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1. Introduction

In (4) Vala proves a generalization of Schauder’s theorem (3) on the
compactness of the adjoint of a compact linear operator. The particular case
of Vala’s result that we shall be concerned with is as follows. Let ¢, and ¢,
be non-zero bounded linear operators on the Banach spaces Y and X respec-
tively, and denote by T, the operator on B(X, Y) defined by

1To(s) = t,5t, (seB(X, Y)).

Vala shows that T, is compact if and only if both ¢, and ¢, are compact.
In this paper we prove similar results for Riesz operators. We first show that
1T, is a Riesz operator whenever ¢; and f, are both Riesz operators. The
proof of this result simply consists of two applications of Ruston’s character-
ization of Riesz operators [(2), Theorem 3.1]. A converse result is established,
and we also determine the spectrum and the spectral projections of ;T, in
terms of those of ¢, and 1,.

The problem can also be transferred to a general Banach algebra settingwhere
for elements a and ¢ in a Banach algebra A, we consider the operator , 7, on
A where ,T(b) = abc (be A). The situation when ,T, is compact for each
element a in A is considered in a previous paper (1) by the author. The situation
when T, is a Riesz operator for some elements a and ¢ in A4 is considered in
the author’s Ph.D. thesis for Edinburgh University, of which the present paper
is a part.

I should like to thank Professor F. F. Bonsall for his suggestion that some
of my original proofs could be shortened.

2. Notation and preliminaries

X and Y will denote Banach spaces over the complex field C, and we denote
by X* and Y* the conjugate space of X and Y respectively. We denote by
B(X)and B(Y) the algebra of bounded linear operators on X and Y respectively.
As no confusion should arise, we use e to denote the identity operator on both
X and Y. We denote by B(X, Y) the space of bounded linear transformations
of X into Y. The spectrum of an element ¢ in B(X) or B(Y) is denoted by
o(t) and the spectral radius by r(f). We write 64(t) for the non-zero spectrum
o()\{0}. The range and the null space of an operator ¢ will be denoted by
R(t) and N(¢) respectively. The restriction of ¢ to an invariant subspace M
will be written ¢ | M. For fin X* and y in Y, we denote by y®f the operator

in B(X, Y) defined by
0®Nx) = flx)y (xeX).
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Let ¢ be in B(X). In (5) West defines a Riesz point of () to be a point A
in o(¢f) for which there exist closed subspaces N(4; ¢) and F(A; t) such that
X = N(; 0Y®F(4; 1), dim N(L; t)<oo, N(A; t) and F(1; t) are invariant
under ¢, and ¢— e restricted to N(4; t) is nilpotent while — e restricted to
F(; t) is a homeomorphism. Take the projection of X into N(A; t) given by
this decomposition of X. Then it is easily seen that 1 is a non-zero Riesz
point of o(¢) if and only if A € 6,(?) and there is a projection g, of finite rank in
B(X) which commutes with ¢ and for which 1 ¢ a(t(e—gq,)) and (t—Ae)’q, =0
for some positive integer v.

Let A be a Riesz point of o(¢z). Then clearly A has finite index v = v(4; ¢)
and

N(4; 1) = N((t—1e)’),

F(4; t) = R((t— 2e)").

In (5), Theorem 2.1, West shows that, if 1 # 0, then A is an isolated point in
o(?). Let y(1) be a circle in C of centre 4 such that A is the only point of a(¢)

in or on y(4). Then p, = —l—f (ue~1)"'du is the spectral projection
7t Jyay

associated with 4 and ¢. It is easily seen that the range of p; is N(4; ¢) and the
null space of p, is R(4; #). Then, if A # 0, g, will be the spectral projection p;.

The operator ¢t is said to be a Riesz operator on X if t € B(X) and if each
point in g4(¢) is a Riesz point. 1In particular, a quasi-nilpotent operator is a
Riesz operator. Let R(X) denote the class of Riesz operators on X and let
K(X) denote the class of compact operators on X. The spectral theory of
compact operators shows that K(X)=R(X). The quotient algebra B(X }/K(X)
is a Banach algebra under the infimum norm. Let t—[f] be the canonical
mapping of B(X) onto B(X)/K(X'). In (2), Theorem 3.1, Ruston shows that
t € R(X)if and only if [#] is a quasi-nilpotent element in B(X)/K(X), i.e.

1/n
inf{ inf || t"-—c”} =0.
ce K(X)

Ruston also shows that this result remains true if we replace K(X) by the closure
of the ideal of finite rank operators in B(X).

Let ¢ be a Riesz operator on X. Since each non-zero point in 6(¢) is isolated,
it follows that ¢(¢) is at most countable with 0 as the only possible accumulation
point. We shall need the following well-known result for spectral projections.

Proposition 1. Let te R(X), and let 4,, ..., A, be distinct points in oy(t)
with associated spectral projections py, ..., p,. Put p= i Di. Then
@ poy=0ifikj (1=0,j <n),
(i) oo(tp) = {4} =1
(iii) oo(tle—p)) = oo(OYN\ {4} = 1-
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3. Main results

Throughout this section ¢, will be a bounded linear operator on Y and ¢,
will be a bounded linear operator on X. We denote by ,,T,, the bounded linear
operator on B(X, Y) defined by

o1,(8) =t;st; (se B(X, Y)).

This will usually be abbreviated to ;7,; the full notation is needed in the
statement of Theorem 4.

Lemmal. () [T 0=1t 0210,

(i) r(,T3) = r(t)r(1,).

Proof. (i) Clearly | ,7, | S |l ¢, | | 2 |. To prove equality we proceed
as follows. Given ¢>0, take yin Y and fin X*such that [y | = [ f| = 1
and

Loyl 2l la-o, 127121 4 la-0 = ] o Ja-o.
Then | y@f | =y {|f]l =1and

I noen| =[werf|=|ullsriza-9*[uf] ]

Hence |\ T, | = 1 ¢4, || |1 22 |l
(ii) Let n be a positive integer. Since ,T3(s) = t}st; for s in B(X, Y), it
follows from (i) that | , T || = | 7| | &3 |- Hence r(,T2) = r(t)r(t;).

If ¢, and ¢, have rank one, let ¢, = y®g and t, = x®f where xe X,
feX*, yeY, ge Y*. Then T,(s) = g(s(x))(y®f) for s in B(X, Y). Thus
it is easily verified that ,T, is a non-zero operator of finite rank if both ¢, and
t, are non-zero and have finite rank. The converse is also true but is not used
in this paper. In Theorem 3 of (4) Vala shows that ,T’, is a non-zero compact
operator on B(X, Y) if and only if ¢; and ¢, are non-zero compact operators.
The following results show how the * Riesz properties  of ¢, and ¢, are carried
over to | T,.

Theorem 1. Let t, and t, be Riesz operators. Then T, is a Riesz operator
on B(X, Y).

Proof. Let £>0 be given. The Ruston characterization of Riesz operators
shows that there exist finite rank operators ¢5 and ¢,, 75 in B(Y), ¢, in B(X),
and a positive integer » such that

[n-nlse [8-u]se
Let s be in B(X, Y). Then
" 1T5(s)— 3T4(s)|| = "(t: —t3)sty + t3s(t3 —ty) “
(| a]+laDls]
(| "+ e |+ s |
< 3em | 5
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where M = max (|| ¢, ||, || 2 ||, ¢). Hence
| 177 =T, || < 3M"".

Since 3T, has finite rank, it follows from Ruston’s characterization that 7,
is a Riesz operator.

Putting ¥ = C and ¢; = e, we see that Theorem 1 generalizes the result
that the adjoint of a Riesz operator ¢ is a Riesz operator—see Theorem 3.2
in (5). It is clear that o4(t*) = oo(t) and that, if 1e0y(¢), the spectral pro-
jection associated with 1 and ¢* is the adjoint of the spectral projection associated
with 4 and z. We shall generalize these results later. We now give a converse
result.

Theorem 2. (i) 7T, is a quasi-nilpotent operator if and only if either t, or t,
is a quasi-nilpotent operator.

(ii) Let T, be a Riesz operator but not a quasi-nilpotent operator. Then t,
and t, are Riesz operators.

Proof. (i) This follows immediately from Lemma 1 (ii).

(ii) Let ,T, be a Riesz operator with a non-zero point A in its spectrum.
We first show that ¢, and t¥ have non-zero eigenvalues. Let s be a non-zero
element in N(,T, — AI) where I is the identity operator on B(X, Y). For each
positive integer n, t}s lies in N(, T, — AI) which is finite-dimensional. It follows
that for some positive integer n the set {s, t;s, ..., £]s} is linearly dependent but
the set

{s, 118, ..., 1;7's}

is linearly independent. Let p be a polynomial of degree n such that p(¢,)s = 0.
Now tis #0 since tjst3 = A"s, and hence p has a non-zero factor A,.
Let p(&) = (£~ 4,)q(&) for some polynomial g of degree n—1. Then g(¢,)s # 0
but (¢, —A,e)q(t,)s = 0. Hence there is a non-zero point y, in Y such that
t,;y, = 4,»,. Similarly, there exists a non-zero complex number 4, and a
non-zero point f, in X* such that 3£, = 4, f,.

Let U be the set {y®/f,; y€Y}. Then U is a closed subspace of B(X, Y),
and U is invariant under ,7, since

1LORS)=ty®13f, = L(4Ly®f) (yeY).

The map y—»y®f, is a homeomorphism between Y and U. In the resulting
algebraic homeomorphism between B(Y) and B(U) the operator ¢, corresponds
to 1/A,(,T, | U). The restriction of a Riesz operator to an invariant subspace
is a Riesz operator—see Theorem 5.3 (i) in (6). Thus ,7, | U is a Riesz
operator on U, and hence ¢, is a Riesz operator on Y.

A similar argument shows that t3 is a Riesz operator. It follows from
Theorem 3.2 in (5) that ¢, is a Riesz operator.

Remark. In the proof of Theorem 2 (ii) we have used the fact that a bounded
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linear operator is a Riesz operator if its adjoint is a Riesz operator. Theorem 2
generalizes this result—take ¥ = Cand ¢, = e.

We now determine the spectral structure of ;T, in terms of the spectral
structure of ¢, and ¢,.

Theorem 3. Let t, and t, be Riesz operators on Y and X respectively and
let A be in C. Then A€ ao(,T,) if and only if there exist complex numbers A,
in 6o(ty) and 2, in 6y(t,) such that A = 2,4,.

Proof. If A€ oo(,T3), let s be a non-zero element in N(,T,—AI). The proof
of Theorem 2 (ii) shows that there is a non-zero complex number A, and a
polynomial ¢ such that (¢, - 4,e)q(¢t,)s = 0 and g(¢,)s # 0. Since
) q(t,)s € N(,T,— A1),
it follows that

(A19(¢ )9t = 1,q(ty)st; = Aq(2y)s.
Thus A/, is in a4(2;).

Now suppose that A, € oo(t;), 1, €64(f;) and A = A;4,. There exists a
non-zero point y in ¥ and a non-zero point fin X* such that t,y = A,y and
t3f = A,f since ¢, and t5 are Riesz operators. Since 7,(y®f) = 1,4,(yQf),
it follows that A € 64(,T5)-

We need the following elementary lemma from (6), Lemma 2.1 (i), in order
to prove the next theorem.

Lemma 2. Let s; (1 < i £ n) be bounded linear operators on X such that
5;5; = 0ifi #j. Then a( Y si> = U o(s).
i=1 1=1
Let ¢, and ¢, be Riesz operators with non-zero spectral radii, and let A
be in 6¢(4T,). If p is a non-zero complex number such that A/u € ay(ty),
then | u| = | A|/r(t,). Since o(t,) is compact and is at most countable with
zero as the only possible accumulation point, it follows that the set

{1; neo(ts), Ape ao(t)}
is finite. Let this set consist of the distinct points y;, ..., u,, and put 4; = A/u;
(1 £i<n). Foreachi,l £i < n,let p; and g, denote the spectral projections
associated with 2, ¢, and u;, ¢, respectively.

Theorem 4. P, = ) .1, is the spectral projection associated with A and
i=1
173,

Proof. It is sufficient to show that P, is a finite rank projection on B(X, Y),
commuting with ;T,, such that (,T,—Al)"P; = O for some positive integer v
and such that 4 ¢ o,(;T,(I-P,)).

For each i, 1 £i £ n, ,T,, has finite rank since p; and g; have finite rank.

‘By Proposition 1 (i), p;p; = q:9; = 0 if i #j, and thus P, is a projection.
Clearly P, commutes with ;7.
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Foreachi, 1 £i < n,

ITZ_)"I = (tl—).[e)q;z_*-li eT(tz-me)'
Then, if m is a positive integer,

(L= = Y (’") APty ~ heYs(t, — )", (se B(X, Y)).
i=1\J
Taking v; = v(4;)+v(u;)—1, where v(1;) and vw(g;) are the indices of 4; and

u; respectively, it follows that (,T,-A4l)"", T, =0. Thus for v= sup v
o
we have terar

(ITZ—}.I)VP;. = 0.
Letg= ) gq; Then
i<

1U—P;) = . —Zl ll(e—Pi)thqi+t1th(e—q)'
The product of a Riesz operator with a bounded linear operator which com-
mutes with it is also a Riesz operator—see Theorem 3.1 in (5). Then ¢,(e—p;),
t,q; and t,(e—q) are Riesz operators. It then follows from Proposition 1 and
Theorem 3 that, for each i, 1 =<i £ n, 1 does not lie in the spectrum of
t1e—p Ti2q; @nd that A does not lie in the spectrum of , T, Hence by
Lemma 2, A ¢ 0'0(1T2(I—P1)).

2(e—q)*
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