ON RIESZ OPERATORS

by J. C. ALEXANDER (Received 29th March 1968)

1. Introduction

In (4) Vala proves a generalization of Schauder's theorem (3) on the compactness of the adjoint of a compact linear operator. The particular case of Vala's result that we shall be concerned with is as follows. Let t_1 and t_2 be non-zero bounded linear operators on the Banach spaces Y and X respectively, and denote by ${}_1T_2$ the operator on B(X, Y) defined by

$$_{1}T_{2}(s) = t_{1}st_{2} \quad (s \in B(X, Y)).$$

Vala shows that $_1T_2$ is compact if and only if both t_1 and t_2 are compact. In this paper we prove similar results for Riesz operators. We first show that $_1T_2$ is a Riesz operator whenever t_1 and t_2 are both Riesz operators. The proof of this result simply consists of two applications of Ruston's characterization of Riesz operators [(2), Theorem 3.1]. A converse result is established, and we also determine the spectrum and the spectral projections of $_1T_2$ in terms of those of t_1 and t_2 .

The problem can also be transferred to a general Banach algebra setting where for elements a and c in a Banach algebra A, we consider the operator ${}_aT_c$ on A where ${}_aT_c(b)=abc$ $(b\in A)$. The situation when ${}_aT_a$ is compact for each element a in A is considered in a previous paper (1) by the author. The situation when ${}_aT_c$ is a Riesz operator for some elements a and c in A is considered in the author's Ph.D. thesis for Edinburgh University, of which the present paper is a part.

I should like to thank Professor F. F. Bonsall for his suggestion that some of my original proofs could be shortened.

2. Notation and preliminaries

X and Y will denote Banach spaces over the complex field C, and we denote by X^* and Y^* the conjugate space of X and Y respectively. We denote by B(X) and B(Y) the algebra of bounded linear operators on X and Y respectively. As no confusion should arise, we use e to denote the identity operator on both X and Y. We denote by B(X, Y) the space of bounded linear transformations of X into Y. The spectrum of an element t in B(X) or B(Y) is denoted by $\sigma(t)$ and the spectral radius by r(t). We write $\sigma_0(t)$ for the non-zero spectrum $\sigma(t) \setminus \{0\}$. The range and the null space of an operator t will be denoted by R(t) and N(t) respectively. The restriction of t to an invariant subspace M will be written $t \mid M$. For f in X^* and g in g, we denote by $g \otimes g$ the operator in g by defined by

 $(y \otimes f)(x) = f(x)y \quad (x \in X).$

Let t be in B(X). In (5) West defines a Riesz point of $\sigma(t)$ to be a point λ in $\sigma(t)$ for which there exist closed subspaces $N(\lambda; t)$ and $F(\lambda; t)$ such that $X = N(\lambda; t) \oplus F(\lambda; t)$, dim $N(\lambda; t) < \infty$, $N(\lambda; t)$ and $F(\lambda; t)$ are invariant under t, and $t - \lambda e$ restricted to $N(\lambda; t)$ is nilpotent while $t - \lambda e$ restricted to $F(\lambda; t)$ is a homeomorphism. Take the projection of X into $N(\lambda; t)$ given by this decomposition of X. Then it is easily seen that λ is a non-zero Riesz point of $\sigma(t)$ if and only if $\lambda \in \sigma_0(t)$ and there is a projection q_{λ} of finite rank in P(X) which commutes with t and for which $\lambda \notin \sigma(t(e-q_{\lambda}))$ and $(t-\lambda e)^{\nu}q_{\lambda}=0$ for some positive integer v.

Let λ be a Riesz point of $\sigma(t)$. Then clearly λ has finite index $v = v(\lambda; t)$ and

$$N(\lambda; t) = N((t - \lambda e)^{\nu}),$$

$$F(\lambda; t) = R((t - \lambda e)^{\nu}).$$

In (5), Theorem 2.1, West shows that, if $\lambda \neq 0$, then λ is an isolated point in $\sigma(t)$. Let $\gamma(\lambda)$ be a circle in C of centre λ such that λ is the only point of $\sigma(t)$

in or on
$$\gamma(\lambda)$$
. Then $p_{\lambda} = \frac{1}{2\pi i} \int_{\gamma(\lambda)} (\mu e^{-t})^{-1} d\mu$ is the spectral projection

associated with λ and t. It is easily seen that the range of p_{λ} is $N(\lambda; t)$ and the null space of p_{λ} is $R(\lambda; t)$. Then, if $\lambda \neq 0$, q_{λ} will be the spectral projection p_{λ} .

The operator t is said to be a Riesz operator on X if $t \in B(X)$ and if each point in $\sigma_0(t)$ is a Riesz point. In particular, a quasi-nilpotent operator is a Riesz operator. Let R(X) denote the class of Riesz operators on X and let K(X) denote the class of compact operators on X. The spectral theory of compact operators shows that $K(X) \subseteq R(X)$. The quotient algebra B(X)/K(X) is a Banach algebra under the infimum norm. Let $t \to [t]$ be the canonical mapping of B(X) onto B(X)/K(X). In (2), Theorem 3.1, Ruston shows that $t \in R(X)$ if and only if [t] is a quasi-nilpotent element in B(X)/K(X), i.e.

$$\inf \left\{ \inf_{c \in K(X)} \left\| t^n - c \right\| \right\}^{1/n} = 0.$$

Ruston also shows that this result remains true if we replace K(X) by the closure of the ideal of finite rank operators in B(X).

Let t be a Riesz operator on X. Since each non-zero point in $\sigma(t)$ is isolated, it follows that $\sigma(t)$ is at most countable with 0 as the only possible accumulation point. We shall need the following well-known result for spectral projections.

Proposition 1. Let $t \in R(X)$, and let $\lambda_1, ..., \lambda_n$ be distinct points in $\sigma_0(t)$ with associated spectral projections $p_1, ..., p_n$. Put $p = \sum_{i=1}^n p_i$. Then

(i)
$$p_i p_j = 0$$
 if $i \neq j$ $(1 \leq i, j \leq n)$,

(ii)
$$\sigma_0(tp) = {\lambda_i}_{i=1}^n$$
,

(iii)
$$\sigma_0(t(e-p)) = \sigma_0(t) \setminus {\lambda_i}_{i=1}^n$$
.

3. Main results

Throughout this section t_1 will be a bounded linear operator on Y and t_2 will be a bounded linear operator on X. We denote by $t_1T_{t_2}$ the bounded linear operator on B(X, Y) defined by

$$t_1T_{t_2}(s) = t_1st_2 \quad (s \in B(X, Y)).$$

This will usually be abbreviated to $_1T_2$; the full notation is needed in the statement of Theorem 4.

Lemma 1. (i)
$$|| _1T_2 || = || t_1 || || t_2 ||$$
,
(ii) $r(_1T_2) = r(t_1)r(t_2)$.

Proof. (i) Clearly $|| _1T_2 || \le || _t_1 || || _t_2 ||$. To prove equality we proceed as follows. Given $\varepsilon > 0$, take y in Y and f in X^* such that || y || = || f || = 1 and

$$||t_1y|| \ge ||t_1||(1-\varepsilon), ||t_2^*f|| \ge ||t_2^*||(1-\varepsilon) = ||t_2||(1-\varepsilon).$$

Then $||y \otimes f|| = ||y|| ||f|| = 1$ and

$$\| {}_{1}T_{2}(y \otimes f)\| = \| {}_{1}y \otimes t_{2}^{*}f\| = \| {}_{1}y \| \| {}_{1}t_{2}^{*}f\| \ge (1 - \varepsilon)^{2} \| {}_{1}\| \| {}_{1}\| \| {}_{2}\|.$$

Hence $|| _1T_2 || = || t_1 || || t_2 ||$.

(ii) Let n be a positive integer. Since ${}_1T_2^n(s)=t_1^nst_2^n$ for s in B(X, Y), it follows from (i) that $\| {}_1T_2^n\|=\| t_1^n\| \| t_2^n\|$. Hence $r({}_1T_2)=r(t_1)r(t_2)$.

If t_1 and t_2 have rank one, let $t_1 = y \otimes g$ and $t_2 = x \otimes f$ where $x \in X$, $f \in X^*$, $y \in Y$, $g \in Y^*$. Then ${}_1T_2(s) = g(s(x))(y \otimes f)$ for s in B(X, Y). Thus it is easily verified that ${}_1T_2$ is a non-zero operator of finite rank if both t_1 and t_2 are non-zero and have finite rank. The converse is also true but is not used in this paper. In Theorem 3 of (4) Vala shows that ${}_1T_2$ is a non-zero compact operator on B(X, Y) if and only if t_1 and t_2 are non-zero compact operators. The following results show how the "Riesz properties" of t_1 and t_2 are carried over to ${}_1T_2$.

Theorem 1. Let t_1 and t_2 be Riesz operators. Then ${}_1T_2$ is a Riesz operator on B(X, Y).

Proof. Let $\varepsilon > 0$ be given. The Ruston characterization of Riesz operators shows that there exist finite rank operators t_3 and t_4 , t_3 in B(Y), t_4 in B(X), and a positive integer n such that

$$||t_1^n-t_3|| \le \varepsilon^n, ||t_2^n-t_4|| \le \varepsilon^n.$$

Let s be in B(X, Y). Then

$$\| _{1}T_{2}^{n}(s) - _{3}T_{4}(s)\| = \| (t_{1}^{n} - t_{3})st_{2}^{n} + t_{3}s(t_{2}^{n} - t_{4})\|$$

$$\leq \varepsilon^{n}(\| t_{1}^{n} \| + \| t_{3} \|) \| s \|$$

$$\leq \varepsilon^{n}(\| t_{1} \|^{n} + \| t_{2} \|^{n} + \varepsilon^{n}) \| s \|$$

$$\leq 3\varepsilon^{n}M^{n} \| s \|$$

where $M = \max(||t_1||, ||t_2||, \varepsilon)$. Hence

$$\| T_2^n - T_4 \| \leq 3M^n \varepsilon^n$$
.

Since $_3T_4$ has finite rank, it follows from Ruston's characterization that $_1T_2$ is a Riesz operator.

Putting Y=C and $t_1=e$, we see that Theorem 1 generalizes the result that the adjoint of a Riesz operator t is a Riesz operator—see Theorem 3.2 in (5). It is clear that $\sigma_0(t^*)=\sigma_0(t)$ and that, if $\lambda\in\sigma_0(t)$, the spectral projection associated with λ and t^* is the adjoint of the spectral projection associated with λ and t. We shall generalize these results later. We now give a converse result.

Theorem 2. (i) $_1T_2$ is a quasi-nilpotent operator if and only if either t_1 or t_2 is a quasi-nilpotent operator.

(ii) Let $_1T_2$ be a Riesz operator but not a quasi-nilpotent operator. Then t_1 and t_2 are Riesz operators.

Proof. (i) This follows immediately from Lemma 1 (ii).

(ii) Let $_1T_2$ be a Riesz operator with a non-zero point λ in its spectrum. We first show that t_1 and t_2^* have non-zero eigenvalues. Let s be a non-zero element in $N(_1T_2-\lambda I)$ where I is the identity operator on B(X, Y). For each positive integer n, $t_1^n s$ lies in $N(_1T_2-\lambda I)$ which is finite-dimensional. It follows that for some positive integer n the set $\{s, t_1 s, ..., t_1^n s\}$ is linearly dependent but the set

$$\{s, t_1 s, ..., t_1^{n-1} s\}$$

is linearly independent. Let p be a polynomial of degree n such that $p(t_1)s=0$. Now $t_1^n s \neq 0$ since $t_1^n s t_2^n = \lambda^n s$, and hence p has a non-zero factor λ_1 . Let $p(\xi) = (\xi - \lambda_1)q(\xi)$ for some polynomial q of degree n-1. Then $q(t_1)s \neq 0$ but $(t_1 - \lambda_1 e)q(t_1)s=0$. Hence there is a non-zero point y_1 in Y such that $t_1y_1 = \lambda_1y_1$. Similarly, there exists a non-zero complex number λ_2 and a non-zero point f_2 in X^* such that $t_2^*f_2 = \lambda_2 f_2$.

Let U be the set $\{y \otimes f_2; y \in Y\}$. Then U is a closed subspace of B(X, Y), and U is invariant under ${}_{1}T_{2}$ since

$$_1T_2(y\otimes f_2)=t_1y\otimes t_2^*f_2=\lambda_2(t_1y\otimes f_2)\quad (y\in Y).$$

The map $y \rightarrow y \otimes f_2$ is a homeomorphism between Y and U. In the resulting algebraic homeomorphism between B(Y) and B(U) the operator t_1 corresponds to $1/\lambda_2(_1T_2 \mid U)$. The restriction of a Riesz operator to an invariant subspace is a Riesz operator—see Theorem 5.3 (i) in (6). Thus $_1T_2 \mid U$ is a Riesz operator on U, and hence t_1 is a Riesz operator on Y.

A similar argument shows that t_2^* is a Riesz operator. It follows from Theorem 3.2 in (5) that t_2 is a Riesz operator.

Remark. In the proof of Theorem 2 (ii) we have used the fact that a bounded

linear operator is a Riesz operator if its adjoint is a Riesz operator. Theorem 2 generalizes this result—take Y = C and $t_1 = e$.

We now determine the spectral structure of $_1T_2$ in terms of the spectral structure of t_1 and t_2 .

Theorem 3. Let t_1 and t_2 be Riesz operators on Y and X respectively and let λ be in C. Then $\lambda \in \sigma_0({}_1T_2)$ if and only if there exist complex numbers λ_1 in $\sigma_0(t_1)$ and λ_2 in $\sigma_0(t_2)$ such that $\lambda = \lambda_1\lambda_2$.

Proof. If $\lambda \in \sigma_0({}_1T_2)$, let s be a non-zero element in $N({}_1T_2 - \lambda I)$. The proof of Theorem 2 (ii) shows that there is a non-zero complex number λ_1 and a polynomial q such that $(t_1 - \lambda_1 e)q(t_1)s = 0$ and $q(t_1)s \neq 0$. Since

$$q(t_1)s \in N({}_1T_2-\lambda I),$$

it follows that

$$(\lambda_1 q(t_1)s)t_2 = t_1 q(t_1)st_2 = \lambda q(t_1)s.$$

Thus λ/λ_1 is in $\sigma_0(t_2)$.

Now suppose that $\lambda_1 \in \sigma_0(t_1)$, $\lambda_2 \in \sigma_0(t_2)$ and $\lambda = \lambda_1 \lambda_2$. There exists a non-zero point y in Y and a non-zero point f in X^* such that $t_1y = \lambda_1 y$ and $t_2^*f = \lambda_2 f$ since t_1 and t_2^* are Riesz operators. Since ${}_1T_2(y \otimes f) = \lambda_1 \lambda_2(y \otimes f)$, it follows that $\lambda \in \sigma_0({}_1T_2)$.

We need the following elementary lemma from (6), Lemma 2.1 (i), in order to prove the next theorem.

Lemma 2. Let s_i $(1 \le i \le n)$ be bounded linear operators on X such that $s_i s_j = 0$ if $i \ne j$. Then $\sigma\left(\sum_{i=1}^n s_i\right) = \bigcup_{i=1}^n \sigma(s_i)$.

Let t_1 and t_2 be Riesz operators with non-zero spectral radii, and let λ be in $\sigma_0({}_1T_2)$. If μ is a non-zero complex number such that $\lambda/\mu \in \sigma_0(t_1)$, then $|\mu| \ge |\lambda|/r(t_1)$. Since $\sigma(t_2)$ is compact and is at most countable with zero as the only possible accumulation point, it follows that the set

$$\left\{\mu;\;\mu\in\sigma_0(t_2),\,\lambda/\mu\in\sigma_0(t_1)\right\}$$

is finite. Let this set consist of the distinct points $\mu_1, ..., \mu_n$, and put $\lambda_i = \lambda/\mu_i$ ($1 \le i \le n$). For each $i, 1 \le i \le n$, let p_i and q_i denote the spectral projections associated with λ_i , t_1 and μ_i , t_2 respectively.

Theorem 4. $P_{\lambda} = \sum_{i=1}^{n} p_{i} T_{q_{i}}$ is the spectral projection associated with λ and $_{1}T_{2}$.

Proof. It is sufficient to show that P_{λ} is a finite rank projection on B(X, Y), commuting with ${}_{1}T_{2}$, such that $({}_{1}T_{2} - \lambda I)^{\nu}P_{\lambda} = 0$ for some positive integer ν and such that $\lambda \notin \sigma_{0}({}_{1}T_{2}(I - P_{\lambda}))$.

For each i, $1 \le i \le n$, $p_i T_{q_i}$ has finite rank since p_i and q_i have finite rank. By Proposition 1 (i), $p_i p_j = q_i q_j = 0$ if $i \ne j$, and thus P_{λ} is a projection. Clearly P_{λ} commutes with ${}_{1}T_{2}$.

For each $i, 1 \le i \le n$,

$$_{1}T_{2}-\lambda I=_{(t_{1}-\lambda ,e)}T_{t},+\lambda _{i}\,_{e}T_{(t_{1}-\mu ,e)}.$$

Then, if m is a positive integer,

$$({}_{1}T_{2}-\lambda I)^{m}(s) = \sum_{j=1}^{m} {m \choose j} \lambda_{i}^{m-j} (t_{1}-\lambda_{i}e)^{j} s(t_{2}-\mu_{i}e)^{m-j} t_{2}^{j} \quad (s \in B(X, Y)).$$

Taking $v_i = v(\lambda_i) + v(\mu_i) - 1$, where $v(\lambda_i)$ and $v(\mu_i)$ are the indices of λ_i and μ_i respectively, it follows that $({}_1T_2 - \lambda I)^{v_i}{}_{p_i}T_{q_i} = 0$. Thus for $v = \sup_{1 \le i \le n} v_i$ we have

$$({}_1 T_2 - \lambda I)^{\nu} P_{\lambda} = 0.$$

Let
$$q = \sum_{i=1}^{n} q_i$$
. Then

$$_{1}T_{2}(I-P_{\lambda}) = \sum_{i=1}^{n} {}_{t_{1}(e-p_{i})}T_{t_{2}q_{i}} + {}_{t_{1}}T_{t_{2}(e-q)}.$$

The product of a Riesz operator with a bounded linear operator which commutes with it is also a Riesz operator—see Theorem 3.1 in (5). Then $t_1(e-p_i)$, t_2q_i and $t_2(e-q)$ are Riesz operators. It then follows from Proposition 1 and Theorem 3 that, for each i, $1 \le i \le n$, λ does not lie in the spectrum of $t_1(e-p_i)T_{t_2q_i}$ and that λ does not lie in the spectrum of $t_1T_{t_2(e-q)}$. Hence by Lemma 2, $\lambda \notin \sigma_0({}_1T_2(I-P_{\lambda}))$.

REFERENCES

- (1) J. C. ALEXANDER, Compact Banach algebras, *Proc. London Math. Soc.* (3) 18 (1968), 1-18.
- (2) A. F. Ruston, Operators with a Fredholm theory, J. London Math. Soc. 29 (1954), 318-326.
- (3) J. Schauder, Über lineare, vollstetige Funktionaloperationen, *Studia Math.* 2 (1930), 183-196.
- (4) K. VALA, On compact sets of compact operators, Ann. Acad. Sci. Fenn. Ser. A I No. 351 (1964).
- (5) T. T. West, Riesz operators in Banach spaces, Proc. London Math. Soc. (3) 16 (1966), 131-140.
- (6) T. T. West, The decomposition of Riesz operators, *Proc. London Math. Soc.* (3) 16 (1966), 737-752.

University of Edinburgh Edinburgh, 1