
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1–34, 2024

DOI:10.1017/prm.2024.125

The admissible KMS bundles on classifiable
C∗-algebras

Robert Neagu
Department of mathematics, KU Leuven, Celestijnenlaan 200B, 3001
Leuven, Belgium (robert.neagu@kuleuven.be)

(Received 9 February 2024; revised 19 October 2024; accepted 21 October 2024)

Given any unital, finite, classifiable C∗-algebra A with real rank zero and any
compact simplex bundle with the fibre at zero being homeomorphic to the space of
tracial states on A, we show that there exists a flow on A realizing this simplex.
Moreover, we show that given any unital UCT Kirchberg algebra A and any proper
simplex bundle with empty fibre at zero, there exists a flow on A realizing this
simplex.
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1. Introduction

The studyof group actions is ubiquitous within the subject of operator algebras,
often providing deep structural properties. While classifying actions of discrete
groups proved to be an indispensable tool for understanding the structure and
symmetries of operator algebras, certain applications to geometry or physics are
usually related to time evolutions, or continuous actions of R. In the setting of
von Neumann algebras, such actions appeared most prominently in the form of
modular automorphism groups through the theory of Tomita and Takesaki [51].
One convenient feature of the Tomita-Takesaki theory is that one can check if a
certain flow is a modular flow by verifying the so-called KMS condition. Precisely,
a faithful normal state ϕ on a von Neumann algebra satisfies the KMS conditions
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2 R. Neagu

for a flow if and only if the given flow is the modular flow induced by ϕ. Therefore,
investigating the set of corresponding KMS states sheds light on questions regarding
structure and classification of continuous actions of R on von Neumann algebras.

On the C∗-algebraic side, named after mathematical physicists Kubo, Martin,
and Schwinger, KMS states are a special class of states on any C∗-algebra admitting
a continuous action of R. However, the collection of KMS states for a given flow
on a C∗-algebra can be quite intricate. Indeed, given a flow on a unital separable
C∗-algebra, the collection of KMS states corresponding to that flow, also called
the KMS bundle of the flow, has the structure of a proper simplex bundle (see for
example [27, §2.1]).

The quest of constructing flows inducing a given KMS simplex has its roots
in work of Bratteli, Elliott, Herman, and Kishimoto in [7–9], where flows were
constructed on certain classes of simple C∗-algebras. More recently, extensive work
has been done to examine possible KMS bundles on various special classes of C∗-
algebras (see for example [1, 3, 6, 15–17, 53]). Moreover, in [27, 54] Elliott and
Thomsen built flows on simple AF-algebras with prescribed KMS behaviour. These
results were then extended by Elliott, Sato, and Thomsen in [25, 26] to any unital
classifiable C∗-algebra with a unique trace, as well as any unital UCT Kirchberg
algebra with no torsion in the K 1-group.

Using the new abstract classification of morphisms from [13], we will prove a sim-
ilar result for any unital tracial classifiable C∗-algebra with real rank zero. However,
as in [26, theorem 3.14], the assumption that the KMS bundle is compact is still
needed in the case of tracial C∗-algebras. In [25], this assumption was removed in
the case when the given classifiable C∗-algebra has a unique trace. Moreover, with-
out any restrictions on the given KMS bundle, we will remove the assumption of
no torsion in the K 1-group from [26, theorem 5.1] to obtain the definitive result for
unital UCT Kirchberg algebras. The main results of this paper are the following.

Theorem A Let A be a unital UCT Kirchberg algebra and let (S, π) be a proper
simplex bundle such that π−1(0) = ∅. Then there exists a 2π-periodic flow θ on A
such that its induced KMS bundle (Sθ, πθ) is isomorphic to (S, π).

Theorem B Let A be a unital, stably finite, classifiable C∗-algebra with real rank
zero and let (S, π) be a compact simplex bundle such that π−1(0) is affinely homeo-
morphic to T(A). Then there exists a 2π-periodic flow θ on A such that its induced
KMS bundle (Sθ, πθ) is isomorphic to (S, π).

The proof of theorem A follows the skeleton provided by [26, theorem 5.1].
Essentially, given a unital UCT Kirchberg algebra A and a suitable simplex bundle
(S, π), one can build a pair of abelian groups containing both information from the
K -theory of A as well as the bundle (S, π). Then, using the classification results in
[21], we can obtain a stable AT-algebra of real rank zero B realizing the constructed
pair of abelian groups. Then, A can be identified with a full corner of a crossed
product of B by Z. It is precisely the fact that B is an AT-algebra rather than an
AF-algebra (see [26, theorem 5.1]) that allows us to remove the assumption that A
has no torsion in K 1.

The proof of theorem B uses a similar strategy. Given a unital classifiable C∗-
algebra A with real rank zero, we realize it as a full corner of a crossed product of a
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The admissible KMS bundles on classifiable C∗-algebras 3

stabilized unital classifiable C∗-algebra B⊗K by Z. A key ingredient in obtaining an
appropriate automorphism of B⊗K is the classification of unital ∗-homomorphisms
from [13]. Moreover, compared to [26, theorem 3.14], where the corresponding result
was proved for the Jiang-Su algebra Z, extra care has to be taken in checking that
A and the corner of the crossed product built above have the same pairing between
K -theory and traces. The assumption that A has real rank zero is instrumental
in constructing an Elliott invariant of a classifiable C∗-algebra B. Precisely, one
can build an ordered abelian group G and then realize the trace space of B as
the space of states on G. However, to make sure that the state space on G is a
metrisable Choquet simplex, the fact that A has real rank zero is heavily used. The
assumption that the space S is compact in theorem B seems to be more difficult
to remove. In particular, it ensures that the constructed ordered abelian group is
simple, and hence the C∗-algebra B is simple. Then, one can use a classification of
automorphisms of B⊗K to obtain a suitable automorphism γ. Note that a definitive
classification theorem for automorphisms of general nonsimple Z-stable C∗-algebras
is currently out of reach, so the compactness assumption appears necessary at this
point.

This paper is organized as follows. In §2 we collect some definitions regarding
KMS states and classification invariants. Then, §3 is concerned with the proof of
theorem A, while §4 will focus on the proof of theorem B.

2. Preliminaries

2.1 KMS states

In this subsection, we record some facts about KMS states. We refer the reader to
[55] for a detailed account of the topic.

A flow θ on a C∗-algebra A is a continuous one-parameter group of automor-
phisms (θt)t∈R.

Definition 2.1. Let A be a C∗-algebra, θ be a flow on A, and β ∈ R. Then, ω is
said to be a β-KMS weight for θ on A if ω is a weight on A such that

ω ◦ θt = ω for all t ∈ R

and

ω(a∗a) = ω

(
θ
− iβ

2
(a)θ

− iβ
2
(a)∗

)
, a ∈ A analytic.1

If, in addition, ω has norm 1, then it is called a β-KMS state for θ on A.

Remark 2.2. Note that a 0-KMS weight for θ is a θ-invariant trace. Moreover, a
0-KMS state for θ is a θ-invariant tracial state.

If A is a separable unital C∗-algebra and θ is a flow on A, we consider the
collection of KMS states for θ on A. Following the notation in [26, §2], for each

1An element a ∈ A is analytic for θ if the map t ∈ R 7→ θt(a) ∈ A extends to an entire analytic
map C → A.
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4 R. Neagu

β ∈ R, let Sθ
β denote the set of β-KMS states for θ. If we denote the set of states

on A by S (A), let

Sθ =
{
(ω, β) ∈ S(A)× R : ω ∈ Sθ

β

}
,

and equip it with the relative topology from S(A) × R. In particular, since A is
separable, the topology on S θ is metrisable. Let πθ : Sθ → R be the projection
onto the second coordinate. Then, the pair (Sθ, πθ) will be called the {KMS bundle
of θ. This was characterized abstractly in [26] as we review below.

Fix a second countable locally compact Hausdorff space S and let π be a contin-
uous map from S to R. The pair (S, π) is said to be a simplex bundle if the inverse
image π−1(t) is a compact metrisable Choquet simplex in the relative topology from
S for any t ∈ R. For such pairs (S, π), we denote by A(S, π) the set of continuous
functions f from S to R such that the restriction f |π−1(t) of f to π−1(t) is affine
for any t ∈ R.

Definition 2.3. [26, definition 2.1] A simplex bundle (S, π) is proper, if

• π−1(K) is compact in S for any compact subset K of R,
• For any x 6= y in S, there exists f ∈ A(S, π) such that f(x) 6= f(y).

Moreover, if S is compact, then (S, π) is called a compact simplex bundle.
Two proper simplex bundles (S, π) and (S′, π′) are isomorphic if there exists a
homeomorphism φ : S → S′ such that

π′ ◦ φ = π and φ : π−1(β) → π′−1
(β) is affine for all β ∈ R.

Remark 2.4. By [, theorem 9.2.2], the collection of KMS states for a flow on a
unital separable C∗-algebra is a proper simplex bundle. Hence, this is a necessary
assumption for the pair (S, π) to be a suitable invariant. Moreover, a proper simplex
bundle (S, π) is second countable, locally compact, Hausdorff, so the topology on
S is metrisable.

Lemma 2.5. Let η : (S′, π′) → (S, π) be a bijection between proper simplex bundles
such that π ◦ η = π′. If either η or η−1 is continuous, then η is a homeomorphism.

Proof. Suppose that η is continuous. It remains to show that η−1 is continuous. We
show that η maps closed sets to closed sets. By [43, corollary], it suffices to check
that η is a proper map i.e. the preimage of any compact set is compact. Let K ⊆ S
be compact and note that π(K) is compact since π is continuous. Since π ◦ η = π′,
it follows that

η−1(K) ⊆ η−1(π−1(π(K))) = (π′)−1(π(K)).

But (π′)−1(π(K)) is compact since (S′, π′) is a proper simplex bundle (see def-
inition 1.3), so η−1(K) is compact as a closed subset of a compact set. This
finishes the argument. The case when η−1 is assumed to be continuous is completely
symmetric. �
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2.2 Classification invariants

Let A be a separable C∗-algebra. We denote by K0(A)+ the set of positive elements
in K0(A). We write T (A) for the set of tracial states on A. Recall that for a unital
C∗-algebra A, there exists a natural pairing between the K 0-group and tracial
states. For n ∈ N and τ ∈ T (A), we denote the canonical non-normalized extension
of τ to a tracial functional on Mn(A) by τn. Then, the pairing map ρA : K0(A) →
Aff(T (A)) is given by

ρA([p]0 − [q]0)(τ) := τn(p− q)

for all τ ∈ T (A) and all projections p, q ∈Mn(A).

Definition 2.6. The Elliott invariant of a unital separable C∗-algebra A, denoted
Ell(A), is given by

Ell(A) = (K0(A),K0(A)+, [1A]0,K1(A), T (A), ρA).

Remark 2.7. In the case of a stable C∗-algebra, one needs to remove the class
of the unit and consider the cone of densely defined lower semicontinuous traces
instead of the set of tracial states.

Due to work by many mathematicians (e.g. [13, 24, 29, 37, 44, 57]), this invariant
was shown to classify a large class of simple C∗-algebras. In this paper, we will use
the following classification theorem.

Theorem 2.8 (see [13, theorem A]). Unital simple separable nuclear Z-stable C∗-
algebras satisfying Rosenberg and Schochet’s universal coefficient theorem (UCT)
are classified by Elliott’s invariant consisting of K-theory and traces.

Remark 2.9. On the class of C∗-algebras in the statement of theorem 2.8, the
order on the K 0-group is induced by traces.2 Precisely, non-zero positive ele-
ments in K 0 are those elements that are strictly positive when evaluated on traces.
Therefore, if A is a C∗-algebra as in the statement of theorem 2.8, then the invari-
ant (K0(A), [1A]0,K1(A), T (A), ρA) carries the same information as Ell(A). We will
use this observation in the proof of lemma 4.6.

Since we will need to check that certain corners of crossed products by Z sat-
isfy the assumptions of the classification theorem, we collect below a number of
permanence properties for the hypotheses in the statement of theorem 2.8.

Proposition 2.10. Let A,B be separable C∗-algebras such that A ⊗ K ∼= B ⊗ K.
If A is nuclear, Z-stable, and satisfies the UCT, then B is nuclear, Z-stable, and
satisfies the UCT.

Proof. We first note that B ⊗K ∼= A⊗K is nuclear and Z-stable. Since nuclearity
passes to hereditary subalgebras, B is nuclear. Moreover, B is Z-stable by [58,

2This is a consequence of [13, proposition 4.13(ii)] which follows from [49] (one can also see [28,
theorem 1]).
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6 R. Neagu

corollary 3.1]. Finally, the UCT is closed under stable isomorphisms ([4, 22.3.5
(a)]), so B satisfies the UCT. �

Proposition 2.11. Let B be a separable C∗-algebra, γ be an automorphism of B,
and e ∈ B be a full projection in B oγ Z. Then the following hold.

(i) The corner e (B oγ Z) e is separable and unital.
(ii) If B oγ Z is simple, then e (B oγ Z) e is simple.
(iii) If B is nuclear, then e (B oγ Z) e is nuclear.
(iv) If B satisfies the UCT, then so does e (B oγ Z) e.
(v) If B oγ Z is Z-stable, then so is e (B oγ Z) e.

Proof. Note that e (B oγ Z) e is unital as e is a projection, and it is separable since
B is separable and Z is a countable discrete group. If B oγ Z is simple and e is
full, then e (B oγ Z) e is simple. If B is nuclear, then B oγ Z is nuclear by [11,
theorem 4.2.4]. Since nuclearity passes to hereditary subalgebras, e (B oγ Z) e is
nuclear. Suppose now that B satisfies the UCT. Since the UCT is closed under
crossed products by Z ([4, 22.3.5 (g)]), B oγ Z satisfies the UCT. Furthermore,
B oγ Z and e (B oγ Z) e are stably isomorphic (see [10]) and the UCT is closed
under stable isomorphisms ([4, 22.3.5 (a)]). Hence, e (B oγ Z) e satisfies the UCT.
Since Z-stability passes to hereditary subalgebras ([58, corollary 3.1]) and B oγ Z
is Z-stable, it follows that e (B oγ Z) e is Z-stable. �

Furthermore, theorem 2.8 is complemented by a range-of-the-invariant result
from [22]. Before stating the result, we need to record a few notions regarding
ordered abelian groups.

2.3 Ordered groups and the range of the invariant

We refer the reader to [30] for a detailed account on the content of this subsection.
An ordered abelian group (G,G+) is called unperforated if for any n ∈ N and

any g ∈ G such that ng ∈ G+, then g ∈ G+. Moreover, an ordered abelian group
(G,G+) is called weakly unperforated if for any n ∈ N and any g ∈ G such that ng ∈
G+ \ {0}, then g ∈ G+ \ {0}. Also, (G,G+) is said to have the Riesz interpolation
property if for any g1, g2, h1, h2 ∈ G such that gi ≤ hj for any i, j = 1, 2 there
exists z ∈ G such that gi ≤ z ≤ hj for any i, j = 1, 2. If all inequalities are replaced
by strict inequalities, then (G,G+) is said to satisfy the strong Riesz interpolation
property. An ordered abelian group (G,G+) is said to have the Riesz decomposition
property if for any g, h1, h2 ∈ G+ such that g ≤ h1 + h2, there exist g1, g2 ∈ G+

such that g = g1 + g2 and gj ≤ hj for each j = 1, 2.
Recall also that a countable ordered abelian group (G,G+) is called a dimension

group if it is isomorphic to the inductive limit of a sequence
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The admissible KMS bundles on classifiable C∗-algebras 7

for some natural numbers rn, some positive group homomorphisms αn, where Zr

is equipped with its standard ordering given by

(Zr)+ = {(x1, x2, . . . , xr) : xj ≥ 0}.

Using a classical theorem of Effros, Handelman, and Shen ([19, theorem 2.2]), a
countable ordered abelian group is a dimension group if and only if it is unperforated
and has the Riesz interpolation property.

Recall that I is an order ideal of (G,G+) if I is a subgroup of G such that

I = (I ∩G+)− (I ∩G+)

and

if 0 ≤ y ≤ x in G+ and x ∈ I, then y ∈ I.

Moreover, an ordered abelian group (G,G+) is called simple if any non-zero positive
element is an order unit.

In §3, we will often use some of the properties of ordered groups defined above in
the case when the group G is a priori graded. To avoid any confusion, we remark
that the meaning of these properties is unchanged. In particular, G = G0 ⊕ G1 is
a graded ordered group if it is graded and there exists a distinguished subset G+

such that (G,G+) is an ordered group in the usual sense.
We can now state the range-of-the-invariant result in [22]. The theorem below is

folklore (see also [13, remark 2.5] stated in terms of the KTu-invariant) and it is
implicitly contained in [22] as all of the inductive limit constructions provided in
[22] are simple and have finite nuclear dimension, and hence are Z-stable. We will
use this result in the proof of theorem B.

Theorem 2.12 ([22]). Let (G,G+, v) be a simple, countable, ordered abelian group
which is weakly unperforated and has distinguished order unit v, H be a countable
abelian group, and X be a compact, metrisable Choquet simplex together with a
weakly unperforated pairing ρ : G × X → R which determines G+. Suppose also
that the pairing ρ induces a surjection from X onto the positive homomorphisms on
(G,G+) which send v to 1. Then there exists a simple, separable, unital, nuclear,
Z-stable C∗-algebra A satisfying the UCT such that

Ell(A) ∼= (G,G+, v,H,X, ρ).

Proof. Let (G,G+, v,H,X, ρ) be as in the statement of the theorem. Then
there exists a simple separable stable nuclear C∗-algebra B such that Ell(B) ∼=
(G,G+,H, X̃, ρ̃), where X̃ is the cone with base X and ρ̃ is the unique extension
of the pairing ρ ([22, theorem 5.2.3.2]). Since the C∗-algebra B is constructed as
an inductive limit, one can simply tensor with Z at each stage to assume that B is
Z-stable, or notice that B is simple and has finite nuclear dimension as each build-
ing block has finite nuclear dimension ([61, proposition 2.3]). Thus, B is Z-stable
by [56, corollary 8.7]. Moreover, the UCT is preserved by inductive limits (see [4,
22.3.5 (e)]), so B satisfies the UCT.
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8 R. Neagu

If p ∈ B is a projection such that [p]0 = v in K0(B), then we take A= pBp.
Since B is simple, p is a full projection, so A is simple separable and unital (see
[10]). Moreover, A is nuclear, Z-stable, and it satisfies the UCT by proposition
2.10. Finally, it is immediate to see that Ell(A) ∼= (G,G+, v,H,X, ρ). �

2.4 Elliott’s classification of AT-algebras of real rank zero

This subsection contains a summary of Elliott’s classification of (possibly non-
simple) AT-algebras of real rank zero from [21].

Let A be a unital C∗-algebra, K∗(A) be the graded group K0(A) ⊕ K1(A),
equipped with the order

K∗(A)+ =

{
([p]0, [u⊕ (1n − p)]1) : p ∈ P(Mn(A)) for some n ∈ N,

u ∈ U(pMn(A)p)

}
,

and

D∗(A) = {([p]0, [u⊕ (1− p)]1) ∈ K∗(A)+ : p ∈ A}.

If A is nonunital, then define

K∗(A)+ = K∗(A) ∩K∗(Ã)+,

and

D∗(A) = K∗(A) ∩D∗(Ã),

where Ã is the minimal unitization of A. If A is an AT-algebra of real rank zero,
consider the pair (K∗(A),K∗(A)+). Since A also has stable rank one, the pair
(K∗(A),K∗(A)+) is a graded ordered group ([21, theorem 3.2]). Then, the graded
group K∗(A) together with the graded dimension range D∗(A) determine the pair
(K∗(A),K∗(A)+) and constitutes the invariant used by Elliott in his classification
of AT-algebras of real rank zero. If A is simple, the invariant (K∗(A),K∗(A)+)
reduces to the usual K -theory triple (K0(A),K0(A)+,K1(A)) appearing in the
Elliott invariant of a nonunital C∗-algebra.

We record the following classification of isomorphisms between AT-algebras of
real rank zero from [21]. Note that the statement does not appear in [21], but, as
observed in [21, remark 7.3], the proof of [21, theorem 7.1] not only produces a
classification of AT-algebras of real rank zero, but of isomorphisms between them.

Theorem 2.13 ([21]). Let A and B be AT-algebras of real rank zero. Then A is
isomorphic to B if and only if there is a graded group isomorphism α : K∗(A) →
K∗(B) such that α(D∗(A)) = D∗(B). Moreover, for each such α, there exists an
isomorphism φ : A→ B such that K∗(φ) = α.

We also recall the range-of-the-invariant result in [21] for AT-algebras of real
rank zero.

Theorem 2.14 ([21, theorem 8.1]). Let G∗ = G0 ⊕ G1 be a graded ordered group
which is the inductive limit of a sequence G∗1 → G∗2 → . . . of graded ordered groups
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The admissible KMS bundles on classifiable C∗-algebras 9

such that each G∗i = G0i ⊕ G1i is the direct sum of finitely many basic building
blocks of the form Z ⊕ Z with the order determined by strict positivity in the first
component. If G∗ has the Riesz interpolation property, then there exists a stable
AT-algebra of real rank zero A such that K∗(A) ∼= G∗ and K∗(A)+ ∼= (G∗)+.

We record the following folklore result relating traces and positive homomor-
phisms on the K 0-group of AT-algebras of real rank zero.

Proposition 2.15. Let B be a separable, stable AT-algebra of real rank zero. Then
the canonical map from the densely defined lower semicontinuous traces on B to
positive group homomorphisms K0(B) → R is an affine homeomorphism.

Proof. This follows from [31, theorem 12.3] (or [5, theorem III.1.3]) since any lower
semicontinuous extended quasitrace on an AT-algebra is an extended trace ([12,
theorem 6]). �

2.5 Finite Rokhlin dimension

The Rokhlin dimension of a group action on a unital C∗-algebra was introduced in
[34] as a tool to obtain finite nuclear dimension and hence Z-stability of the corre-
sponding crossed product. In [33], Hirshberg and Phillips extended finite Rokhlin
dimension to actions on possibly nonunital C∗-algebras. We will use the simplified
definition from [35].

Definition 2.16. ([35, definition 4.6]). An automorphism γ of a C∗-algebra A
is said to have Rokhlin dimension d if d is the least nonnegative integer with the
following property. For any finite set F ⊆ A, integer p ≥ 1 and ε> 0, there are

positive contractions f
(l)
0 , . . . , f

(l)
p−1 ∈ A, l ∈ {0, 1, . . . , d}, such that:

(i) ‖f (l)k f
(l)
j a‖ < ε for every a ∈ F , l ∈ {0, 1, . . . , d}, j 6= k ∈ {0, 1, . . . , p− 1};

(ii)
∥∥∥(∑d

l=0

∑p−1
k=0 f

(l)
k

)
a− a

∥∥∥ < ε for every a ∈ F ;

(iii) ‖[f (l)j , a]‖ < ε for every a ∈ F , l ∈ {0, 1, . . . , d}, j ∈ {0, 1, . . . , p− 1};
(iv)

∥∥∥(γ(f (l)j )− f
(l)
j+1

)
a
∥∥∥ < ε for every a ∈ F , l ∈ {0, 1, . . . , d}, j ∈

{0, 1, . . . , p− 1}, where f (l)p := f
(l)
0 .

We will use finite Rokhlin dimension as a tool to detect when densely defined
lower semicontinuous traces on a crossed product by Z can be identified with densely
defined lower semicontinuous invariant traces on the algebra. The next lemma essen-
tially follows from [41, proposition 2.3], as the proof also works in the nonunital
and nonsimple setting. That the proof works in the nonunital setting was previ-
ously observed in [35, lemma 4.8]. However, the proof in [41, proposition 2.3], only
deals with bounded traces. To generalize the result for densely defined lower semi-
continuous traces, we will further assume the existence of an approximate unit of
projections.

Lemma 2.17. (cf.[41, proposition 2.3]). Let A be a separable C∗-algebra with an
approximate unit of projections (qr)r∈N and γ be an automorphism of A which has
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10 R. Neagu

finite Rokhlin dimension. Then the restriction map from densely defined lower semi-
continuous traces on A oγ Z to γ-invariant densely defined lower semicontinuous
traces on A is bijective.

Proof. Using the strategy in [54, lemma 3.4], we will adapt Liao’s proof of [41,
proposition 2.3]. Let P : A oγ Z → A be the canonical conditional expectation.
Given a densely defined lower semicontinuous trace τ on Aoγ Z, we will show that
τ = τ |A ◦ P . Since qr is a projection and hence contained in the Pedersen ideal of
A, we have that τ(qr) <∞. Moreover,

τ(x) = lim
r→∞

τ(qrxqr)

and

τ(P (x)) = lim
r→∞

τ(qrP (x)qr)

for any positive element x in Aoγ Z. Therefore, to show that τ = τ |A ◦P , it suffices
to show that

τ(qrxqr) = τ(qrP (x)qr)

for any positive element x in A oγ Z and any r ∈ N. Since τ is nonzero, we can
assume that τ(qr) > 0 for any r ∈ N.

Let u be the unitary in M(A oγ Z) implementing the action. Since the map
x 7→ τ(qrxqr) is bounded on A oγ Z with norm τ(qr), it suffices to show that
τ(qrau

nqr) = 0 for any a ∈ A, and any r, n ∈ N.
Recall that the automorphism γ has finite Rokhlin dimension, say d ∈ N. Let

r, n ∈ N, a ∈ A be a contraction, and ε> 0. Let p = 2n and ε′ = ε
(6(d+1)n+1)τ(qr)

.

Using (ii) of definition 1.16, it follows that there exist {f (`)k : 0 ≤ k ≤ p − 1, 0 ≤
` ≤ d} in A such that ∥∥∥∥∥

(
d∑

`=0

p−1∑
k=0

f
(`)
k

)
a− a

∥∥∥∥∥ < ε′. (1.1)

Combining (i), (iii), and (iv) of definition 1.16, we can further assume that

‖f (`)k

1
2 aγn(f

(`)
k

1
2 )‖ < ε′ (` = 0, 1, ..., d; k = 0, ..., p− 1). (1.2)

Moreover, by (iii) of definition 1.16, we can ensure that

‖f (l)k

1
2 qr − qrf

(l)
k

1
2 ‖ < ε′ (1.3)

for any 0 ≤ k ≤ p− 1 and any 0 ≤ l ≤ d.
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Then

|τ(qraunqr)|
(1.1)

≤

∣∣∣∣∣
d∑

`=0

p−1∑
k=0

τ(qrf
(`)
k aunqr)

∣∣∣∣∣+ τ(qr)ε
′. (1.4)

Fix k, l and let x := f
(l)
k

1
2 aun. Using that τ is a trace and that x is a contraction,

we get that

|τ(qrx(qrf (l)k

1
2 − f

(l)
k

1
2 qr))| = |τ(qrx(qrf (l)k

1
2 − f

(l)
k

1
2 qr)qr)|

≤ τ(qr)‖x(qrf (l)k

1
2 − f

(l)
k

1
2 qr)‖

(1.3)

≤ τ(qr)ε
′.

(1.5)

Similarly, one has that

|τ(f (`)k

1
2 qrf

(`)
k

1
2 aunqr)− τ(qrf

(`)
k aunqr)| = |τ(qr(f (`)k

1
2 qr − qrf

(`)
k

1
2 )xqr)|

≤ τ(qr)ε
′.

Therefore, using the last two estimations above, we get that

|τ(qrf (`)k

1
2 aunf

(`)
k

1
2 qr)− τ(qrf

(`)
k aunqr)|

≤ |τ(qrf (`)k

1
2 aunqrf

(`)
k

1
2 )− τ(qrf

(`)
k aunqr)|+ τ(qr)ε

′

= |τ(f (`)k

1
2 qrf

(`)
k

1
2 aunqr)− τ(qrf

(`)
k aunqr)|+ τ(qr)ε

′

≤ 2τ(qr)ε
′.

Thus, from (1.4) we now get that

|τ(qraunqr)| ≤
d∑

`=0

p−1∑
k=0

∣∣∣∣τ(qrf (`)k

1
2 aunf

(`)
k

1
2 qr)

∣∣∣∣+ (2(d+ 1)p+ 1)τ(qr)ε
′

=
∑d

`=0

∑p−1
k=0

∣∣∣∣τ(qrf (`)k

1
2 aγn(f

(`)
k

1
2 )unqr)

∣∣∣∣+ (2(d+ 1)p+ 1)τ(qr)ε
′

(1.2)

≤ ((d+ 1)p+ 2(d+ 1)p+ 1)τ(qr)ε
′

= (6(d+ 1)n+ 1)τ(qr)ε
′ = ε.

Hence, τ(qrau
nqr) = 0 for any r, n ∈ N, which yields that τ(qrxqr) = τ(qrP (x)qr)

for any r ∈ N and any x ∈ Aoγ Z. Therefore, the canonical restriction induces an
injection from the space of densely defined lower semicontinuous traces on Aoγ Z
into the space of γ-invariant densely defined lower semicontinuous traces on A.
Since this restriction is also surjective, the conclusion follows. �
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3. Bundles on Kirchberg algebras

In this section, we will prove theorem A. The construction of the required flow
follows the strategy in [26, §5], together with some modifications that allow us
to remove the assumption of no torsion in the K 1-group. We briefly describe the
construction for the convenience of the reader, but we will often refer to [26, §5].

3.1 Realizing Kirchberg algebras as corners of crossed products by Z
Throughout this section, let A be a unital UCT Kirchberg algebra and (S, π) be a
proper simplex bundle such that π−1(0) = ∅. The main step in proving theorem A
is realizing A as a full corner of a crossed product B oγ Z, with B being a stable,
possibly nonsimple, AT-algebra with real rank zero. Comparing with the construc-
tion in [26, theorem 5.1], it is precisely constructing B to be an AT-algebra rather
than an AF-algebra that allows for torsion in K1(A). We collect the differences to
the proof of [26, theorem 5.1] in remark 3.10.

We first need to construct suitable K -theory groups, together with group isomor-
phisms between them. We will then obtain B and γ by using Elliott’s classification
of morphisms between stable, possibly nonsimple AT-algebras with real rank zero
from [21]. We proceed to build the K -theory of the desired AT-algebra B. Since A
will be identified with a full corner of a crossed product of B with Z, the construc-
tion of K0(B) needs to recover K0(A) via the Pimsner–Voiculescu exact sequence.
To recover the simplex bundle (S, π), we will ensure that K0(B) contains a dense
subset of A(S, π). We will now sketch the relevant parts of the construction in [26,
theorem 5.1]. If S = ∅, then we can take θ to be the trivial flow on A, so assume
that S 6= ∅ and π−1(0) = ∅.

Lemma 3.1. (cf.[26, theorem 5.1]). Let (S, π) be a nonempty proper simplex bundle
such that π−1(0) = ∅. Then there exists a countable torsion free ordered group
(G,G+) together with an automorphism α of (G,G+) such that G = QG0, where
G0 is a countable subgroup of A(S, π), α(g)(x) = e−π(x)g(x) for any g ∈ G and
x ∈ S, and the following conditions hold:

(i) For any n ∈ N, ε> 0, and f ∈ A(S, π) such that supp(f) ⊆ π−1([−n, n]),
there exists g ∈ G0 with supp(g) ⊆ π−1([−n, n]) and

sup
x∈S

|f(x)− g(x)| < ε;

(ii) (G,G+) is a dimension group satisfying the strong Riesz interpolation
property;

(iii) The maps α and id− α are automorphisms of G, and α(G+) = G+;
(iiv) If I is an order ideal in G such that α(I) = I, then I = {0} or I=G;
(v) If ψ : G→ R is a positive group homomorphism such that ψ(1) = 1, where

1 denotes the constant function 1 on S and β ∈ R satisfies ψ ◦ α = e−βψ,
then there exists a unique ω ∈ π−1(β) such that ψ(g) = g(ω) for all g ∈ G.

Proof. The construction of the pair (G,G+) is the one provided in [26, theorem 5.1].
Since the topology on S is second countable, we can choose a countable subgroup
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G0 of A(S, π) satisfying (i) in the statement of the lemma. Moreover, we can ensure
that

• The function

x 7→ enπ(x)(1− e−π(x))mf(x)

is in G0 for any f ∈ G0 and any n,m ∈ Z;
• The functions

x 7→ (χ(−∞,0] ◦ π)(x)enπ(x)(1− e−π(x))m

and

x 7→ (χ[0,∞) ◦ π)(x)enπ(x)(1− e−π(x))m

are in G0 for any n,m ∈ Z. The functions χ(−∞,0] ◦ π and χ[0,∞) ◦ π are
continuous on S because π−1(0) = ∅.

Let G = QG0 and G+ = {f ∈ G : f(x) > 0, x ∈ S} ∪ {0}.
That (G,G+) is a dimension group satisfying the strong Riesz interpolation

property follows from [26, lemma 5.3]. Since the function

x 7→ enπ(x)(1− e−π(x))mf(x)

is in G0 for any f ∈ G0 and any n,m ∈ Z, we get that α is an automorphism
of G and α(G+) = G+. Furthermore, note that π−1(0) = ∅, so id − α is also an
automorphism of G. This proves (iii). Condition (iv) follows from the proof of [26,
lemma 5.5], while the existence of an element ω ∈ π−1(β) as in (v) is shown in [26,
lemma 5.6] (note that both the group G and the map ψ appearing in the proof of
[26, lemma 5.6] coincide with the ‘G ’ and ‘ψ’ in the statement of the lemma).

Suppose that there exists ω′ 6= ω in π−1(β) such that g(ω) = g(ω′) for all g ∈ G.
Then, by (i) above, h(ω) = h(ω′) for any h ∈ A(S, π) with compact support. As
ω, ω′ ∈ π−1(β), there exists f ∈ Aff(π−1(β)) such that f(ω) 6= f(ω′). Therefore,
there exist n ∈ N and h ∈ A(S, π) such that the support of h is contained in
π−1([−n, n]) and h(ω) 6= h(ω′), which is a contradiction. Hence, ω is unique. �

The pair (G,G+) only contains information about the simplex S. To complete
the construction, the key ingredient is the following proposition which follows as a
direct application of [47, proposition 3.5].

Proposition 3.2. There exist countable, abelian, torsion free groups H0 6= {0}
and H1, automorphisms κ0 and κ1 of H0 and H1 respectively and homomorphisms
qi : Hi → Ki(A) for i = 0, 1 such that

is exact for i = 0, 1.
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Proof. We apply [47, proposition 3.5] to the pairs (K0(A), 0) and (K1(A), 0).
Moreover, if H0 = {0}, which happens only when K0(A) = 0, we take H0 = Q
and κ0(x) = 2x. �

Lemma 3.3. Set Γ = H0 ⊕G and if p : Γ → G is the canonical projection, let

Γ+ = {x ∈ Γ : p(x) ∈ G+ \ {0}} ∪ {0}.

Then the following conditions hold:

(i) The pair (Γ,Γ+) is a dimension group;
(ii) For any g ∈ Γ+, there exist h1, h2 ∈ Γ+ such that g = 2h1 + 3h2 i.e. Γ+ is

weakly divisible;
(iii) If I is a nonzero order ideal of Γ, then I = H0 ⊕ p(I);
(iv) The only order ideals I in Γ such that (κ0 ⊕ α)(I) = I are I = {0} and

I = Γ;
(v) The ordered group (Γ,Γ+) has no nonzero liminary subquotients i.e. no

subquotient has all its prime quotients isomorphic to Z.

Proof. We first check (i). As (G,G+) is a dimension group satisfying the strong
Riesz interpolation property (lemma 3.1(ii)) and H 0 is nonzero and torsion free,
(Γ,Γ+) is a dimension group by [19, lemma 3.2].

To check (ii), it suffices to find h ∈ Γ+ such that 2h ≤ g ≤ 3h. We then let
h1 = 3h− g and h2 = g − 2h. Let g ∈ Γ+ be nonzero. Since G = QG, there exists
h′ ∈ G+ nonzero such that 7

3h
′ ≤ p(g) ≤ 8

3h
′. Then, p(g−2(0, h′)) = p(g)−2h′ > 0

and p(3(0, h′) − g) = 3h′ − p(g) > 0, so we can take h = (0, h′) to conclude that
2h ≤ g ≤ 3h in Γ.

We now check (iii). Let I be a nonzero order ideal of Γ. Since I = (I ∩ Γ+) −
(I ∩ Γ+), there exist h′ ∈ H0 and g ∈ G+ \ {0} such that (h′, g) ∈ I. Then, for any
h ∈ H0, one has that

0 < (h+ h′, g) < 2(h′, g)

in Γ. Since I is an order ideal, it follows that (h+ h′, g) ∈ I. Combining this with
the fact that (h′, g) ∈ I, yields that (h, 0) ∈ I. Hence H0 ⊕ 0 ⊆ I. If g ∈ p(I), there
exists h′ ∈ H0 such that (h′, g) ∈ I. If h ∈ H0, then (h + h′, 0) ∈ I, so (h, g) ∈ I.
Hence, we get that I = H0 ⊕ p(I).

The proof of (iv) is contained in [26, lemma 5.5], but we will include the details
for the convenience of the reader. Let I be a nonzero order ideal of Γ such that
(κ0 ⊕ α)(I) = I. By condition (iii), it follows that I = H0 ⊕ p(I). Moreover, p(I )
is an order ideal in G such that α(p(I)) = p(I). Condition (iv) of lemma 3.1 yields
that G = p(I). Thus, I = Γ.

We prove (v) by contradiction. Let J ⊆ I be order ideals of Γ such that I/J is
nonzero and liminary in the category of ordered groups i.e. any prime quotient of
I/J is isomorphic to Z. Then, by (iii) above, I = H0 ⊕ p(I). Suppose that there
exists a surjection q : (H0 ⊕ p(I))/J → Z and let (h, i) be positive in H0 ⊕ p(I)
such that q(h, i) = 1. As p(I) ⊆ G is an order ideal, it follows that 1

2 i ∈ p(I). If
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(h, 12 i) ∈ J , then (0, 12 i) ∈ J by (iii). Therefore, (h, i) ∈ J , which is a contradiction,
so (h, 12 i) /∈ J . Hence, one gets that

0 ≤ q(h,
1

2
i) ≤ 1.

If q(h, 12 i) = 0, then q(4h, 2i) = 0. But (h, i) ≤ (4h, 2i), so 1 = q(h, i) ≤ 0, which is
a contradiction. If q(h, 12 i) = 1, then q(0, 12 i) = 0, which gives that q(0, 2i) = 0. But
(h, i) ≤ (0, 2i), so 1 = q(h, i) ≤ 0, which is a contradiction. Thus, the subquotient
I/J is not liminary. �

Lemma 3.4. Choose w ∈ H0 such that q0(w) = [1A]0. Let v = (w, 1) ∈ Γ+,
where 1 stands for the constant function 1 on S. Let ϕ : Γ → R be a positive
homomorphism and β ∈ R such that ϕ(v) = 1 and ϕ◦(κ0⊕α) = e−βϕ. Then, there
is a unique ω ∈ π−1(β) such that ϕ(h, g) = g(ω) for all (h, g) ∈ Γ. In particular,
there are no positive homomorphisms on Γ sending v to 1 that are invariant under
the automorphism κ0 ⊕ α.

Proof. This follows as in [26, lemma 5.6]. Let h ∈ H0 and n ≥ 1. Then n(h, 0)+v ∈
Γ+ and −n(h, 0)+v ∈ Γ+, which yields that nϕ(h, 0)+1 ≥ 0 and −nϕ(h, 0)+1 ≥ 0
for all n ≥ 1. Hence, ϕ(h, 0) = 0, which yields a positive homomorphism ψ : G→ R
such that ψ◦p = ϕ. Since ϕ(v) = 1 and p(v) = 1, it follows that ψ(1) = 1. Moreover,
ϕ◦(κ0⊕α) = e−βϕ and p◦(κ0⊕α)(g) = α(g) for any g ∈ G, so ψ◦α = e−βψ. Thus,
(v) of lemma 3.1 shows that there is a unique ω ∈ π−1(β) such that ψ(g) = g(ω)
for all g ∈ G. Hence, ϕ(h, g) = g(ω) for all (h, g) ∈ Γ. The last statement follows
by taking β=0, as π−1(0) = ∅. �

We consider the triple (Γ,Γ+,H1 ⊕ G) and we claim that it realizes the K -
theory of some stable AT-algebra with real rank zero. This will follow from Elliott’s
classification of AT-algebras with real rank zero from [21]. We first need to impose
a suitable order on the graded group Γ⊕(H1⊕G). We will do so using [23, theorem
4.28].

Lemma 3.5. Consider the graded group Λ∗ = Γ⊕ (H1 ⊕G) and define

(Λ∗)+ = {((h0, g0), (h1, g1)) ∈ Λ∗ : (h0, g0) ∈ Γ+ \ {0}, g1 ∈ I(g0)} ∪ {0},

where I(g0) is the order ideal of G generated by g0. Then the following conditions
hold:

(i) (Λ∗, (Λ∗)+) is a countable graded ordered group;
(ii) (Λ∗, (Λ∗)+) is unperforated;
(iii) (Λ∗, (Λ∗)+) has the Riesz decomposition property and the Riesz interpola-

tion property;
(iv) (Λ∗, (Λ∗)+) is the inductive limit of a sequence Λ∗1 → Λ∗2 → . . . of graded

ordered groups such that each Λ∗i = Λ0i ⊕ Λ1i is the direct sum of finitely
many basic building blocks of the form Z⊕ Z with the order determined by
strict positivity in the first component.
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Proof. Conditions (i) and (iii) follow as a direct application of [23, theorem 4.28].
It is worth noting that in [23], the term ideal stands for what is called order ideal
in this paper (see [23, remark 4.27]).

We first need to define a map from order ideals of Γ to subgroups of H1 ⊕ G.
If I is a nonzero order ideal of Γ, then I = H0 ⊕ p(I) by (iii) of lemma 3.3. We
then consider the map from order ideals of Γ to subgroups of H1 ⊕ G given by
H0 ⊕ p(I) 7→ H1 ⊕ p(I) which maps 0 to 0. This map also preserves inclusions,
upward directed unions, and maps Γ into H1 ⊕G. Condition (i) now follows from
[23, theorem 4.28].

We now prove (ii). Let ((h0, g0), (h1, g1)) ∈ Λ∗ and n ∈ N such that
n((h0, g0), (h1, g1)) ∈ (Λ∗)+. Recall from proposition 3.2 that H 0 and H 1 are tor-
sion free. Then Λ∗ is torsion free, so we can assume that (h0, g0) ∈ Γ \ {0}. By (i)
of lemma 3.3, Γ is a dimension group and hence unperforated, so (h0, g0) ∈ Γ+.
Moreover, since n((h0, g0), (h1, g1)) ∈ (Λ∗)+, we have that ng1 is in the order ideal
of G generated by ng0, say I 0. As g0 is positive, it follows that g0 ∈ I0, so I 0 is
generated by g0. Since ng1 ∈ I0, there exists k ∈ N such that

−kng0 ≤ ng1 ≤ kng0

in I 0. Recall from lemma 3.1 that G = QG. In particular, G is divisible, so it
follows that −kg0 ≤ g1 ≤ kg0, which implies that 0 ≤ g1 + kg0 ≤ 2kg0. This yields
that g1 + kg0 ∈ I0 and so g1 ∈ I0. Thus ((h0, g0), (h1, g1)) ∈ (Λ∗)+, which shows
(ii).

By (i) of lemma 3.3, (Γ,Γ+) is a dimension group, so it is weakly unperforated and
satisfies the Riesz interpolation property, which coincides with the Riesz decomposi-
tion property (see [30, proposition 2.1]). The correspondence H0⊕p(I) 7→ H1⊕p(I)
preserves finite sums and intersections. Moreover, no subquotient of Γ is liminary by
(v) of lemma 3.3, so Λ∗ satisfies the Riesz decomposition property by [23, theorem
4.28], thus proving (iii).

Condition (iv) follows from [20, theorem 5.2] and the fact that H1 ⊕G is torsion
free. �

To apply classification results, we will need to construct an AT-algebra which is
Z-stable. Building on Winter’s techniques from [60], in [46], Robert and Tikuisis
show that under some extra assumptions, finite nuclear dimension implies Z-
stability even in the nonsimple setting. We will use this result to prove that the
AT-algebra we obtain is Z-stable.

Lemma 3.6. There exists a separable stable AT-algebra B with real rank zero such
that the following conditions hold:

(i) (K0(B),K0(B)+,K1(B)) ∼= (Γ,Γ+,H1 ⊕G);
(ii) D∗(B) ∼= K∗(B)+ ∼= (Λ∗)+;
(iii) B is Z-stable;

Proof. Consider the graded group Λ∗ = Γ⊕ (H1 ⊕G) as in lemma 3.5. Combining
(iii) and (iv) of lemma 3.5 with [21, theorem 8.1], it follows that there exists a
separable stable AT-algebra B with real rank zero such that (i) holds andK∗(B)+ ∼=
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(Λ∗)+. Since B is stable, we can identify K∗(B)+ with the graded dimension range
D∗(B) (see §2.4), so (ii) is also satisfied.

We will prove that B is Z-stable. Since B is an AT-algebra, it follows that B has
finite decomposition rank (see [38, example 4.2]). We are going to use [46, corollary
7.11]. Since B has finite decomposition rank and real rank zero, no quotient of
B has a simple purely infinite ideal and the space of primitive ideals of B has a
basis of compact open sets (see the remark (a) after [46, corollary 7.11]). Moreover,
the Murray-von Neumann semigroup of B is weakly divisible by (ii) of lemma 3.3,
which yields that B has no nonzero elementary ideal quotients (see [52, theorem
9.1] together with the implication (1) =⇒ (3) of [52, theorem B]). Therefore, B is
Z-stable by [46, corollary 7.11]. �

In the next lemma, we will realize the automorphisms κ0 ⊕ α and κ1 ⊕ α as the
K -theory of an automorphism γ of B. Moreover, we choose γ such that the crossed
product B oγ Z is simple using a variation of a result by Kishimoto from [39].
Recall that an automorphism σ on a C∗-algebra E is called properly outer if for
every nonzero σ-invariant closed two-sided ideal I of E and for every unitary u in
M(I) one has ‖σ|I −Ad(u)‖ = 2.

Lemma 3.7. Let B be the AT-algebra obtained in lemma 3.6. Then there exists an
automorphism γ of B such that the following conditions hold:

(i) K0(γ) = κ0 ⊕ α and K1(γ) = κ1 ⊕ α;
(ii) B oγ Z is simple;
(iii) B oγ Z is Z-stable;
(iv) The canonical restriction induces a bijection between the cone of densely

defined lower semicontinuous traces on Boγ Z and the cone of γ-invariant
densely defined lower semicontinuous traces on B.

Proof. Consider the automorphism of Γ⊕ (H1 ⊕G) given by (κ0 ⊕ α)⊕ (κ1 ⊕ α).
Since α(G+) = G+ by (iii) of lemma 3.1, (κ0 ⊕ α) ⊕ (κ1 ⊕ α) preserves (Λ∗)+.
Therefore, we can apply Elliott’s classification of automorphisms of AT-algebras
with real rank zero. Thus, by theorem 2.13, there exists γ′ ∈ Aut(B) such that
K0(γ

′) = κ0 ⊕ α and K1(γ
′) = κ1 ⊕ α.

We claim that we can replace γ′ by another automorphism γ which induces
the same maps in K -theory and the crossed product has finite nuclear dimension.
Building on the work in [50], we can take an automorphism γ of B with finite
Rokhlin dimension such that Ki(γ) = Ki(γ

′) for i = 0, 1 ([35, lemma 4.7]). Since
B has finite nuclear dimension and γ has finite Rokhlin dimension, it follows that
the crossed product B oγ Z has finite nuclear dimension ([50, theorem 6.2] or [33,
theorem 3.1]).

We now show that B oγ Z is simple. Since αk is non-trivial for all k 6=0,
then K0(γ)

k is non-trivial, which implies that no non-trivial power of γ is inner.
Moreover, since B is stable, the fact that K0(γ)

k is non-trivial, implies that there
exists a projection pk ∈ B such that γk(pk) is not equivalent to pk. Then, if u is a
unitary in M(B), γk(pk) is not equivalent to upku

∗, so

‖γk(pk)− upku
∗‖ = 1.
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By (iv) of lemma 3.3, the only order ideals I in Γ such that (κ0 ⊕ α)(I) = I are
I = {0} and I = Γ. Thus, γk is properly outer by the implication (iii) =⇒ (ii) in
[42, theorem 6.6]. Moreover, by (iv) of lemma 3.3, K0(B) has no non-trivial K0(γ)-
invariant ideals. Since B is an AT-algebra of real rank zero, this implies that B
has no non-trivial γ-invariant ideals ([48, proposition 1.5.3]), and hence the crossed
product B oγ Z is simple by [42, theorem 7.2]. Furthermore, B oγ Z has finite
nuclear dimension, so it is Z-stable by [56, corollary 8.7].

Note that B has real rank zero, so it has an approximate unit of projections.
Moreover, γ has finite Rokhlin dimension. Hence, (iv) follows from lemma 2.17. �

We now have all the necessary ingredients to show that A can be realized as a
corner of a crossed product by the integers.

Lemma 3.8. Let B the stable AT-algebra with real rank zero from lemma 3.6, and
let γ be the automorphism of B from lemma 3.7. Then, there exists a projection
e ∈ B such that e (B oγ Z) e ∼= A.

Proof. Recall that v = (w, 1) ∈ Γ+, where w ∈ H0 is such that q0(w) = [1A]0.
Let e be a projection in B such that [e]0 = v in K0(B). We will prove that A ∼=
e (B oγ Z) e using the Kirchberg–Phillips classification theorem ([37, 44]). First,
we claim that e (B oγ Z) e is a simple, separable, unital, nuclear, purely infinite
C∗-algebra satisfying the UCT.

Note that BoγZ is simple by (ii) of lemma 3.7, so e is a full projection. Moreover,
B is nuclear, satisfies the UCT, and B oγ Z is Z-stable by (iii) of lemma 3.7.
Therefore, by proposition 2.11, e (B oγ Z) e is a simple, separable, unital, nuclear,
Z-stable C∗-algebra which satisfies the UCT. By [49, corollary 5.1], to show that
e (B oγ Z) e is purely infinite, it now suffices to prove that e (B oγ Z) e has no
quasitraces. Since e (B oγ Z) e is unital and nuclear, any quasitrace is a trace by
[32]. Therefore, it suffices to show that e (B oγ Z) e has no tracial states. If τ is a
tracial state on e (B oγ Z) e, then it extends to a lower semicontinuous (possibly
unbounded) trace τ ′ on B oγ Z by [61, corollary 5.2]. By (iv) of lemma 3.7, the
restriction of τ ′ to B induces a positive group homomorphism τ ′∗ : K0(B) → R
such that τ ′∗(v) = 1 and τ ′∗ ◦K0(γ) = τ ′∗. Recall from (i) of lemma 3.6 and (i) of
lemma 3.7 that K0(B) = Γ and K0(γ) = κ0 ⊕ α. Thus, we obtain a contradiction
with lemma 3.4. Hence, e (B oγ Z) e has no tracial states. Moreover, it is nuclear
and Z-stable, so it is purely infinite by [49, corollary 5.1].

Therefore, by the Kirchberg–Phillips’ classification theorem, it suffices to check
that e (B oγ Z) e and A have the same Elliott invariant. First note that e (B oγ Z) e
and B oγ Z have the same K -groups. Applying the Pimsner–Voiculescu exact
sequence ([45, theorem 2.4]) to B and the automorphism γ, we get the six-term
exact sequence
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By (i) of lemma 3.7, idH1⊕G −K1(γ) = (idH1
− κ1)⊕ (idG − α), which is injective

by proposition 3.2 and since idG −α is an automorphism of G ((iii) of lemma 3.1).
Then, the downward map K0(Boγ Z) → H1 ⊕G is zero. This further implies that
the map H0 ⊕G→ K0(B oγ Z) is surjective, which yields that

K0(B oγ Z) ∼= (H0 ⊕G)/(idH0⊕G −K0(γ))(H0 ⊕G).

By lemma (i) of 2.7, idH0⊕G −K0(γ) = (idH0
− κ0)⊕ (idG − α). By (iii) of lemma

3.1, idG − α is an automorphism of G, so

K0(B oγ Z) ∼= H0/(idH0
− κ0)(H0) ∼= K0(A),

where the last isomorphism is given by proposition 3.2. Note that [e]0 = (w, 1) in
K0(B), where w is mapped to [1A]0 by the isomorphism H0/(idH0

− κ0)(H0) ∼=
K0(A). Therefore, the resulting isomorphism K0(e (B oγ Z) e) → K0(A) sends [e]0
to [1A]0.

Further examining the Pimsner–Voiculescu exact sequence and using that
idH0⊕G − K0(γ) is injective, it follows that the map K1(B oγ Z) → H0 ⊕ G is
zero. Therefore, we obtain the exact sequence

which yields that K1(B oγ Z) ∼= (H1 ⊕ G)/(idH1⊕G − (κ1 ⊕ α))(H1 ⊕ G) ∼=
H1/(idH1⊕G − κ1)(H1), where the last identification follows as idG − α is an auto-
morphism on G ((iii) of lemma 3.1). Hence K1(B oγ Z) ∼= K1(A) by proposition
3.2. Thus, e (B oγ Z) e ∼= A by the Kirchberg–Phillips’ classification theorem (see
for example [48, theorem 8.4.1(iv)]). �

3.2 KMS bundles on Kirchberg algebras

In this subsection, we will finish the proof of theorem A. Recall from lemmas 3.6
and 2.7 that B is a stable AT-algebra with real rank zero and γ is an automorphism
on B with specified behaviour on K -theory such that B oγ Z is Z-stable.

Consider the dual action γ̂ on BoγZ as a 2π-periodic flow. Recall that γ̂t(f)(x) =
e−ixtf(x) for any t ∈ R, f ∈ Cc(Z, B) and x ∈ Z, so that γ̂ acts trivially on B. Since
e ∈ B, γ̂ restricts to an action on e (B oγ Z) e which we denote by θ. First, we need
a result which will relate KMS states on e (B oγ Z) e to positive homomorphisms on
K0(B). The last statement of the following proposition is not explicitly contained
in [27, lemma 4.1]. However, it is implied by the remark leading to [27, corollary
4.2].

Proposition 3.9. ([27, lemma 4.1]). Let D be a C∗-algebra. Let ρ be an automor-
phism of D and let q ∈ D a projection in D which is full in D oρ Z. Let ρ̂ denote
the restriction of the dual action on D oρ Z to q(D oρ Z)q and consider it as a
2π-periodic flow. If P : D oρ Z → D is the canonical conditional expectation, then
for each β ∈ R, the map τ 7→ τ ◦ P |q(DoρZ)q is an affine homeomorphism from the
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densely defined lower semicontinuous traces on D satisfying

τ ◦ ρ = e−βτ and τ(q) = 1,

onto the set of β-KMS states for the dual action ρ̂ on q(D oρ Z)q. Moreover, the
inverse is given by the map ω 7→ ω̂|D, where ω̂ is a β-KMS weight for the dual
action on D oρ Z, which extends ω.

Proof. We will only comment on the proof of the last statement. Let ω be a β-KMS
state for the dual action ρ̂ on q(Doρ Z)q. Then, by [40, remark 3.3], there exists a
unique β-KMS weight ω̂ for the dual action on DoρZ which extends ω. The result
now follows by [54, lemma 3.1]. �

Proof of theorem A. The proof follows the strategy in [26, lemma 5.8]. Recall that
if S = ∅, then we take θ to be the trivial flow on A. Therefore, we assume that S is
nonempty and we claim that the KMS bundle (Sθ, πθ) of θ is isomorphic to (S, π).
This will finish the proof.

Let (ω, β) ∈ Sθ. By [40, remark 3.3], there exists a unique β-KMS weight ω̂
for the dual action γ̂ on B oγ Z which extends ω. Furthermore, B oγ Z is simple
by (ii) of lemma 3.7, so e is full in B oγ Z. Then, by proposition 3.9, ω̂|B is a
densely defined lower semicontinuous trace on B such that ω̂|B ◦ γ = e−βω̂|B and
ω̂|B(e) = 1. Therefore, (ω̂|B)∗ is a positive homomorphism on K0(B) such that

(ω̂|B)∗ ◦K0(γ) = e−β(ω̂|B)∗ and (ω̂|B)∗([e]0) = 1.

Then, by lemma 3.4, there exists a unique ω′ ∈ π−1(β) such that

(ω̂|B)∗(h, g) = g(ω′), (2.1)

for all (h, g) ∈ Γ ∼= K0(B). Define ϕ : Sθ → S by ϕ(ω, β) = ω′ and note that
π ◦ ϕ = πθ as ω′ ∈ π−1(β). Moreover, the restriction ϕ : (πθ)−1(β) → π−1(β) is
affine by construction for any β ∈ R.

We claim that ϕ is surjective. Let µ ∈ S and define evµ : K0(B) → R by
evµ(h, g) = g(µ). Recall that K0(γ) = κ0 ⊕ α by (i) of lemma 3.7 and α(g)(x) =
e−π(x)g(x) for any g ∈ G. Then, evµ is a positive group homomorphism such that
evµ ◦K0(γ) = e−π(µ)evµ and evµ(v) = 1 as v = (w, 1). Then, by proposition 2.15,
there exists a unique densely defined lower semicontinuous trace τµ on B such that
(τµ)∗ = evµ. By proposition 3.9, there exists a π(µ)-KMS state ω for θ such that
(ω̂|B)∗ = evµ. Then ϕ(ω, π(µ)) = µ, so ϕ is surjective.

We further check that ϕ is injective. Let (ω1, β1), (ω2, β2) ∈ Sθ such that
ϕ(ω1, β1) = ϕ(ω2, β2). Then,

β1 = π(ϕ(ω1, β1)) = π(ϕ(ω2, β2)) = β2.

Moreover, by the definition of the map ϕ,

(ω̂1|B)∗ = (ω̂2|B)∗.
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By proposition 3.9, ω̂1|B and ω̂2|B are densely defined lower semicontinuous traces
on B such that

(ω̂1|B)(e) = (ω̂2|B)(e) = 1.

By proposition 2.15, it follows that ω̂1|B = ω̂2|B . Then, proposition 3.9 yields that
ω1 = ω2, which shows that ϕ is injective.

If we show that ϕ−1 : S → Sθ is continuous, then ϕ is a homeomorphism by
lemma 2.5. Recall from remark 2.4 that both S θ and S are metrisable and let ω′

n be
a sequence in S which converges to ω′. If ϕ−1(ω′

n) = (ωn, βn) and ϕ
−1(ω′) = (ω, β),

then (2.1) yields that (ω̂n|B)∗(h, g) converges to (ω̂|B)∗(h, g) for any (h, g) ∈ Γ ∼=
K0(B). Then, ω̂n|B converges to ω̂|B by proposition 2.15, so ωn converges to ω by
proposition 3.9. Moreover, βn = π(ω′

n), which converges to π(ω′) = β by continuity
of π. Thus, (ωn, βn) converges to (ω, β), so ϕ−1 is continuous. Together with lemma
3.8, this yields the conclusion of theorem A. �

Remark 3.10. Note that in [26, §5], to realize the K -theory of a stable AF-algebra,
the authors apply proposition 3.2 to the pair (K0(A),K1(A)). Applying proposition
3.2 to the pairs (K0(A), 0) and (K1(A), 0) instead of the pair (K0(A),K1(A)) is
precisely what allows us to avoid assuming that K1(A) is torsion free. This idea
has its roots in [47, theorem 3.6], where Rørdam showed that any pair of countable
discrete abelian groups can be realized as the K -theory of an endomorphism crossed
product of an AT-algebra. Then, since we are working with an AT-algebra, rather
than an AF-algebra, different arguments are needed in lemmas 3.6 and 2.7 to show
that B is Z-stable and the crossed product is simple and Z-stable. Moreover, the
invariant for classifying possibly nonsimple AT-algebras of real rank zero is more
intricate than in the case of AF-algebras (see §2.4), so more detailed K -theory
groups have to be constructed.

4. Bundles on tracial classifiable C∗-algebras

In this section, we will prove theorem B. The construction of the required flow is in
the spirit of [26, §3]. Adapting the construction in [26, §3] and using classification of
unital ∗-homomorphisms between classifiable C∗-algebras from [13], we will extend
[26, theorem 3.14] to any simple, separable, unital, nuclear, stably finite, Z-stable
C∗-algebra, with real rank zero, and which satisfies the UCT.

4.1 Realizing tracial C∗-algebras as corners of crossed products by Z
We will follow a similar strategy as in §3, where we proved the corresponding
result for Kirchberg algebras. Throughout this section, A will be a simple, sepa-
rable, unital, nuclear, stably finite, Z-stable C∗-algebra, with real rank zero, and
which satisfies the UCT. We also let (S, π) be a compact simplex bundle such that
π−1(0) ∼= T (A). We will freely identify these simplices. The main step in proving
theorem B is realizing A as a unital corner of a crossed product (B ⊗ K) oγ Z,
with B being a simple, separable, unital, nuclear, stably finite, Z-stable C∗-algebra
satisfying the UCT. We first need to build the K -theory of the desired C∗-algebra

https://doi.org/10.1017/prm.2024.125 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.125


22 R. Neagu

B. Let A0(S, π) denote the set of elements f ∈ A(S, π) for which f(T (A)) = 0, and
let

A0(S, π)+ := {f ∈ A0(S, π) : f(x) > 0 for any x ∈ π−1(t) ∀ t 6= 0}.

Lemma 4.1. Let (S, π) be a compact simplex bundle such that π−1(0) ∼= T (A). Then
there exists a countable subgroup G0 of A0(S, π) such that the following conditions
hold:

(i) For any f ∈ A0(S, π) and any ε> 0, there is an element g ∈ G0 such that

sup
x∈S

|f(x)− g(x)| < ε;

(ii) The map η : g 7→ e−πg is an automorphism on G0 and id − η is also an
automorphism on G0;

(iii) For any g ∈ G0, there exist g1, g2 ∈ G0 ∩ A0(S, π)+ such that g = g1 − g2.

Proof. Since S is compact and the topology on S is second countable, we can choose
a countable subgroup G0 of A0(S, π) such that for all ε> 0 and all f ∈ A0(S, π),
there is an element g ∈ G0 such that

sup
x∈S

|f(x)− g(x)| < ε.

Moreover, we can ensure that if f ∈ G0, then

x 7→ enπ(x)(1− e−π(x))mf(x)

is in G0 for all m,n ∈ Z. Then, a similar construction to the one in [27, §4.2 pp 109-
110] allows to choose G0 such that both η and id − η are surjective, hence giving
(ii). To check (iii), let g ∈ G0 and g1, g2 ∈ A0(S, π)+ such that g = g1 − g2. Using
compactness of S, we can then ensure that g1, g2 ∈ G0. �

Lemma 4.2. There exist a countable ordered abelian group (G,G+, v) with distin-

guished order unit v, a homomorphism L̂ : G → A(S, π), and an automorphism α
of (G,G+) such that the following conditions hold:

(i) (G,G+, v) is simple and weakly unperforated;

(ii) L̂(G) is uniformly dense in A(S, π);
(iii) The space of states on G, denoted by S(G), is a metrisable Choquet simplex;
(iv) The homomorphism id− α : G→ G is injective;
(v) There is an isomorphism Σ : G/(id− α)(G) → K0(A);
(vi) If β ∈ R and ϕ is a state on (G,G+, v) with the property that

ϕ ◦ α = e−βϕ,

then there is a unique s ∈ π−1(β) such that ϕ = evs ◦ L̂.3 In particular, the
space of α-invariant states on G is affinely homeomorphic to T(A).

3The map evs denotes evaluation at s ∈ π−1(β).
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Proof. Set

G =

(⊕
Z
K0(A)

)
⊕G0.

We will define an order on G adapting the construction in [27, §4.2]. The map

r : A(S, π) → Aff(T (A))

given by restriction is surjective ([27, lemma 4.4(1)]), so we can choose a positive
linear map

L : Aff(T (A)) → A(S, π) such that r ◦ L = id and L(1) = 1. (3.1)

If ρA : K0(A) → Aff(T (A)) is the canonical pairing map of A, let us consider the

homomorphism L̂ : G→ A(S, π) given by

L̂(ξ, g)(x) = g(x) +
∑
n∈Z

L(ρA(ξn))(x)e
nπ(x) (3.2)

for all ξ = (ξn)n∈Z, g ∈ G0, and x ∈ S. Note that the map L̂ is well-defined since
ξ has only finitely many nonzero entries.

Define

G+ = {(ξ, g) ∈ G : L̂(ξ, g)(x) > 0, x ∈ S} ∪ {0} (3.3)

and set v = (1(0), 0), where 1(0) is the sequence with [1A]0 in the zero entry and
zero elsewhere.

To show (i), we will first show that the triple (G,G+, v) defines an ordered abelian
group. The construction of G+ in (3.3) yields that G+ ∩ (−G+) = {0}. We will
check that G = G+ −G+. Let (ξ, g) ∈ G. As A is stably finite, (K0(A),K0(A)+) is
an ordered abelian group ([4, proposition 6.3.3]), so there exist sequences ξ(1), ξ(2)

such that ξ
(i)
n ∈ K0(A)+, for any i = 1, 2 and n ∈ N and ξ = ξ(1) − ξ(2). Moreover,

by (iii) of lemma 4.1, there exist g1, g2 ∈ G0 ∩ A0(S, π)+ such that g = g1 − g2.
Thus, (ξ, g) = (ξ(1), g1)− (ξ(2), g2), which shows that G = G+ −G+.

To show that (G,G+, v) is simple, we use the assumption that S is compact. Let

(ξ, g) ∈ G+ \ {0}. By definition, this yields that L̂(ξ, g)(x) > 0 for any x ∈ S. Since

S is compact, there exists n ∈ N such that L̂(ξ, g)(x) ≥ 1
n for any x ∈ S. This

implies that (ξ, g) is an order unit, so (G,G+, v) is a simple ordered abelian group.
To see that (G,G+) is weakly unperforated, let n ∈ N and (ξ, g) ∈ G such that

n(ξ, g) ∈ G+\{0}. Therefore, by linearity of L, it follows that L̂(ξ, g)(x) > 0, x ∈ S.
Hence, (ξ, g) ∈ G+ \ {0}, so (G,G+) is weakly unperforated.

We claim that (ii) follows by combining (i) of lemma 4.1 and the fact that A
has real rank zero. Let f ∈ A(S, π) and ε> 0. Note f |T (A) ∈ Aff(T (A)). Since
A is unital, simple, exact, finite, Z-stable, and has real rank zero, it follows that
ρA(K0(A)) is uniformly dense in Aff(T (A)) ([49, theorem 7.2]). Therefore, there
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exists y ∈ K0(A) such that

f(τ)− ε/2 < ρA(y)(τ) < f(τ) + ε/2

for any τ ∈ T (A). As T (A) is closed in S and S is compact, [9, lemma 2.3] shows
that there exists h ∈ A(S, π) extending ρA(y) such that

f(x)− ε/2 < h(x) < f(x) + ε/2 (3.4)

for any x ∈ S. Then, h− L(ρA(y)) ∈ A0(S, π), so by (i) of lemma 4.1, there exists
g ∈ G0 such that

|h(x)− L(ρA(y))(x)− g(x)| < ε/2 (3.5)

for any x ∈ S. Now consider the element (y(0), g) ∈ G, where y(0) is the sequence
which is constant 0 apart from the zero entry which is equal to y. Then,

sup
x∈S

|L̂(y(0), g)(x)− f(x)| = sup
x∈S

|g(x) + L(ρA(y))(x)− f(x)|
(3.5)

≤ sup
x∈S

|f(x)− h(x)|+ ε/2

(3.4)

≤ ε.

Thus, L̂(G) is uniformly dense in A(S, π).
We will now show (iii). This follows the strategy in (ii). Using [2, corollary II.3.11]

and Kadison’s duality ([36]), it suffices to check that G satisfies the strong Riesz
interpolation property. Suppose that (ξi, gi) < (ηj , hj) in G for any i, j = 1, 2.

Therefore, L̂(ξi, gi)(x) < L̂(ηj , hj)(x) for any x ∈ S. Moreover, L̂(ξi, gi) and

L̂(ηj , hj) restrict to affine functions on T (A).
Since A is unital, simple, exact, finite, Z-stable, and has real rank zero, it fol-

lows that ρA(K0(A)) is uniformly dense in Aff(T (A)) ([49, theorem 7.2]). Thus,
ρA(K0(A)) satisfies the strong Riesz interpolation property with respect to the
strict ordering in Aff(T (A)) ([19, lemma 3.1]), so there exists y ∈ K0(A) such that

L̂(ξi, gi)(τ) < ρA(y)(τ) < L̂(ηj , hj)(τ) (3.6)

for any τ ∈ T (A) and any i, j = 1, 2. As T (A) is closed in S and S is compact, [9,
lemma 2.3] shows that there exists f ∈ A(S, π) extending ρA(y) such that

L̂(ξi, gi)(x) < f(x) < L̂(ηj , hj)(x) (3.7)

for any x ∈ S and any i, j = 1, 2.
Since S is compact, we can let δ > 0 be smaller than f(x) − L̂(ξi, gi)(x) and

L̂(ηj , hj)(x) − f(x) for any x ∈ S and any i, j = 1, 2. By (i) of lemma 4.1, there
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exists g ∈ G0 such that

|f(x)− L(ρA(y))(x)− g(x)| < δ (3.8)

for any x ∈ S. Now consider the element (y(0), g) ∈ G, where y(0) is the sequence
which is constant 0 apart from the zero entry which is equal to y. We claim that

L̂(ξi, gi)(x) < L̂(y(0), g(x) < L̂(ηj , hj)(x)

for any x ∈ S. First note that for any x ∈ S and i = 1, 2 we have that

L̂(y(0), g)(x)− L̂(ξi, gi)(x) = g(x) + L(ρA(y))(x)− L̂(ξi, gi)(x)
(3.8)
> f(x)− δ − L̂(ξi, gi)(x)

> 0,

by the choice of δ. A similar calculation shows that L̂(ηj , hj)(x) > L̂(y(0), g)(x) for
any x ∈ S and j = 1, 2. Hence, by the definition of the order on G, we obtain that

(ξi, gi) < (y(0), g) < (ηj , hj)

for any i, j = 1, 2, which shows that G satisfies the strong Riesz interpolation
property. Thus, S (G) is a Choquet simplex. Moreover, S (G) is metrisable since G
is countable.

We will now define the automorphism α of G. Let α be the automorphism of
(G,G+, v) given by

α(ξ, f) = (σ(ξ), e−πf)

where σ(ξ) = (ξn+1)n∈Z is the left shift on
⊕
Z
K0(A) and e−π denotes the function

x 7→ e−π(x). To check (iv), let (ξ, g) ∈ G such that (id−α)(ξ, g) = 0. Then σ(ξ) = ξ
and e−πg = g. Since σ is the shift on

⊕
ZK0(A), it follows that ξ=0. Moreover, g

is supported away from π−1(0) by lemma 4.1, so g =0. Thus, id− α is injective.
We will now check (v). Consider the map Σ0 : G→ K0(A) given by

Σ0((ξn), f) =
∑
n∈Z

ξn,

for any (ξn) ∈
⊕
Z
K0(A) and f ∈ G0. We claim that the kernel of Σ0 is (id−α)(G).

If (ξ, g) ∈ G, then Σ0((id − α)(ξ, g)) = 0. Conversely, let (ξ, g) ∈ G such that
Σ0(ξ, g) = 0 and choose N ∈ N such that ξn = 0 for all |n| ≥ N . We follow the
proof in [54, lemma 4.6]. Set zn = 0 for n ≥ N and

zn = ξn + zn+1, n < N.

Then

z−N = ξ−N +
2N∑
i=1

ξ−N+i = 0
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since Σ0(ξ, g) = 0. This yields that zn = 0 for any n ≤ −N . Moreover, if we set
z = (zn)n∈Z, we get that (id − σ)(z) = ξ. By condition (ii) in lemma 4.1, it also
follows that there exists f ∈ G0 such that g = (1−e−π)f , so (id−α)(z, f) = (ξ, g).
Thus, the kernel of Σ0 is (id− α)(G), so Σ0 induces an isomorphism

Σ : G/(id− α)(G) → K0(A).

The proof of (vi) follows as in [26, lemma 3.8]. Let β ∈ R and ϕ be a state on
(G,G+, v) such that ϕ ◦ α = e−βϕ.

The map L̂ can be extended uniquely to a Q-linear map on Q⊗Z G. For ease of
notation, we will identify L̂ with its extension L̂ : Q⊗ZG→ A(S, π). Then, we can

also extend ϕ uniquely to a Q-linear state ϕ̂ of Q ⊗Z G. Suppose that L̂(ξ, g) = 0
for some (ξ, g) ∈ Q⊗Z G. Then,

1
nv + (ξ, g), 1

nv − (ξ, g) ∈ (Q⊗Z G)+, so

− 1

n
≤ ϕ̂(ξ, g) ≤ 1

n

for any n ∈ N. Thus, ϕ̂(ξ, g) = 0, which implies that ϕ̂ factors through L̂. Indeed,
there is a Q-linear map

ψ : L̂(Q⊗Z G) → R, such that ψ ◦ L̂ = ϕ̂.

We claim that ψ is continuous. Let f ∈ L̂(Q⊗ZG) and suppose by compactness of
S that |f(x)| < n

m for any x ∈ S, for some n,m ∈ N. Then, there exists w ∈ Q⊗ZG

such that L̂(w) = f . Since

−n = −nL̂(v)(x) < mL̂(w)(x) < nL̂(v)(x) = n

for any x ∈ S, we get that −nv < mw < nv in Q ⊗Z G. Since ψ ◦ L̂ = ϕ̂ and
ϕ̂(v) = 1, it follows that |ψ(f)| = |ϕ̂(w)| ≤ n

m . If there exists g ∈ L̂(Q ⊗Z G) such
that |ψ(g)| > sup

x∈S
|g(x)|, then there exist n,m ∈ N such that

|ψ(g)| > n

m
> sup

x∈S
|g(x)|.

But by the argument above, if |g(x)| < n
m for any x ∈ S, then |ψ(g)| ≤ n

m , so ψ
must be norm-contractive.

It follows from (ii) above that L̂(Q ⊗Z G) is uniformly dense in A(S, π). By
continuity of ψ, we get that ψ extends uniquely to a linear norm-contractive map
ψ : A(S, π) → R. The fact that there exists a unique s ∈ π−1(β) such that ψ = evs
follows as in [26, lemma 3.8]. Hence, ϕ = evs ◦ L̂ as required. �

Remark 4.3. Note that the assumption that A has real rank zero was instrumental
in showing that S (G) is a Choquet simplex.

As it was done in proposition 3.2, we now build a suitable K 1-group.

Proposition 4.4. There exist a countable, abelian, torsion free group H, an
automorphism κ of H and a homomorphism q : H → K1(A) such that
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is exact.

Proof. We apply [47, proposition 3.5] to the pair (K1(A), 0). �

We can now construct a classifiable C∗-algebra B. To show that we can identify
A with a corner of a crossed product of B ⊗K, we will produce an automorphism
of B ⊗K such that the crossed product is Z-stable. The strategy is similar to the
one in §3. We first show that we can choose an automorphism of B ⊗ K which
has finite Rokhlin dimension. Combining this with the fact that B ⊗ K has finite
nuclear dimension will yield that the obtained crossed product has finite nuclear
dimension.

Lemma 4.5. Let ρG : G → Aff(S(G)) be the canonical map given by ρG(g)(φ) =
φ(g) for any g ∈ G and φ ∈ S(G). There exist a simple, separable, unital, nuclear,
Z-stable C∗-algebra B, satisfying the UCT and an automorphism γ of B ⊗K such
that the following conditions hold:

(i) Ell(B) ∼= (G,G+, v,H, S(G), ρG);
(ii) K0(γ) = α and K1(γ) = κ;
(iii) (B ⊗K)oγ Z is simple and Z-stable;
(iv) the restriction map is a bijection from the densely defined lower semicon-

tinuous traces on (B ⊗K)oγ Z onto the γ-invariant densely defined lower
semicontinuous traces on B ⊗K.

Proof. To construct a C∗-algebra B as in the statement of the lemma, we apply
Elliott’s range-of-the-invariant result (see theorem 2.12). Lemma 4.2 shows that
(G,G+, v) is a simple, weakly unperforated, countable ordered abelian group and
S (G) is a metrisable Choquet simplex. Thus, by theorem 2.12, there exists a simple,
separable, unital, nuclear, Z-stable C∗-algebra B, satisfying the UCT such that
Ell(B) ∼= (G,G+, v,H, S(G), ρG).

We construct an automorphism γ′ which satisfies (ii). Set p1 = 1B ⊗ e11, where
e11 is a minimal projection in K, and say that α([p1]0) = [p2]0 for some projection
p2 ∈ B⊗K. Then, essentially since any matrix amplification of B⊗K is isomorphic
to B ⊗K, there exists a ∗-isomorphism θ : B ⊗K → B ⊗K⊗K such that Ki(θ) =
Ki(φ) for i = 0, 1 (see for example the argument in [59, corollary 6.2.11]), where
φ : B ⊗ K → B ⊗ K ⊗ K is given by φ(x) = x ⊗ e11. By [10], we get isometries
vi ∈ M(B ⊗K ⊗K) such that viv

∗
i = pi ⊗ 1M(K) for i = 1, 2. Thus, the maps

ηi := Ad(vi) ◦ φ : B ⊗K → pi(B ⊗K)pi ⊗K

induce isomorphisms at the level of K 0 and K 1 for any i = 1, 2.
We then set

α′ := K0(η2) ◦ α ◦K0(η1)
−1
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to be a unital ordered group isomorphism from K0(p1(B ⊗ K)p1) to K0(p2(B ⊗
K)p2). Moreover, set

κ′ := K1(η2) ◦ κ ◦K1(η1)
−1

to be a group isomorphism from K1(p1(B ⊗K)p1) to K1(p2(B ⊗K)p2).
By construction of B, the canonical map from tracial states on B to states on

K0(B) is an affine homeomorphism. Therefore, the tracial states on pi(B⊗K)pi are
determined by states on K0(pi(B ⊗ K)pi) for any i = 1, 2. Hence, it is immediate
to see that there exists a unique linear isomorphism σ : Aff(T (p1(B ⊗ K)p1)) →
Aff(T (p2(B ⊗K)p2)), which is compatible with α′ via the canonical pairing maps.
Moreover, since B is nuclear, Z-stable, and satisfies the UCT, and all these proper-
ties are preserved by stable isomorphisms (see proposition 2.10), so are pi(B⊗K)pi
for i = 1, 2. Then, p1, p2 are full projections, so pi(B ⊗ K)pi is simple, separable,
unital for i = 1, 2. Thus, by [13, corollary 9.5], there exists a unital ∗-isomorphism
ψ : p1(B ⊗K)p1 → p2(B ⊗K)p2 such that (K0(ψ),K1(ψ),Aff(T (ψ))) = (α′, κ′, σ).

Set γ′ to be the following sequence of maps

By construction, we have that K0(γ
′) = α and K1(γ

′) = κ.
To check condition (iii), we will first show that we can choose γ such that the

crossed product is simple and has finite nuclear dimension. Building on work in
[50], we can take an automorphism γ of B ⊗K with finite Rokhlin dimension such
that Ki(γ) = Ki(γ

′) for i = 0, 1 ([35, lemma 4.7] or [34, theorem 3.4]). Since B⊗K
is simple, nuclear, and Z-stable, it has finite nuclear dimension ([14, theorem A]).
Moreover, γ has finite Rokhlin dimension, so the crossed product (B⊗K)oγ Z has
finite nuclear dimension ([50, theorem 5.2] or [33, theorem 3.1]). Since K0(γ)

n 6= id
for all n 6=0, no non-trivial power of γ is inner. Moreover, B ⊗ K is simple, so
(B⊗K)oγ Z is simple by [39, theorem 3.1]. Thus, we get (iii) by [56, corollary 8.7].

Since B is unital and K has real rank zero, B ⊗ K has an approximate unit of
projections. Moreover, γ has finite Rokhlin dimension, so (iv) follows from lemma
2.17. �

As B is unital and simple, the restriction map τ 7→ τ |B⊗e11
is a linear order-

preserving isomorphism from the cone of densely defined lower semicontinuous
traces on B ⊗ K to the space of tracial states on B ([18, proposition 4.7]). But,
by construction, the space of tracial states on B is affinely homeomorphic to the
space of states on K0(B), so we identify states on K0(B) with densely defined lower
semicontinuous traces on B ⊗ K. We will now show that A can be identified with
a corner of the crossed product (B ⊗K)oγ Z.

Lemma 4.6. Let B be the C∗-algebra and γ be the automorphism of B ⊗ K both
given by lemma 4.5 and p = 1⊗ e11 ∈ B ⊗K. Then p ((B ⊗K)oγ Z) p ∼= A.

Proof. We will use the classification theorem in [13, theorem 9.9]. First, we check
that p ((B ⊗K)oγ Z) p is a simple, separable, unital, nuclear, Z-stable C∗-algebra
satisfying the UCT. Note that (B⊗K)oγ Z is simple by (iii) of lemma 4.5, so p is a
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full projection. Moreover, B⊗K is nuclear, satisfies the UCT, and (B⊗K)oγ Z is
Z-stable by (iii) of lemma 4.5. Therefore, by proposition 2.11, p ((B ⊗K)oγ Z) p is
a simple, separable, unital, nuclear, Z-stable C∗-algebra which satisfies the UCT.

It remains to check that the Elliott invariant of p ((B ⊗K)oγ Z) p is isomorphic
to the Elliott invariant of A. As discussed in remark 2.9, we do not need to check
that the positive cones in the K 0-groups coincide. Note first that the space of tracial
states on p ((B ⊗K)oγ Z) p is linearly isomorphic to the space of densely defined
lower semicontinuous traces on (B ⊗ K) oγ Z by [18, proposition 4.7]. By (iv) of
lemma 4.5, the latter is in a bijective correspondence to the space of γ-invariant
densely defined lower semicontinuous traces on B ⊗ K. As observed previously,
since B is simple, unital and S(K0(B)) ∼= T (B), it follows that we can identify the
space of γ-invariant densely defined lower semicontinuous traces on B ⊗ K with
the space of K0(γ)-invariant states on K0(B). But the latter is homeomorphic to
π−1(0) ∼= T (A) by (vi) of lemma 4.2. Hence, T (p ((B ⊗K)oγ Z) p) ∼= T (A).

To compute the K -groups of p ((B ⊗K)oγ Z) p, we apply the
Pimsner–Voiculescu exact sequence in [45, theorem 2.4] to the C∗-algebra
B ⊗ K and the automorphism γ. Identifying Ki(B ⊗ K) with Ki(B) for i = 0, 1,
we get that

Recall from (i) of lemma 4.5 that K1(B) = H and from (ii) of lemma 4.5 that
K1(γ) = κ. Then, proposition 4.4 gives that id−K1(γ) is injective. Therefore, the
map K0((B ⊗ K) oγ Z) → K1(B) is zero, which yields that the map K0(B) →
K0((B ⊗K)oγ Z) is surjective. Thus,

K0((B ⊗K)oγ Z) ∼= K0(B)/(id−K0(γ))(K0(B)). (3.9)

Since K0(B) = G by (i) of lemma 4.5 and K0(γ) = α by (ii) of lemma 4.5, we get
that K0((B ⊗K)oγ Z) ∼= K0(A) by (v) of lemma 4.2. This gives that,

K0 (p ((B ⊗K)oγ Z) p) ∼= K0(A).

Since Σ([p]0) = [1A]0, it follows that the K 0-isomorphism is compatible with the
position of the unit.

Combining (ii) of lemma 4.5 and (iv) of lemma 4.2 yields that the map id−K0(γ)
is injective. Therefore, we obtain the short exact sequence
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It follows that K1((B ⊗K)oγ Z) ∼= K1(A) by proposition 4.4. Hence,

K1 (p ((B ⊗K)oγ Z) p) ∼= K1(A).

To apply [13, theorem 9.9], it remains to check that p ((B ⊗K)oγ Z) p and A
have the same pairing between K -theory and traces. Let τ be a tracial state on A
and τ∗ be the induced state on K0(A). Recall that the homeomorphism from T (A)
onto T (p ((B ⊗K)oγ Z) p) is given by following sequence of mappings. One first

uses (vi) of lemma 4.2 to send τ to evτ ◦ L̂, which is a K0(γ)-invariant state on

K0(B). Then, (i) of lemma 4.5 yields that evτ◦L̂ corresponds to a unique γ-invariant
tracial state on B ⊗ K. By (iv) of lemma 4.5, this extends uniquely to a densely
defined lower semicontinuous trace on (B ⊗K)oγ Z. As mentioned previously, the
latter corresponds to a tracial state on p ((B ⊗K)oγ Z) p ([18, proposition 4.7]).

Therefore, it suffices to check that

τ∗ ◦ Σ0 = evτ ◦ L̂,

where Σ0 : K0(B) → K0(A) is the homomorphism in (v) of lemma 4.2 which
induces the isomorphism Σ. If (ξ, g) ∈ K0(B), then

τ∗ ◦ Σ0(ξ, g) = τ∗

(∑
n∈Z

ξn

)
=
∑
n∈Z

ρA(ξn)(τ).

On the other hand,

(evτ ◦ L̂)(ξ, g) = g(τ) +
∑
n∈Z

L(ρA(ξn))(τ)e
nπ(τ).

Since π(τ) = 0 and g ∈ G0 is supported away from T (A) by lemma 4.1, it follows
that

(evτ ◦ L̂)(ξ, g) =
∑
n∈Z

L(ρA(ξn))(τ).

Furthermore, recall from (3.1) that for any f ∈ Aff(T (A)), L(f)|T (A) = f . Thus,

(evτ ◦ L̂)(ξ, g) =
∑
n∈Z

ρA(ξn)(τ) = τ∗ ◦ Σ0(ξ, g).

Hence, as A and p ((B ⊗K)oγ Z) p have the same Elliott invariant, they are
isomorphic by [13, theorem 9.9]. �

4.2 KMS bundles on unital tracial classifiable C∗-algebras

In this subsection, we will finish the proof of theorem B. Consider the dual action
γ̂ on C = (B ⊗ K) oγ Z as a 2π-periodic flow. Recall that γ̂t(f)(x) = e−ixtf(x)
for any t ∈ R, f ∈ Cc(Z, B ⊗ K) and x ∈ Z. Since p ∈ B ⊗ K, γ̂ restricts to an
action on pCp ∼= A which we denote by θ. We claim that the KMS-bundle (Sθ, πθ)
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is isomorphic to (S, π). We will crucially use [54, lemma 3.1], so we state it for the
convenience of the reader.

Lemma 4.7. ([54, lemma 3.1]). Let D be a C∗-algebra and σ ∈ Aut(D) an auto-
morphism of D. Let σ̂ be the dual action on DoσZ considered as a 2π-periodic flow.
For β ∈ R, the restriction map ω 7→ ω|D is a bijection from the β-KMS weights for
σ̂ onto the densely defined lower semicontinuous traces τ on D with the property
that τ ◦ σ = e−βτ . The inverse is the map τ 7→ τ ◦ P , where P : D oσ Z → D is
the canonical conditional expectation.

Proof of theorem B. This follows the strategy in [26, lemma 3.13]. Let (ω, β) ∈ Sθ.
By [40, remark 3.3], ω extends uniquely to a β-KMS weight ω̂ for γ̂ on C. By lemma
4.7, the restriction ω̂|B⊗K is a densely defined lower semicontinuous trace on B⊗K
such that

ω̂|B⊗K ◦ γ = e−βω̂|B⊗K.

Since ω̂(1⊗ e11) = 1, (vi) of lemma 4.2 gives a unique s ∈ π−1(β) such that

(ω̂|B⊗K)∗ = evs ◦ L̂. (3.10)

Then, we can define a map ξ : Sθ → S by ξ(ω, β) = s. By construction, π ◦ ξ = πθ

and the restriction ξ : (πθ)−1(β) → π−1(β) is affine for any β ∈ R.
We will first check that the map ξ is injective. Let (ωi, βi) ∈ Sθ such that

ξ(ω1, β1) = ξ(ω2, β2) = s for i = 1, 2. Since π ◦ ξ = πθ, it follows that β1 = β2. By
construction of the map ξ, we have that

(ω̂1|B⊗K)∗ = (ω̂2|B⊗K)∗ .

As the space of densely defined lower semicontinuous traces on B⊗K is in a bijective
correspondence to the space of states on K0(B), it follows that ω̂1|B⊗K = ω̂2|B⊗K,
so ω̂1 = ω̂2 by lemma 4.7. Since ω̂i is an extension of ωi for i = 1, 2, we get that
ω1 = ω2, so the map ξ is indeed injective.

We will now check that ξ is also surjective. Let s ∈ S ∩ π−1(β) for some β ∈ R.
Then evs ◦ L̂ is a state on K0(B) such that

evs ◦ L̂ ◦K0(γ) = e−βevs ◦ L̂.

By construction, states on K0(B) are uniquely induced by tracial states on B
(lemma 4.5). These are in one-to-one correspondence with densely defined lower
semicontinuous traces on B ⊗ K ([18, proposition 4.7]). Therefore, there exists a

unique densely defined lower semicontinuous trace τ on B⊗K such that τ∗ = evs◦L̂
and τ∗ ◦K0(γ) = e−βτ∗. Since the canonical map from densely defined lower semi-
continuous traces on B ⊗K to states on K0(B) is a bijection (lemma 4.5 and [18,
proposition 4.7]), we get that τ ◦ γ = e−βτ . If P : C → B ⊗ K is the canonical
conditional expectation, then the restriction τ ◦ P |pCp is a β-KMS state for θ by
lemma 4.7. By construction, ξ(τ ◦ P |pCp, β) = s, so ξ is surjective.

If we show that ξ−1 : S → Sθ is continuous, then ξ is a homeomorphism by
lemma 2.5. Recall from remark 2.4 that both S θ and S are metrisable and let sn
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be a sequence in S which converges to s. Then L̂(g)(sn) converges to L̂(g)(s) for
any g ∈ G ∼= K0(B). If ξ−1(sn) = (ωn, βn) and ξ

−1(s) = (ω, β), then (3.10) yields
that

lim
n→∞

(ω̂n|B⊗K)∗(g) = (ω̂|B⊗K)∗(g)

for any g ∈ K0(B). Since the canonical map from the densely defined lower semicon-
tinuous traces on B⊗K to states on K0(B) is a bijection (follows again from lemma
4.5 and [18, proposition 4.7]), ω̂n|B⊗K converges pointwise to ω̂|B⊗K. Thus, ω̂n

converges pointwise to ω̂ by lemma 4.7, so ωn converges pointwise to ω. Moreover,
βn = π(sn) converges to π(s) = β by continuity of π, so (ωn, βn) converges to (ω, β).
This shows that ξ−1 is continuous. Hence, the KMS-bundle (Sθ, πθ) is isomorphic
to (S, π). Combining this with lemma 4.6 finishes the proof of theorem B. �
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