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1. Introduction
In (4) Vala proves a generalization of Schauder's theorem (3) on the

compactness of the adjoint of a compact linear operator. The particular case
of Vala's result that we shall be concerned with is as follows. Let fx and t2

be non-zero bounded linear operators on the Banach spaces Y and X respec-
tively, and denote by XT2 the operator on B(X, Y) defined by

!r2(*) = M/2 (seB(X, Y)).
Vala shows that iT2 is compact if and only if both tt and t2 are compact.
In this paper we prove similar results for Riesz operators. We first show that
yT2 is a Riesz operator whenever tt and t2 are both Riesz operators. The
proof of this result simply consists of two applications of Ruston's character-
ization of Riesz operators [(2), Theorem 3.1]. A converse result is established,
and we also determine the spectrum and the spectral projections of tT2 in
terms of those of tl and t2.

The problem can also be transferred to a general Banach algebra settingwhere
for elements a and c in a Banach algebra A, we consider the operator aTc on
A where aTc(b) = abc (beA). The situation when aTa is compact for each
element a in A is considered in a previous paper (1) by the author. The situation
when aTc is a Riesz operator for some elements a and c in A is considered in
the author's Ph.D. thesis for Edinburgh University, of which the present paper
is a part.

I should like to thank Professor F. F. Bonsall for his suggestion that some
of my original proofs could be shortened.

2. Notation and preliminaries
X and Y will denote Banach spaces over the complex field C, and we denote

by X* and Y* the conjugate space of X and Y respectively. We denote by
B(X) and B(Y) the algebra of bounded linear operators on Zand Y respectively.
As no confusion should arise, we use e to denote the identity operator on both
X and Y. We denote by B(X, Y) the space of bounded linear transformations
of X into Y. The spectrum of an element t in B(X) or B( Y) is denoted by
a(i) and the spectral radius by r(t). We write ao(i) for the non-zero spectrum
<T(/)\{0}. The range and the null space of an operator t will be denoted by
R(t) and N(t) respectively. The restriction of t to an invariant subspace M
will be written t \ M. For/in X* and y in Y, we denote by 7®/the operator
in B(X, Y) defined by

<f)()=f(x)y (xeX).
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Let t be in B(X). In (5) West defines a Riesz point of o(t) to be a point A
in a{i) for which there exist closed subspaces N(A; t) and F(X; t) such that
X = N(X; i)®F(X; i), dimiV(A; t)<co, N(X; t) and F(X; t) are invariant
under t, and t—Xe restricted to iV(A.; 0 is nilpotent while t—Xe restricted to
F(X; t) is a homeomorphism. Take the projection of X into N(X; t) given by
this decomposition of X. Then it is easily seen that A is a non-zero Riesz
point of a(t) if and only if A e <xo(/) and there is a projection qx of finite rank in
B(X) which commutes with t and for which X $ o(t(e—qx)) and (t—Xe)vqx = 0
for some positive integer v.

Let A be a Riesz point of a(t). Then clearly X has finite index v = v(A; t)
and

N(X; t)=N((t-Xey),

F(A; t) = R((t-XeT).

In (5), Theorem 2.1, West shows that, if X ^ 0, then X is an isolated point in
o(t). Let y(A) be a circle in C of centre X such that A is the only point of o{t)

in or on y(A). Then pJi = {pLe~i)~xd\i is the spectral projection
2«» J

associated with A and f. It is easily seen that the range of pK is N(X; t) and the
null space ofpx is R(X; t). Then, if A ^ 0, qx will be the spectral projection pk.

The operator f is said to be a Riesz operator on X if t e B(X) and if each
point in ao(t) is a Riesz point. In particular, a quasi-nilpotent operator is a
Riesz operator. Let R(X) denote the class of Riesz operators on X and let
K(X) denote the class of compact operators on X. The spectral theory of
compact operators shows that K(X)^R(X). The quotient algebra B(X)/K(X)
is a Banach algebra under the infimum norm. Let t-*[t] be the canonical
mapping of B(X) onto B(X)/K(Y). In (2), Theorem 3.1, Ruston shows that
t e R(X) if and only if [?] is a quasi-nilpotent element in B(X)/K(X), i.e.

I l / n
= 0.inf j inf || f-c ||V

Ruston also shows that this result remains true if we replace K{X) by the closure
of the ideal of finite rank operators in B(X).

Let t be a Riesz operator on X. Since each non-zero point in a(t) is isolated,
it follows that o(i) is at most countable with 0 as the only possible accumulation
point. We shall need the following well-known result for spectral projections.

Proposition 1. Let t e R(X), and let A1; ..., Xn be distinct points in ao{t)

with associated spectral projections plt ..., pn. Put p = ]£ pt. Then

(i) p,pj = 0 if i*j (l^i,j £n),

(ii)

(iii)
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3. Main results
Throughout this section tt will be a bounded linear operator on Y and t2

will be a bounded linear operator on X. We denote by tlTtl the bounded linear
operator on B(X, Y) defined by

,,7;2(s) = ttst2 (seB(X,Y)).

This will usually be abbreviated to 1T2! the full notation is needed in the
statement of Theorem 4.

Lemma 1. (i) || XT2 || = || ty || || t2 ||,

(ii) rdr2) = i-^Mfj).

Proof, (i) Clearly || XT2 || ^ || ^ || || t2 ||. To prove equality we proceed
as follows. Given e>0, take y in Y and / i n Z* such that || j || = | | / | | = 1
and

\\hy\\*\\h\\(l-e),\\t*f\\z\\t*2\\(l-e)=\\t2\\(l-e).

Then \\y®f || = \\y\\ \\f\\ = land

Hence || tT2 || = || /, || || ?2 ||.
(ii) Let n be a positive integer. Since xT2{s) = t\st2 for s in 5(Z, 7), it

follows from (i) that | YT2 || = | t[ \\ \\ f2 | . Hence r^T2) = r(tl)r(t2).
If ^ and r2

 n a v e rank one, let t1 = y®g and t2 = x®/ where xe X,
fe X*, yeY, ge Y*. Then ^(s) = ffWx))O®/) for s in ^ Z , 7). Thus
it is easily verified that {T2 is a non-zero operator of finite rank if both tx and
t2 are non-zero and have finite rank. The converse is also true but is not used
in this paper. In Theorem 3 of (4) Vala shows that tT2 is a non-zero compact
operator on B(X, Y) if and only if tx and t2 are non-zero compact operators.
The following results show how the " Riesz properties " of f j and t2 are carried
over to {T2.

Theorem 1. Let tx and t2 be Riesz operators. Then tT2 is a Riesz operator
on B(X, Y).

Proof. Let e>0 be given. The Ruston characterization of Riesz operators
shows that there exist finite rank operators t3 and t^, t3 in B(Y), ?4 in B(X),
and a positive integer n such that

II 1" _ f II < P™ II t" t II < c"

Let s be in B(X, Y). Then

< 3e"Mn II s
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where M = max (|| t1 \\, [| t2 ||, e). Hence

fl i ^ - 3 7 i || ^ 3Af-e-.

Since 3T4 has finite rank, it follows from Ruston's characterization that t r 2

is a Riesz operator.
Putting Y = C and tt = e, we see that Theorem 1 generalizes the result

that the adjoint of a Riesz operator f is a Riesz operator—see Theorem 3.2
in (5). It is clear that <ro(t*) = ao(t) and that, if X e ao{i), the spectral pro-
jection associated with X and t* is the adjoint of the spectral projection associated
with X and t. We shall generalize these results later. We now give a converse
result.

Theorem 2. (i) ±T2 is a quasi-nilpotent operator if and only if either tt or t2

is a quasi-nilpotent operator.

(ii) Let XT2 be a Riesz operator but not a quasi-nilpotent operator. Then tt

and t2 are Riesz operators.

Proof, (i) This follows immediately from Lemma 1 (ii).
(ii) Let tT2 be a Riesz operator with a non-zero point X in its spectrum.

We first show that tx and t* have non-zero eigenvalues. Let s be a non-zero
element in NdT2 — XI) where / is the identity operator on B(X, Y). For each
positive integer n, f[s lies in N^^—XF) which is finite-dimensional. It follows
that for some positive integer n the set {s, tts f[s} is linearly dependent but
the set

{s, ^s, ..., IT1*}

is linearly independent. Let/? be a polynomial of degree n such thatj7(f1)j = 0.
Now t\s # 0 since t"1st2 = X"s, and hence p has a non-zero factor Xt.
Let p(O = (£ — Xi)q(£) for some polynomial q of degree n— 1. Then qit^s # 0
but (t1 — X1e)q(tl)s = 0. Hence there is a non-zero point yt in Y such that
t1yl = X^i. Similarly, there exists a non-zero complex number X2 and a
non-zero point f2 in X* such that f*/2 = ^2/2-

Let U be the set {y®f2; y e Y}. Then £/ is a closed subspace of B(X, Y),
and U is invariant under tT2 since

ir2(y®/2) = 'iy®*272 = h(hy®h) (y e n

The map y-*y®f2 is a homeomorphism between Y and £/. In the resulting
algebraic homeomorphism between B( Y) and B(U) the operator tx corresponds
to \IX2(yT2 I U). The restriction of a Riesz operator to an invariant subspace
is a Riesz operator—see Theorem 5.3 (i) in (6). Thus XT2 \ U is a Riesz
operator on U, and hence tt is a Riesz operator on 7.

A similar argument shows that t* is a Riesz operator. It follows from
Theorem 3.2 in (5) that t2 is a Riesz operator.

Remark. In the proof of Theorem 2 (ii) we have used the fact that a bounded
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linear operator is a Riesz operator if its adjoint is a Riesz operator. Theorem 2
generalizes this result—take Y = C and tx = e.

We now determine the spectral structure of XT2 in terms of the spectral
structure of tt and t2.

Theorem 3. Let tx and t2 be Riesz operators on Y and X respectively and
let A be in C. Then A e a0dT2) if and only if there exist complex numbers Ax

in ao(tj) and A2 in ao(t2) such that A = Xik2.

Proof. If A e ffoCi^X let s be a non-zero element in N(tT2 - A/). The proof
of Theorem 2 (ii) shows that there is a non-zero complex number At and a
polynomial q such that (^ — A^qQJs = 0 and qQ^s # 0. Since

it follows that

Thus X/Xl is in ao(t2).
Now suppose that Aj e ffo(

fi)» -̂2 e ffo(*2) a n <l ^ = AXA2. There exists a
non-zero point y in Y and a non-zero p o i n t / i n X* such that ^.y = A,j> and
' * / = A2/since tt and t* a r e Riesz operators. Since iT2(y®f) = ^iX2(y<S)f),
it follows that A 6 ffod3^)-

We need the following elementary lemma from (6), Lemma 2.1 (i), in order
to prove the next theorem.

Lemma 2. Let st (1 g i' £ n) be bounded linear operators on X such that

SiSj = 0ifi* j . Then a[ £ st )= \J a(s,).

Let tt and t2 be Riesz operators with non-zero spectral radii, and let A
be in OodTj). If n is a non-zero complex number such that A/̂  e <70(/i)>
then | ii | ^ | A |//-(*i). Since o(t2) is compact and is at most countable with
zero as the only possible accumulation point, it follows that the set

{fi; n e <ro(t2), X/n e (To(?1)}

is finite. Let this set consist of the distinct points nu ..., fin, and put A, = Xlfii

( l ^ i ^ «). For each i, 1 ^ i ^ n, let/;, and <7( denote the spectral projections
associated with A,, ft and /if, f2 respectively.

n

Theorem 4. PA = £ PiT4l w /Ae spectral projection associated with A and

iT2.
Proof. It is sufficient to show that Px is a finite rank projection on B(X, Y),

commuting with ^T2, such that {{T2 — Xiypk = 0 for some positive integer v
and such that A $ o0(iT2(!-Pd).

For each i, 1 g i ^ n, PlTqi has finite rank since pt and q{ have finite rank.
'By Proposition 1 (i), ptpj = q^j = 0 if i ^ j , and thus Px is a projection.
Clearly Px commutes with (T2.
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For each /, 1 ^ i ^ n,

Then, if m is a positive integer,

jti (seB(X,Y)).

Taking v,- = v(A,-) + v(/i,)—1, where v(A,) and v(jit) are the indices of Xt and
/ii respectively, it follows that (_iT2-Xiy"PtTqt = 0. Thus for v= sup v,

we have

Let q = Y, Qi- Then
i = 1

i = 1

The product of a Riesz operator with a bounded linear operator which com-
mutes with it is also a Riesz operator—see Theorem 3.1 in (5). Then t^e—pi),
t2qt and t2{e—q) axe. Riesz operators. It then follows from Proposition 1 and
Theorem 3 that, for each /, 1 ^ i ^ n, X does not lie in the spectrum of
tl(e-Pi)T,2qi and that X does not lie in the spectrum of uTti(e_qy Hence by
Lemma 2, X £ Oo^T^I-Pi)).
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