is an example of how P can be modified
to be more efficient:

P([[[p1] 4 p21l, x) = [[iy « {just(hd(x))},
iy« {just(tl(x))}1] #(P(p1,i1)) #(P(p2, i2))

A similar example occurs when single elements are extracted from sets

P([{p1} U p21l, x) = [[li1 < map(just)(x),
i — unit™? (x — {iy DI 4(P (py, ir)) #(P(p2, i2))

If the pattern compiler can proceed further and identify that the pattern p, is a
constant then the following code can be produced

P([{k} U pll,x) = [k € xTT (P (p, [x — {k}]))

In general the further P looks ahead to anticipate unnecessary work, the more
efficient the resulting code will be.

5 An example refinement

Section 3.1 describes the semantics of rule sets and defines the refinement relation
~» between rule sets. Section 4 describes how the rule sets are implemented using
a monad which deals with the non-determinism. This section gives an example rule
set refinement, starting with a very simple rule set which serves as a specification
and producing a more complex rule set which serves as a prototype implementation.

The example scenario is the Blocks World (Nilsson, 1980) which consists of stacks
of blocks arranged on a flat surface. The goal is to place one of the blocks onto
another block using simple steps which involve moving a single block from one
stack to another. The Blocks World is modelled as a set of lists of integers where
the goal is always to place block 1 onto block 2. A single transition initially involves
removing the head of one of the lists and ‘pushing’ it onto the head of another
list. The description will always contain a single occurrence of the empty list which
represents the flat surface.

For example an initial state is {[3,1,4],[5,2,6]} and one possible goal state which
can be reached is {[1,2,6], [4],[3,5]} where the individual steps were: move 5 onto
the flat surface, move 3 onto 5 and finally move 1 onto 2. Obviously most starting
states give rise to many different goal states and there are multiple ways of reaching
each single goal state from the same starting state.

Figure 3 shows the refinement of the Blocks World rule set. The remainder of this
section describes each step in the refinement in detail. Completeness for the Blocks
World is that the rule set must always generate chain of transitions from any given
starting state to a goal state which is no longer than any other possible chain.

Rule set B; shows the starting point for the refinement. The single rule describes
the transition which will non-deterministically select two stacks of blocks and move
the head of one block to the head of the other. By repeatedly applying this rule

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

346 A. N. Clark

B, {[b]+[1}U{12}US=>{Il}U{[b]"H’lz}US

({4 L}u{hbius= {L}U{b]H#L}Us

when ((b = 1) &(hd(L) = 2)) |
((Melh) | 2eh)) &
(1¢1)&2¢h)

{[b] 'H'll} U {lz} uUs= {11} U {[b] 'H'lz} Us
((b= 1) &(hd(l) =2)) |)
whennot| (1€l | 2€l)) &
. (1 € h)&(2 ¢ 1))
By~ {[b] 4L u{hb}us= {h}U{[b)H# L} Us
when ((b = 1) &(hd(l;) =2)) |
(teh) | 2eh) &
(1 ¢ L)&2¢h)

({4 L} U{2)# b} Us= {L}U{[1.2] L} Us

Bz’\d<

B4M {[b]—H—ll}U{Iz}Us=>{II}U{[b]-H-Ig}Us
when ((lel) | 2€l)) &
. ((1¢h)&(2¢ b))
({N#+L {21+ hius= {li}U{[L, 2]+ L} Us

{[b] 4 L #{1] ‘H'-lz} U {13} Us = {11 4#[1] -H'lz} U {[b] 'H'l:;} us
Bs~» ¢ when 2 ¢ [;

{14 5L #2]#+Lyu{bus={L #+2]# L}u{pl4+L}uUs
\ when 1 ¢ 15

({[#+hu{RH#+hius={}U{[},2]#L}Us

{(6) 4 1 (1] # L}V {k}us = {114 L} U {res(l)) 4 [b] 4 I} Us
Bg~ when 2 ¢

{[b] 41 #[2] 'H'lz} U {13} Us = {[2] -H-Iz} U {rev(ll)-ﬁ-[b] 'H'13} Us
\ when 1¢1

Fig. 3. The refinement of the Blocks World rule set.

to a given state, all possible sequences of actions have been described. If this rule
is applied blindly (or stupidly?) then many undesirable actions will be made. For
example, there is nothing to stop a system which employs this rule from getting into
a loop by repeatedly swapping a block from the top of one stack to another and
then back again.

T Knowledge Based System specifications which are complete with respect to the possible
outcomes and use no cleverness to prune the search space, lead to the pun ‘Stupidity Based
Systems’.

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 347

512 T 1 Y T

256

128

A

W
[

Number of rule transitions
o

It i 1

1 2 3 4 5 6
Rule sets

Fig. 4. Increase in efficiency due to refinement.

Rule set B, is refined to produce rule set B,. The first rule deals with the transitions
which place block 1 onto block 2, clear block 1 and clear block 2. The second rule
deals with all other transitions. Verification follows from the proof of validity for
refinement rule R;.

Rule set B, is refined to produce rule set B3. The refinement step drops the second
rule from rule set B,. Verification must show that the intended goal chains are still
present in the denotation of the rule and that the rule has not introduced any new
chains. Verification follows from the validity of refinement rule R; and theorem A.4.

Rule set Bj is refined to produce rule set By. The refinement step separates out
the disjunction from rule set B; to produce two distinct rules. Verification follows
from the validity of refinement rules Ry and R;.

Rule set By is refined to produce rule set Bs. The refinement step separates out
the disjunction and absorbs the conditions 1 € I; and 2 € /| into the patterns for the
respective new rules. Verification follows from the validity of the refinement rules
Ry and R5.

Finally rule set Bs is refined to produce rule set Bg. The refinement step absorbs
repeated application of the same rules by performing the sequence of transitions in
one single jump. Verification follows from the proof of theorem A.S.

Figure 4 shows the result of executing the Blocks World scenario with the different
rule sets and starting states of varying complexity. A cut off point was imposed at
350 transitions so the rule sets B; — Bs did not reach a goal state for starting state

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

348 A. N. Clark

6. The starting states are as follows:

(1 {01 [21}

2 {311,421}

(3) {013,121, 31}

@ {[3.1], 4,215, 6]}

() {3.4,11,[5,6,21,(7,8,9]}

6) {[3.4,5,6,7,8,1,9,10], [11,12,13,14,15,2,16,17],
[18,19,20], [21,22,23], [24,25,26]}

The graph shows that the number of transitions required to find a solution grows
dramatically for the unsophisticated rule sets as the complexity of the starting states
increases. The starting states 1 and 3 perform very well with all the rule sets because
they are both very close to a solution. The identification of the conditions under
which a block should be moved which is represented by the refinement B; ~ B;
dramatically reduces the number of transitions required for starting states 1,2,3
and 4. On the whole, rule set B; performs very badly as expected, but represents
a conveniently succinct specification of the Blocks World scenario. Rule set Bg
performs well, is fairly useless as a specification but is shown to be a valid refinement
of Bl.

In general, the initial system description is intended to be clear and concise
but is allowed to be inefficient. The development process applies formally justified
transformations with the aim of increasing efficiency by throwing away unwanted
paths in the calculation. The level of inefficiency present in the initial implementation
and the required level of efficiency in the final implementation will depend upon
the application and the knowledge of the application domain which is used to drive
the transformations. The proposed approach to development does not guarantee
that an acceptable implementation can be produced, however it does provide a
formal basis for analysing the initial (executable) specification with respect to the
required reduction in non-determinism and thereby assessing the risk associated
with development. For example, the initial Blocks World rule set could be analysed
in order to determine how many steps there are to an outcome in the best and
worst cases, where a step is defined as the comparison of two atomic data items,
the selection of an immediate sub-term from a composite term, the construction of
a term from its sub-terms, etc. These steps can be translated into resource usage
with respect to a particular programming language. A given refinement rule can
be assigned a resource gain determined by the number of steps which it removes
from a given rule set. A specification could include the initial efficiency measure
and the desired efficiency goal and risk analysis would estimate the feasibility of the
refinement. This is an area for future work which would contribute to the area of
quality control for KBS development.

6 Conclusion
The aims of this work were defined as proposing methods which contribute to

the overall quality of KBS development. This has been achieved by meeting the

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 349

following objectives. A syntax and semantics for rule sets has been defined which
allows programs involving search to be expressed. Development has been formally
defined as a refinement relation in terms of syntactic transformations which preserve
semantic properties. The semantics of the rule sets is denotational since it describes
an indexed set of rule chains but does not define how the chains are computed.
Monad comprehensions have been used to give an operational semantics to the rule
sets which describes how the pattern matching and non-determinism is performed.
An example refinement has been presented, the transformations proved correct and
shown to increase the efficiency of the solution. This work is novel since it proposes
very expressive mechanisms from term rewriting theory as a basis for KBS software
and focusses on a formal definition of the KBS development process. The aims have
been met since a formal definition of software development allows quality control
procedures to be precisely defined and executed.

The performance of the implementation using monads in Common Lisp is fairly
slow. This is partly due to the simplicity of the implementation which does not
attempt to optimise the code produced by pattern compilation. It is likely that a
refinement process would provide a prototype which would be used as a design fora
hand coded implementation. The implementation mechanism which is described in
§4 uses the trick of hiding an expression behind A(). in order to delay its evaluation in
a language which eagerly evaluates expressions. Such a trick would not be necessary
in a lazy language such as Haskell (Hudak et al., 1992) where evaluation is performed
only when necessary in order to compute an output.

This work is closely related to the area of rewrite systems which involves a collec-
tion of directed rules which are successively applied to terms in order to transform
them into a normal form. A introduction to rewrite systems and a survey of the
available literature is found in Jounanaud and Dershowitz (1990). In particular,
the system described in this paper is related to conditional ground rewrite systems
which involve matching rather than general unification and allow guards on the
rewrite rules. The system is also intimately related to rewrite systems which incor-
portate equations into the rewriting machinery, such as the R/S systems described
in Jounanaud and Dershowitz (1990), where the equations define associativity, com-
mutativity and identity. The following are important differences between rewrite
systems and the mechanism described in this paper:

e Rewrite systems are primarily concerned with transforming terms into a normal
form from which there are no applicable rewrites. In general, this is not true of
the rules which are used in Knowledge Based Systems, for example the Blocks
World rules need not terminate when the goal state is achieved.

e Rewrite systems are often concerned with proving termination. We have not
addressed this issue with respect to proving that goal states are reachable. The
issue of specifying Knowledge Based Systems and proving that the implemen-
tation in terms of a transition system will reach a goal in a finite number of
moves is an area for further work.

e Rewrite systems use the full power of unification to perform transformations.
The transition system for the Blocks World requires only simple matching

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

350 A. N. Clark

Another area for future work is to generalise the mechanisms given in this
paper to allow multiple occrrences of the same variable in an antecedent
pattern and to investigate the requirements for unification.

Embedding equations into a matching framework is also closely related to E-
unification (Baader and Siekmann, 1994), where unification is extended to include
equations defining, for example, associativity, commutativity and identity. As de-
scribed above, the application area addressed by this paper does not require unifi-
cation, but it is an area for further work to investigate the requirements of more
sophisticated applications.

This work is broadly related to the area of program transformation, where Partsch
(1983) and Lugqi (1993) cover the general issues and Bird (1987) and Burstall and
Darlington (1977) are more in the spirit of the transformations described here. We
have viewed the specification of rule based transition systems as computational
processes from the start, whereas Morgan (1990) gives a different perspective of
specification and refinement.

The pattern compilation which is described in this paper is a novel technique;
see Peyton Jones (1987) for a more conventional approach to the compilation of
patterns which match deterministically.

Nilsson (1980) and Charniak et al. (1987) describe various search related ap-
plications for computer programs, in particular Charniak et al. (1987) describe the
connection between search problems and non-deterministic computational processes.
This paper describes a simple method of adding non-determinism to a functional
program using monad comprehensions, see Sondegaard (1992) for a discussion of
the issues involved in non-deterministic functional programs and Clark (1994) for
an operational description of a system with builtin non-determinism.

There is very little reported work describing the formal development of systems
which involve rules, see Roman et al. (1993) and Krause et al. (1993) for further
discussion. Major et al. (1991) describe techniques which make programs involving
search more efficient, it would be very interesting to see if refinement as described
in this paper could be applied to these techniques.

In general, systems which provide support for the development of KBS software
employ complex control strategies and provide expressive rule languages which
include packaging rules into modules and meta-rule facilities. The system which is
described in this paper is very simple and does not provide such facilities, however
the simplicity has allowed the system to be given a formal semantics and even
without sophisticated features the rule language is capable of expressing a large
class of interesting systems as characterised by the Blocks World example. Using the
technology developed in this paper as a basis, the following extensions will provide
facilities which are found in conventional KBS development systems: extending the
pattern matching to allow repeated variables or unification which will allow much
more expressive rule sets; providing a mechanism for formal conflict resolution
which controls the non-deterministic behaviour of the rule sets; allowing rules to be
grouped into modules and defining a collection of operators to modify and combine

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 351

rule modules; allowing the overall control strategy of the rule systems to be formally
defined (possibly as another (meta-)rule system).

Further work is required to investigate the possibilities of clever pattern compila-
tion for a general class of equational algebras. This paper has described a refinement
technique which is entirely performed and checked by a human. It is possible that
part of the process can be checked or even performed by a computer program. A
number of rule set transformations have been identified, a tool could be developed
which suggests likely refinement rules to apply at any given stage and applies them
under the direction of the operator. Although the operational description of rule
sets has not been proved correct with respect to the denotational description, the
implementation which lead to the results in figure 4 gives confidence in its validity.

The example rule set which has been refined is very simple. Further work is
required to investigate how generally applicable this technique is to systems which
are termed ‘Knowledge Based’ and ‘Expert’.

Acknowledgements

This work was carried out as part of the current collaborative EUCLID RTP 6.3
project MOSES (Military Operational Software for Expert Systems) which is aimed
at providing a basis for improved military information systems by the application of
knowledge engineering methods, standards and tools. The author wishes to thank
the three anonymous referees and Professor Simon Peyton Jones for their helpful
comments.

A Proofs of theorems
Define the set of all values which can match patterns as follows:
V ={cvt,...,v5) | vi € V,c € C,arity(c) =n,n = 0}
where C is a set of data constructors.

Lemma A.1
(Vo € V e e3(v) implies e;(v)) implies R(p; = p» when e¢;)
S R(p; = p> when e))

Proof: Let (v(,v3) € R(p; = p; when e)
then e;(v;) due to the definition of R
then e;(v;) since e; implies e;
$0 (v1,v2) € R(py = p> when ¢))
Lemma A.2
p1 C p3 & p2 C ps implies R(p; = p2) = R(p3 = pa4)
Proof: Since pattern matching is not unification we can disregard the identifiers so
long as vars(p2) < vars(py) and vars(ps) < vars(ps). Define G as follows:
GiH)=V
G(c(p1,.--,pn) = {c(v1,...,00) | v € G(P1)A...ANvy € G(pp)}

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

352 A. N. Clark

Now show by induction that p; = p, implies G(p;) < G(p2)

(1) cp1,.--,pn) Ei
G(c(p1s ..., pn)) = {c(v1,...,00) | vi € G(pi)}
G(i) = {c(v1,...,0n) | IEVIUV
by definition G(p) sV

(2) c(pi,.-.,pn) E c(q1;-..,9,) when p; Cg;
G(c(p1s ..., pn)) = {c(vr,...,0) | vi € G(pi)}
G(c(q15---qn)) = {c(v1,...,v) | vi € G(g1)}
by induction p; C g; implies G(p;) € G(qi)

Theorem A.l

c
p;;Z_Ep;:& < R(p; = ps when e)

Proof: This follows from lemmas A.1 and A.2.

Theorem A.2
R(p; => p2 when e; | e;) = R(p; = p, when e;) UR(p1 = p, when e;)
Proof:
R(p1 = p when ¢, | &)
= {(v1,02) | B(p1) =01 AO(p2) =v2A(e1 | e2)(v1)}
= {(v1,02) | B(p1) =01 AO(p2) =v2 A(e1(v1)) | (e2(v1))}
= {(v1,v2) | 8(p1) =v1 AO(p2) =2 Aey()}U
{(w1,v2) | O8(p1) = v1 AB(p2) = 13 ANea(v1)}
= R(p; = p> when ¢;)U R(p, = p; when &)
Theorem A.3

R(py = p2) = R(p; = p, when e)UR(p) = p, when —e)
Proof: This follows from lemma A.1 and theorem A.2.
Theorem A.4

For any chain which is constructed using the second transition of B, there will be a
chain which does not use this transition and which is shorter.

Proof: The discarded transition has a condition which prevents either 1 being moved
onto 2 when this is possible or reducing the number of blocks covering 1 and 2. It
is easily shown by induction on the length of the chains that for any chain using the
second transition there will be a chain which simply omits that usage.

Theorem A.5

For any chain which is produced using Bs there will be an equivalent chain produced
using B¢ which is shorter.

Proof: In shortening the transition chains, the omitted transitions are exactly those
which are performed by the shortest chains, so removing them has the effect of
shortening the shortest chains further.

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

Formal refinement of transition systems 353

References

Baader, F. and Siekmann, J. (1994) Unification theory. In Handbook of Logic in Artificial
Intelligence and Logic Programming, ed. M. Gabbay Dov, C. J. Hogger and J. A. Robinson.
Oxford University Press.

Beynon-Davies, P. (1993) Knowledge Engineering for Information Systems. McGraw-Hill

Bird, R. S. (1987) A Calculus of Functions for Program Derivation. Oxford University Pro-
gramming Research Group Monograph.

Brownston, L., Farrell, R., Kant, E. and Martin, N. (1985) Programming Expert Systems in
OPS5: An introduction to Rule-Based Programming. Addison-Wesley.

Burstall, R. M. and Darlington, J. (1977) A Transformation System for Developing Recursive
Programs. J. ACM 24 (1).

Charniak, E. et al. (1987) Artificial Intelligence Programming. Lawrence Erlbaum.

Clark, A. N. (1994) Pattern recognition of noisy sequences of behavioural events using
functional combinators. Computer Journal, 37(5).

Clocksin, W. F. and Mellish, C. S. (1984) Programming in Prolog. 2nd ed. Springer-Verlag.

Culbert, C, Riley, G. and Savely, R. T. (1987) Approaches to the verification of rule-based
expert systems. In Ist Annual Workshop on Space Operations Automation and Robotics
(SOAR 87), NASA Conf. Pub. 2491.

Goguen, J. A, Thatcher, J. W. and Wagner, E. G. (1976) An initial algebra approach to the
specification, correctness and implementation of abstract data types. in Current Trends in
Programming Methodology IV, Yeh, R. (ed.). Prentice Hall.

Harper, R., MacQueen, D. and Milner, R. (1986) Standard ML. Laboratory for Foundations
of Computer Science Report Series ECS-LFCS-86-2.

Hudak, P. et al. (1992) The Haskell Report. ACM SIGPLAN Notices, 27(5).

Jounanaud, J-P. and Dershowitz, N. (1990) Rewrite systems. In Handbook of Theoretical
Computer Science, J. Van Leeuwen (ed.). Elsevier.

Krause, P. er al. (1993) Can we formally specify a medical decision support system? IEEE
Expert, June.

Lucas, P. and Van Der Gaag, L. (1991) Principles of Expert Systems. Addison-Wesley.

Luger, G. F. and Stubblefield, W. A. (1989) Artificial Intelligence and the Design of Expert
Systems. Benjamin Cummings.

Lugqi, V. B. and Yehudai, A. (1993) Using Transformations in Specification-Based Prototyping.
IEEE Trans. on Software Engineering, 19(5).

Lopez, B., Meseguer, P. and Plaza, E. (1990) Knowledge based systems validation: a state of
the art. Al Communications, 3(2).

Major, F.,, Lapalme, G. and Cedergren, R. (1991) Domain generating functions for solving
constraint satisfaction problems. Journal of Functional Programming, 1(2).

Morgan, C. (1990) Programming from Specifications. Prentice Hall.
Nilsson, N. J. (1980) Principles of Artificial Intelligence. Springer-Verlag.

O’Keefe, R. M., Balci, O. and Smith, E. P. (1987) Validating expert system performance. IEEE
Expert, Winter.

Partsch, H. and Steinbruggen, R. (1983) Program transformation systems ACM Computing
Surveys, 15(3).

Peyton Jones, S. (1987) The Implementation of Functional Programming Languages. Prentice
Hall.

Plotkin, G. D. (1975) Call-by-name, Call-by-value and the A-calculus. Theoretical Computer
Science, 1.

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

354 A. N. Clark

Roman, G., Gamble, R. F. and Ball, W. E. (1993) Formal derivation of rule-based programs.
1EEE Trans. Software Engineering, 19(3).

Rushby, J. (1988) Quality Measures and Assurance for Al Software. NASA Contractor Report
CR-4187.

Sondergaard, H. and Setsoft, P. (1992) Non-determinism in functional Languages. The Com-
puter Journal, 35(5).

Steele, G. (1990) Common Lisp, the Language. Digital Press.

Wadler, P. (1990) Comprehending monads. In Proc. 19th Symp. on Lisp and Functional Pro-
gramming, Nice, France. ACM.

https://doi.org/10.1017/50956796800001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001702

