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Abstract
We consider Shimura varieties associated to a unitary group of signature (𝑛 − 𝑠, 𝑠) where n is even. For these
varieties, we construct smooth p-adic integral models for 𝑠 = 1 and regular p-adic integral models for 𝑠 = 2 and
𝑠 = 3 over odd primes p which ramify in the imaginary quadratic field with level subgroup at p given by the
stabilizer of a 𝜋-modular lattice in the hermitian space. Our construction, which has an explicit moduli-theoretic
description, is given by an explicit resolution of a corresponding local model.
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1. Introduction

The main objective of this paper is to construct regular integral models for some Shimura varieties
over places of bad reduction. Results of this type have already been obtained by Rapoport-Zink [24],
Pappas [16] and He-Pappas-Rapoport [12] in specific instances. Here, we consider Shimura varieties
associated to unitary similitude groups of signature (𝑟, 𝑠) over an imaginary quadratic field K. These
Shimura varieties are moduli spaces of abelian varieties with polarization, endomorphisms and level
structure (Shimura varieties of PEL type). Shimura varieties have canonical models over the ‘reflex’
number field E, and in the cases we consider, the reflex field is the field of rational numbers Q if 𝑟 = 𝑠
and 𝐸 = 𝐾 otherwise [15, §3].

Constructing such well-behaved integral models is an interesting and challenging problem, with
several applications to number theory. The behavior of these depends very much on the ‘level subgroup’.
Here, the level subgroup is the stabilizer of a 𝜋-modular lattice in the hermitian space. (This is a lattice
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which is equal to its dual times a uniformizer). For this level subgroup, and the signatures (𝑛− 𝑠, 𝑠) with
n even and 𝑠 ≤ 3, we show that there is a good (semi-stable) model.

By using work of Rapoport-Zink [24] and Pappas [15], we first construct p-adic integral models,
which have simple and explicit moduli descriptions but are not always flat. These models are étale
locally around each point isomorphic to certain simpler schemes the naive local models. Inspired by the
work of Pappas-Rapoport [17] and Krämer [14], we consider a variation of the above moduli problem
where we add in the moduli problem an additional subspace in the deRham filtration Fil0 (𝐴) ⊂ 𝐻1

𝑑𝑅 (𝐴)
of the universal abelian variety A, which satisfies certain conditions. This is essentially an instance of
the notion of a ‘linear modification’ introduced in [15]. Then for the signatures (𝑛 − 𝑠, 𝑠), with 𝑠 ≤ 3,
we calculate the flat closure of these models, and we show that they are smooth when 𝑠 = 1 and have
semi-stable reduction when 𝑠 = 2 or 𝑠 = 3 (i.e., they are regular and the irreducible components of the
special fiber are smooth divisors crossing normally). Moreover, we want to mention that we obtain a
moduli description of this flat closure. We anticipate that our construction will have applications to the
study of arithmetic intersections of special cycles and Kudla’s program. (See, for example, [29], [6] and
[11], for some works in this direction.)

1.2.

Let us introduce some notation first. Recall that K is an imaginary quadratic field and we fix an embedding
𝜀 : 𝐾 → C. Let W be a n-dimensional K-vector space, equipped with a nondegenerate hermitian form
𝜙. Consider the group 𝐺 = GU𝑛 of unitary similitudes for (𝑊, 𝜙) of dimension 𝑛 ≥ 3 over K. We
fix a conjugacy class of homomorphisms ℎ : ResC/RG𝑚,C → GU𝑛 corresponding to a Shimura datum
(𝐺, 𝑋ℎ) of signature (𝑟, 𝑠). Set 𝑋 = 𝑋ℎ . The pair (𝐺, 𝑋) gives rise to a Shimura variety 𝑆ℎ(𝐺, 𝑋) over
the reflex field E (see [18, §1.1] for more details). Let p be an odd prime number which ramifies in K.
Set 𝐾1 = 𝐾 ⊗Q Q𝑝 with a uniformizer 𝜋, and 𝑉 = 𝑊 ⊗Q Q𝑝 . We assume that the hermitian form 𝜙 is
split on V (i.e., there is a basis 𝑒1, . . . , 𝑒𝑛 such that 𝜙(𝑒𝑖 , 𝑒𝑛+1− 𝑗 ) = 𝛿𝑖 𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛). We denote by

Λ𝑖 = span𝑂𝐾1
{𝜋−1𝑒1, . . . , 𝜋

−1𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒𝑛}

the standard lattices in V. We can complete this into a self dual lattice chain by setting Λ𝑖+𝑘𝑛 := 𝜋−𝑘Λ𝑖
(see §2.1).

By [18], there are 3 different types of the special maximal parahoric subgroups of GU𝑛 depending
on the parity of n. More precisely, consider the stabilizer subgroup

𝑃𝐼 := {𝑔 ∈ GU𝑛 | 𝑔Λ𝑖 = Λ𝑖 , ∀𝑖 ∈ 𝐼},

where I is a nonempty subset of {0, . . . , 	𝑛/2
}. When 𝑛 = 2𝑚+1 is odd, the special maximal parahoric
subgroups are conjugate to the stabilizer subgroup 𝑃{0} or 𝑃{𝑚}. When 𝑛 = 2𝑚 is even, the special
maximal parahoric subgroups are conjugate to the stabilizer subgroup 𝑃{𝑚}. In this article, we consider
the special maximal parahoric subgroup 𝑃{𝑚} when 𝑛 = 2𝑚 is even. We intend to take up the case
𝑛 = 2𝑚 + 1, 𝐼 = {𝑚} in a subsequent work.

To explain our results, we assume 𝑛 = 2𝑚, and (𝑟, 𝑠) = (𝑛 − 1, 1) or (𝑛 − 2, 2) or (𝑛 − 3, 3).
Denote by 𝑃{𝑚} the stabilizer of Λ𝑚 in 𝐺 (Q𝑝). We let L be the self-dual multichain consisting of
lattices {Λ 𝑗 } 𝑗∈𝑛Z±𝑚. Here, G = Aut(L) is the (smooth) group scheme over Z𝑝 with 𝑃{𝑚} = G (Z𝑝) the
subgroup of 𝐺 (Q𝑝) fixing the lattice chain L.

Choose also a sufficiently small compact open subgroup 𝐾 𝑝 of the prime-to-p finite adelic points
𝐺 (A𝑝𝑓 ) of G and set K = 𝐾 𝑝𝑃{𝑚}. The Shimura variety ShK(𝐺, 𝑋) with complex points

ShK(𝐺, 𝑋) (C) = 𝐺 (Q)\𝑋 × 𝐺 (A 𝑓 )/K

is of PEL type and has a canonical model over the reflex field E. We set O = 𝑂𝐸𝑣 , where v the unique
prime ideal of E above (𝑝).
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We consider the moduli functor Anaive
K over SpecO given in [24, Definition 6.9]:

A point of Anaive
K with values in the O-scheme S is the isomorphism class of the following set of data

(𝐴, 𝜄, 𝜆̄, 𝜂):
(1) An object (𝐴, 𝜄), where A is an abelian scheme with relative dimension n over S (terminology of

[24]), compatibly endowed with an action of O:

𝜄 : O→ End 𝐴 ⊗ Z𝑝 .

(2) A Q-homogeneous principal polarization 𝜆̄ of the L-set A.
(3) A 𝐾 𝑝-level structure

𝜂 : 𝐻1(𝐴,A
𝑝
𝑓 ) � 𝑊 ⊗ A𝑝𝑓 mod 𝐾 𝑝

which respects the bilinear forms on both sides up to a constant in (A𝑝𝑓 )
× (see loc. cit. for details).

The set A should satisfy the determinant condition (i) of loc. cit. which depends on (𝑟, 𝑠).
For the definitions of the terms employed here, we refer to loc.cit., 6.3–6.8 and [15, §3]. The functor

Anaive
K is representable by a quasi-projective scheme over O. Since the Hasse principle is satisfied for

the unitary group, we can see as in loc. cit. that there is a natural isomorphism

Anaive
K ⊗O 𝐸𝑣 = ShK(𝐺, 𝑋) ⊗𝐸 𝐸𝑣 .

The moduli scheme Anaive
K is connected to the naive local model Mnaive (see §3 for the explicit

definition). As is explained in [24] and [15], the naive local model is connected to the moduli scheme
Anaive

K via the local model diagram

Ãnaive
K (𝐺, 𝑋)

Anaive
K Mnaive,

𝜓1 𝜓2

where the morphism𝜓1 is aG-torsor and𝜓2 is a smooth andG-equivariant morphism. In particular, since
G is smooth, the above imply that Anaive

K is étale locally isomorphic to Mnaive. From [20, Remark 2.6.10],
we have that the naive local model is never flat, and by the above, the same is true for Anaive

K . Denote
by Aflat

K the flat closure of ShK(𝐺, 𝑋) ⊗𝐸 𝐸𝑣 in Anaive
K . As in [18], there is a relatively representable

smooth morphism of relative dimension dim(𝐺),

Aflat
K → [G\Mloc],

where the local model Mloc is defined as the flat closure of Mnaive ⊗O 𝐸𝑣 in Mnaive. This of course
implies that Aflat

K is étale locally isomorphic to the local model Mloc.
We now consider a variation of the moduli of abelian schemes AK where we add in the moduli

problem an additional subspace in the Hodge filtration Fil0(𝐴) ⊂ 𝐻1
𝑑𝑅 (𝐴) of the universal abelian

variety A (see [7, §6.3] for more details) with certain conditions to imitate the definition of the naive
splitting model M (we refer to §3 for the explicit definition). There is a projective forgetful morphism

𝜏1 : AK −→ Anaive
K ⊗O 𝑂𝐾1

which induces an isomorphism over the generic fibers (see §6). Moreover, AK has the same étale local
structure as M; it is a ‘linear modification’ of Anaive

K ⊗O 𝑂𝐾1 in the sense of [15, §2] (see also [17,
§15]). Note that there is also a corresponding projective forgetful morphism

𝜏 : M −→ Mnaive ⊗O 𝑂𝐾1
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which induces an isomorphism over the generic fibers (see §3). In §5, we show that M is not flat for
any signature (𝑟, 𝑠), and the same is true for AK. In fact, M is not topologically flat since there exists a
point which cannot lift to characteristic zero (see Proposition 5.1). This type of phenomenon is similar
to what already has been observed for this level subgroup for the wedge local models in [18, Remark 5.3]
(see §3 for the definition of wedge local models). Consider the closed subscheme Aspl

K ⊂ AK defined as
Aspl

K := 𝜏−1
1 (Aflat

K ). It is a linear modification of Anaive
K ⊗O 𝑂𝐾1 .

1.3.

One of the main results of the present paper is the following theorem.
Theorem 1.1. Assume that (𝑟, 𝑠) = (𝑛 − 1, 1) or (𝑛 − 2, 2) or (𝑛 − 3, 3). For every 𝐾 𝑝 as above, there
is a scheme Aspl

K , flat over Spec (𝑂𝐾1), with

Aspl
K ⊗𝑂𝐾1

𝐾1 = ShK(𝐺, 𝑋) ⊗𝐸 𝐾1,

and which supports a local model diagram

Ãspl
K (𝐺, 𝑋)

Aspl
K Mspl

𝜋
reg
𝐾

𝑞
reg
𝐾 (1.3.1)

such that:
a) 𝜋

reg
K is a G-torsor for the parahoric group scheme G that corresponds to 𝑃{𝑚}.

b) 𝑞
reg
K is smooth and G-equivariant.

c) When (𝑟, 𝑠) = (𝑛 − 1, 1), Aspl
K is a smooth scheme.

c’) When (𝑟, 𝑠) = (𝑛 − 2, 2) or (𝑟, 𝑠) = (𝑛 − 3, 3), Aspl
K has semi-stable reduction. In particular, Aspl

K is
regular and has special fiber which is a reduced divisor with normal crossings.

In the above, the splitting model Mspl is defined as Mspl := 𝜏−1 (Mloc). Since every point of Aspl
K has

an étale neighborhood which is also étale over Mspl, it is enough to show that Mspl has the above nice
properties. To show this, we explicitly calculate an affine chart U of Mspl in a neighbourhood of 𝜏−1(∗),
where ∗ is a point from the unique closed G-orbit supported in the special fiber of Mloc (see [15, §4] for
more details). Note that the unique closed G-orbit depends on the parity of s (see §3). We treat these
two cases (i.e., when s is even and odd) separately in §4.1 and §4.2.

Moreover, we give a moduli-theoretic description of Mspl and so by the above for Aspl
K . Inspired by

the work of Pappas-Rapoport [18], we define the closed subscheme Mspin ⊂ M by adding the ‘spin
condition’ (see §7) and we show the following.
Theorem 1.2. For the signatures (𝑛 − 𝑠, 𝑠) with 𝑠 ≤ 3, we have Mspin = Mspl.

Here, we note that at the level of local models, a moduli description of Mloc for the signature (𝑛−1, 1)
can be obtained by adding the ‘wedge and spin condition’ to the moduli problem of Mnaive (see [22]).
For higher signatures, it has been conjectured that we can get the moduli description of Mloc by adding
the ‘wedge and spin conditions’ to Mnaive; see the survey paper [20] for more details.

Before we move on to the description of U , we want to give a brief historical outline about the
splitting models. Splitting models were first described for associated Shimura varieties of type A and
type C by Pappas-Rapoport [17]. For unitary groups, Krämer [14] first showed that the splitting model
has semi-stable reduction for the signature (𝑟, 𝑠) = (𝑛 − 1, 1) when 𝑛 = 2𝑚 + 1, 𝐼 = {0}. When the
signature is (𝑟, 𝑠) = (𝑛 − 2, 2), the first author [28] showed that the corresponding splitting model M
does not have semi-stable reduction. Then, he resolved the singularities by giving an explicit blow-up of
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M along a smooth divisor. For more information on the geometry of the special fiber of M for general
signature (𝑟, 𝑠), we refer the reader to the very recent work of Bijakowski and Hernandez [4]. Lastly,
we want to mention the work of the second author where he considered the splitting model for triality
groups in [30] (see also [31]).

For the rest of this subsection, we fix 𝑛 = 2𝑚 and 𝐼 = {𝑚}. Define

𝐽𝑛 =

[
0𝑚 −𝐻𝑚
𝐻𝑚 0𝑚

]
,

where 𝐻𝑚 is the unit antidiagonal matrix (of size m). For a general signature (𝑟, 𝑠), we first obtain the
following:

Theorem 1.3. (1) When s is even, there is an affine chart U ⊂ M which is isomorphic to
Spec𝑂𝐾1 [𝑋,𝑌 ]/𝐼, where

𝐼 =
(
𝑌 ′ − 𝐼𝑠, 𝑋 + 𝑋 𝑡 , 𝑋 · 𝑌 𝑡 · 𝐽𝑛 · 𝑌 + 2𝜋𝐼𝑠

)
for some choice of 𝑌 ′. Here, X, Y are matrices of sizes 𝑠 × 𝑠 and 𝑛 × 𝑠, respectively, with indeterminates
as entries and 𝑌 ′ is a submatrix of Y of size 𝑠 × 𝑠 (i.e., it is composed of s rows from Y along with the
corresponding s columns).

(2a) When 𝑠 = 1, there is an affine chart U ⊂M which is isomorphic to A𝑛−1
𝑂𝐾1

.
(2b) When s is odd and 𝑠 ≥ 3, there is an affine chart U ⊂ M which is isomorphic to A𝑠−1

𝑂𝐾1
×

Spec𝑂𝐾1 [𝑋,𝑌 ]/𝐼, where

𝐼 = (𝑌 ′ − [0 | 𝐼𝑠−1], 𝑋 + 𝑋 𝑡 , 𝑋 · 𝑌 𝑡 · 𝐽𝑛−2 · 𝑌 + 2𝜋𝐼𝑠−1)

for some choice of𝑌 ′. Here, X, Y are matrices of sizes (𝑠−1) × (𝑠−1) and (𝑛−2) × 𝑠, respectively, with
indeterminates as entries and 𝑌 ′ is a submatrix of Y of size (𝑠 − 1) × 𝑠 (i.e., it is composed of (𝑠 − 1)
rows from Y along with the corresponding s columns).

By using the explicit description of U above, we prove that G-translates of U cover Mspl and we
deduce the following:

Theorem 1.4.

a) When 𝑠 = 1, Mspl is a smooth scheme.
b) When 𝑠 = 2 or 𝑠 = 3, Mspl has semi-stable reduction. In particular, Mspl is regular and has special

fiber a reduced divisor with two smooth irreducible components intersecting transversely.

When 𝑠 = 2 or 𝑠 = 3, we show, by using Theorem 1.2, that one of the two components of the special
fiber of Mspl maps birationally to the special fiber of Mloc while the other irreducible component is the
inverse image of the unique closed G-orbit.

Moreover, for (𝑟, 𝑠) = (𝑛 − 1, 1), we deduce that Mspl is equal to the local model Mloc ⊗O 𝑂𝐾1 (see
Remark 5.12). In [18, §5.3], the authors showed that Mloc is smooth. This is a case of ‘exotic’ good
reduction. We also refer the reader to the result of [8] where the authors give an alternative explanation
for the smoothness of Mloc by identifying its special fiber with a Schubert variety attached to a minuscule
cocharacter in the twisted affine Grassmannian corresponding to 𝑃{𝑚}.

Lastly, we want to mention that we can apply these results to obtain regular (formal) models of the
corresponding Rapoport-Zink spaces.

Let us now outline the contents of the paper: In §2, we recall the parahoric subgroups of the unitary
similitude group when 𝑛 = 2𝑚. In §3, we recall the definition of certain variants of local models for
ramified unitary groups. The explicit equations of U are given in §4. In §5.1, we show that the naive
splitting model M is not flat and prove that G-translates of U cover Mspl for the signature (𝑟, 𝑠) (𝑠 ≤ 3)
in §5.2 and §5.3, respectively. In §6, we use the above results to construct smooth integral models for
the signature (𝑟, 𝑠) = (𝑛 − 1, 1), and integral models with semi-stable reduction for (𝑟, 𝑠) = (𝑛 − 2, 2)
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and (𝑟, 𝑠) = (𝑛 − 3, 3). In §7, we give a moduli-theoretic description of Mspl for 𝑠 ≤ 3 by considering
the spin condition.

2. Preliminaries

2.1. Pairings and Standard Lattices

We use the notation of [18]. Let 𝐹0 be a complete discretely valued field with ring of integers𝑂𝐹0 , perfect
residue field k of characteristic ≠ 2, and uniformizer 𝜋0. Let 𝐹/𝐹0 be a ramified quadratic extension and
𝜋 ∈ 𝐹 a uniformizer with 𝜋2 = 𝜋0. Let V be a F-vector space of dimension 𝑛 = 2𝑚 > 3 and let

𝜙 : 𝑉 ×𝑉 → 𝐹

be an 𝐹/𝐹0-hermitian form. We assume that 𝜙 is split. This means that there exists a basis 𝑒1, . . . , 𝑒𝑛 of
V such that

𝜙(𝑒𝑖 , 𝑒𝑛+1− 𝑗 ) = 𝛿𝑖, 𝑗 for all 𝑖, 𝑗 = 1, . . . , 𝑛.

We attach to 𝜙 the respective alternating and symmetric 𝐹0-bilinear forms 𝑉 ×𝑉 → 𝐹0

〈𝑥, 𝑦〉 =
1
2

Tr𝐹/𝐹0 (𝜋
−1𝜙(𝑥, 𝑦)) and (𝑥, 𝑦) =

1
2

Tr𝐹/𝐹0 (𝜙(𝑥, 𝑦)).

For any 𝑂𝐹 -lattice Λ in V, we denote by

Λ̂ = {𝑣 ∈ 𝑉 |〈𝑣,Λ〉 ⊂ 𝑂𝐹0 }

the dual lattice with respect to the alternating form and by

Λ̂𝑠 = {𝑣 ∈ 𝑉 | (𝑣,Λ) ⊂ 𝑂𝐹0 }

the dual lattice with respect to the symmetric form. We have Λ̂𝑠 = 𝜋−1Λ̂. Both Λ̂ and Λ̂𝑠 are 𝑂𝐹 -lattices
in V, and the forms 〈 , 〉 and ( , ) induce perfect 𝑂𝐹0 -bilinear pairings

Λ × Λ̂
〈 , 〉
−−−→ 𝑂𝐹0 , Λ × Λ̂𝑠

( , )
−−→ 𝑂𝐹0 (2.1.1)

for all Λ. Also, the uniformizing element 𝜋 induces a 𝑂𝐹0 - linear mapping on Λ which we denote by t.
For 𝑖 = 0, . . . , 𝑛 − 1, we define the standard lattices

Λ𝑖 = span𝑂𝐹 {𝜋
−1𝑒1, . . . , 𝜋

−1𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒𝑛}.

We consider nonempty subsets 𝐼 ⊂ {0, . . . , 𝑚} with the property

𝑚 − 1 ∈ 𝐼 =⇒ 𝑚 ∈ 𝐼 (2.1.2)

(see [18, §1.2.3(b)] for more details). We complete the Λ𝑖 with 𝑖 ∈ 𝐼 to a self-dual periodic lattice
chain by first including the duals Λ𝑛−𝑖 := Λ̂𝑠𝑖 for 𝑖 ≠ 0 and then all the 𝜋-multiples: For 𝑗 ∈ Z of the
form 𝑗 = 𝑘 · 𝑛 ± 𝑖 with 𝑖 ∈ 𝐼, we put Λ 𝑗 = 𝜋−𝑘Λ𝑖 . Then {Λ 𝑗 } 𝑗 form a periodic lattice chain Λ𝐼 (with
𝜋Λ 𝑗 = Λ 𝑗−𝑛) which satisfies Λ̂ 𝑗 = Λ− 𝑗 . We denote by L such a self-dual multichain. Observe that the
lattice Λ0 is self-dual for the alternating form 〈 , 〉 and Λ𝑚 is self-dual for the symmetric form ( , ).

2.2. Unitary Similitude Group and Parahoric Subgroups

We consider the unitary similitude group

𝐺 := GU(𝑉, 𝜙) = {𝑔 ∈ 𝐺𝐿𝐹 (𝑉) | 𝜙(𝑔𝑥, 𝑔𝑦) = 𝑐(𝑔)𝜙(𝑥, 𝑦), 𝑐(𝑔) ∈ 𝐹×0 },
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and we choose a partition 𝑛 = 𝑟 + 𝑠; we refer to the pair (𝑟, 𝑠) as the signature. By replacing 𝜙 by −𝜙
if needed, we can make sure that 𝑠 ≤ 𝑟 , and so we assume that 𝑠 ≤ 𝑟 (see [18, §1.1] for more details).
Identifying 𝐺 ⊗𝐹 � 𝐺𝐿𝑛,𝐹 ×G𝑚,𝐹 , we define the cocharacter 𝜇𝑟 ,𝑠 as (1(𝑠) , 0(𝑟 ) , 1) of 𝐷×G𝑚, where D
is the standard maximal torus of diagonal matrices in 𝐺𝐿𝑛; for more details, we refer the reader to [26].
We denote by E the reflex field of {𝜇𝑟 ,𝑠}; then 𝐸 = 𝐹0 if 𝑟 = 𝑠 and 𝐸 = 𝐹 otherwise (see [18, §1.1]).
We set 𝑂 := 𝑂𝐸 .

We next recall the description of the parahoric subgroups of G from [18, §1.2], which actually follows
from the results on parahoric subgroups of SU(𝑉, 𝜙) in [19, §1.2]. Recall that 𝑛 = 2𝑚 is even and I is a
nonempty subset of {0, . . . , 𝑚} satisfying (2.1.2). Consider the subgroup

𝑃𝐼 := {𝑔 ∈ 𝐺 | 𝑔Λ𝑖 = Λ𝑖 , ∀𝑖 ∈ 𝐼}.

The subgroup 𝑃𝐼 is not a parahoric subgroup in general since it may contain elements with nontrivial
Kottwitz invariant. Consider the kernel of the Kottwitz homomorphism:

𝑃0
𝐼 := {𝑔 ∈ 𝑃𝐼 | 𝜅(𝑔) = 1},

where 𝜅𝐺 : 𝐺 (𝐹0) � Z ⊕ (Z/2Z) (see also [26, §3] for more details). We have the following (see [18,
§1.2.3(b)]):

Proposition 2.1. The subgroup 𝑃0
𝐼 is a parahoric subgroup, and every parahoric subgroup of G

is conjugate to 𝑃0
𝐼 for a unique nonempty 𝐼 ⊂ {0, . . . , 𝑚} satisfying (2.1.2). For such I, we have

𝑃0
𝐼 = 𝑃𝐼 exactly when 𝑚 ∈ 𝐼. The special maximal parahoric subgroups are exactly those conjugate to

𝑃0
{𝑚}

= 𝑃{𝑚}.

In this paper, we will focus on the special maximal parahoric subgroup when n is even. So, we fix
𝑛 = 2𝑚, 𝐼 = {𝑚}, and we let L be the multichain defined in 2.1 for this choice of I. Denote by G the
(smooth) group scheme of automorphisms of the polarized chain L over 𝑂𝐹0 ; then G is the parahoric
group model of G in the sense of Bruhat-Tits [5] with G (𝑂𝐹0) = 𝑃{𝑚}. It has connected fibers (see [18,
§1.5]).

3. Rapoport-Zink local models and variants

We briefly recall the definition of certain variants of local models for ramified unitary groups that
correspond to the local model triples (𝐺, 𝜇𝑟 ,𝑠 , 𝑃{𝑚}).

Let Mnaive be the functor which associates to each scheme S over Spec𝑂 the set of subsheaves F of
𝑂 ⊗ O𝑆-modules of Λ𝑚 ⊗ O𝑆 such that

(1) F as an O𝑆-module is Zariski locally on S a direct summand of rank n;
(2) F is totally isotropic for ( , ) ⊗ O𝑆;
(3) (Kottwitz condition) char𝑡 |F (𝑋) = (𝑋 + 𝜋)𝑟 (𝑋 − 𝜋)𝑠.

Remarks 3.1. In [18, §1.5.1], the authors define the naive local model Mnaive that sends each O-scheme
S to the families of 𝑂 ⊗ O𝑆-modules (F𝑖 ⊂ Λ𝑖 ⊗ O𝑆)𝑖∈𝑛Z±𝐼 that satisfy the conditions (a)-(d) of loc.
cit. We want to explain how we get the isotropic condition (2) from the condition (c) of loc. cit. When
𝐼 = {𝑚}, the complete lattice chain gives:

· · · → Λ−𝑚 ⊗ O𝑆 → Λ𝑚 ⊗ O𝑆 → · · ·

where the isomorphism 𝑡 : Λ𝑚 ⊗O𝑆 → Λ−𝑚 ⊗O𝑆 induces an isomorphism F𝑚 with F−𝑚. Hence, F−𝑚
is determined by F𝑚 and we have F−𝑚 = 𝑡F𝑚. The perfect bilinear pairing

〈 , 〉 ⊗ O𝑆 : (Λ−𝑚 ⊗ O𝑆) × (Λ𝑚 ⊗ O𝑆) → O𝑆
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induced by (2.1.1) identifies F⊥𝑚 ⊂ Λ−𝑚 ⊗ O𝑆 with F−𝑚 where F⊥𝑚 is the orthogonal complement of
F𝑚 under the above perfect pairing. Thus, 〈F−𝑚,F𝑚〉 = 0 (condition (c) of loc. cit.) is equivalent to
(F𝑚,F𝑚) = 0 since

〈F−𝑚,F𝑚〉 = 〈𝑡F𝑚,F𝑚〉 =
1
2

Tr𝐹/𝐹0 (𝜋
−1𝜙(𝑡F𝑚,F𝑚))

=
1
2

Tr𝐹/𝐹0 (𝜙(F𝑚,F𝑚)) = (F𝑚,F𝑚).

The functor Mnaive is represented by a closed subscheme, which we again denote Mnaive, of Gr(𝑛, 2𝑛)⊗
Spec𝑂; hence, Mnaive is a projective 𝑂-scheme. (Here, we denote by Gr(𝑛, 𝑑) the Grassmannian scheme
parameterizing locally direct summands of rank n of a free module of rank d.) The scheme Mnaive is the
naive local model of Rapoport-Zink [24]. Also, Mnaive supports an action of G.

Proposition 3.2. We have

Mnaive ⊗𝑂 𝐸 � Gr(𝑠, 𝑛) ⊗ 𝐸.

In particular, the generic fiber of Mnaive is smooth and geometrically irreducible of dimension 𝑟𝑠.

Proof. See [18, §1.5.3]. �

Next, we consider the closed subscheme M∧ ⊂ Mnaive by imposing the following additional condition:

∧𝑟+1(𝑡 − 𝜋 |F) = (0) and ∧𝑠+1 (𝑡 + 𝜋 |F) = (0).

More precisely, M∧ is the closed subscheme of Mnaive that classifies points given by F which satisfy
the wedge condition. The scheme M∧ supports an action of G and the immersion 𝑖 : M∧ → Mnaive is
G-equivariant. The scheme M∧ is called the wedge local model.

Proposition 3.3. The generic fibers of Mnaive and M∧ coincide; in particular, the generic fiber of M∧ is
a smooth, geometrically irreducible variety of dimension rs.

Proof. See [18, §1.5.6]. �

For the special maximal parahoric subgroup 𝑃{0} and signature (𝑛 − 1, 1), Pappas proved that the
wedge local model M∧ is flat [15]. But for more general parahoric subgroups, the wedge condition turns
out to be insufficient (see [18, Remark 5.3, 7.4]). There is a further variant: let Mloc be the scheme
theoretic closure of the generic fiber Mnaive ⊗𝑂 𝐸 in Mnaive. The scheme Mloc is called the local model.
We have closed immersions of projective schemes

Mloc ⊂ M∧ ⊂ Mnaive

which are equalities on generic fibers (see [18, §1.5] for more details).

Proposition 3.4. a) For any signature (𝑟, 𝑠), the special fiber of Mloc is integral, normal and Cohen-
Macaulay and has only rational singularities.

b) For (𝑟, 𝑠) = (𝑛 − 1, 1), Mloc is smooth.

Proof. See [18, §5] and [9]. �

Except in the case (b) above (up to switching (𝑟, 𝑠) and (𝑠, 𝑟)), the local models Mloc are never
smooth; see [20, Remark 2.6.8] for more details. As in [18, §2.4.2, §5.5], there is a unique closed
G-orbit in the special fiber of Mloc. When s is even, the closed orbit is the 𝑘-valued point

F = span𝑂𝐹0
{𝑒1, . . . , 𝑒𝑚, 𝜋𝑒𝑚+1, . . . , 𝜋𝑒𝑛} ⊗ 𝑘,
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and when s is odd, the closed orbit is the orbit of the k-valued point

F = span𝑂𝐹0
{−𝜋−1𝑒1,−𝑒1, . . . ,−𝑒𝑚, 𝜋𝑒𝑚+1, . . . , 𝜋𝑒𝑛−1} ⊗ 𝑘.

Next, we consider the moduli scheme M over 𝑂𝐹 , the naive splitting (or Krämer) model as in [17,
Remark 14.2] and [14, Definition 4.1], whose points for an 𝑂𝐹 -scheme S are Zariski locally O𝑆-direct
summands F0,F1 of ranks s, n, respectively, such that
(1) (0) ⊂ F0 ⊂ F1 ⊂ Λ𝑚 ⊗ O𝑆;
(2) F1 = F⊥1 , i.e. F1 is totally isotropic for ( , ) ⊗ O𝑆;
(3) (𝑡 + 𝜋)F1 ⊂ F0;
(4) (𝑡 − 𝜋)F0 = (0).
The functor is represented by a projective 𝑂𝐹 -scheme M. The scheme M supports an action of G, and
there is a G-equivariant projective morphism

𝜏 : M→ M∧ ⊗𝑂 𝑂𝐹 ⊂ Mnaive ⊗𝑂 𝑂𝐹

which is given by (F0,F1) ↦→ F1 on S-valued points. (Indeed, we can easily see, as in [14, Definition
4.1], that 𝜏 is well defined.) The morphism 𝜏 : M → M∧ ⊗𝑂 𝑂𝐹 induces an isomorphism on the
generic fibers (see [14, Remark 4.2]). In §5, we will prove that M is not flat for any signature (𝑟, 𝑠),
and we will study the following variation:

Mspl := 𝜏−1(Mloc) = M ×M∧ Mloc.

The closed subscheme Mspl is the splitting model. We will show that this model is smooth for the
signature (𝑛 − 1, 1) and has semi-stable reduction for the signatures (𝑛 − 2, 2) and (𝑛 − 3, 3). Moreover,
for these signatures, we will show that Mspl has an explicit moduli-theoretic description.

4. Two affine charts

The goals of this section are to write down the equations that define the naive splitting model M in two
open neighborhoods 1U𝑟 ,𝑠 and 2U𝑟 ,𝑠 for general signature (𝑟, 𝑠). Here, 1U𝑟 ,𝑠 is an affine chart around
(F0, 𝑡Λ𝑚) (see §4.1) and 2U𝑟 ,𝑠 is an affine chart around (F0,Λ′), where Λ′ is defined in §4.2.

4.1. An Affine Chart 1U𝑟 ,𝑠
Recall that 𝑛 = 2𝑚 = 𝑟 + 𝑠 with 𝑠 ≤ 𝑟 . In this subsection, we are going to write down the equations that
define M in a neighborhood 1U𝑟 ,𝑠 of (F0, 𝑡Λ𝑚), where

Λ𝑚 = span𝑂𝐹 {𝜋
−1𝑒1, . . . , 𝜋

−1𝑒𝑚, 𝑒𝑚+1, . . . , 𝑒𝑛} =

span𝑂𝐹0
{𝜋−1𝑒1, . . . , 𝜋

−1𝑒𝑚, 𝑒𝑚+1, . . . , 𝑒𝑛, 𝑒1, . . . , 𝑒𝑚, 𝜋𝑒𝑚+1, . . . , 𝜋𝑒𝑛}.

The matrix of ( , ) in the latter basis is [
0𝑛 𝐽𝑛
−𝐽𝑛 0𝑛

]
,

where

𝐽𝑛 =

[
0𝑚 −𝐻𝑚
𝐻𝑚 0𝑚

]
,

and 𝐻𝑚 is the unit antidiagonal matrix (of size m). Observe that 𝐽2
𝑛 = −𝐼𝑛. Also, since 𝑠 ≤ 𝑟 and

𝑛 = 2𝑚 = 𝑟 + 𝑠, we get that 𝑠 ≤ 𝑚.
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In order to find the explicit equations that describe 1U𝑟 ,𝑠, we use similar arguments as in the proof of
[14, Theorem 4.5] (see also [28, §3]). In our case, we consider

F1 =

[
𝐴
𝐼𝑛

]
, F0 = 𝑋 =

[
𝑋1
𝑋2

]
,

where A is of size 𝑛 × 𝑛, X is of size 2𝑛 × 𝑠 and 𝑋1, 𝑋2 are of size 𝑛 × 𝑠; with the additional condition
that F0 has rank s and so X has an invertible 𝑠× 𝑠-minor. We also ask that (F0,F1) satisfy the following
four conditions:

(1) F⊥1 = F1,
(2) F0 ⊂ F1,
(3) (𝑡 − 𝜋)F0 = (0),
(4) (𝑡 + 𝜋)F1 ⊂ F0.

Observe that

𝑀𝑡 =

[
0𝑛 𝜋0𝐼𝑛
𝐼𝑛 0𝑛

]

of size 2𝑛 × 2𝑛 is the matrix giving multiplication by t.
Condition (1) (i.e., F1 is isotropic) translates to 𝐴𝑡 = −𝐽𝑛𝐴𝐽𝑛. Condition (2) (i.e., F0 ⊂ F1) implies

that the generators of F0 can be expressed as a linear combination of the generators in F1, which
translates to

∃𝑌 : 𝑋 =

[
𝐴
𝐼𝑛

]
· 𝑌,

where Y is of size 𝑛 × 𝑠. Thus, we have[
𝑋1
𝑋2

]
=

[
𝐴
𝐼𝑛

]
· 𝑌 =

[
𝐴𝑌
𝑌

]
,

and so 𝑋1 = 𝐴𝑌 and 𝑋2 = 𝑌 . Condition (3) (i.e., (𝑡 − 𝜋)F0 = (0)) is equivalent to

𝑀𝑡 · 𝑋 =

[
𝜋𝑋1
𝜋𝑋2

]
,

which amounts to [
𝜋0𝑋2
𝑋1

]
=

[
𝜋𝑋1
𝜋𝑋2

]
.

Thus, 𝑋1 = 𝜋𝑋2, which translates to 𝐴𝑌 = 𝜋𝑌 by condition (2). The last condition (𝑡 + 𝜋)F1 ⊂ F0
translates to

∃ 𝑍 : 𝑀𝑡 ·

[
𝐴
𝐼𝑛

]
+

[
𝜋𝐴
𝜋𝐼𝑛𝑌

]
= 𝑋 · 𝑍 𝑡 ,

where Z is of size 𝑛 × 𝑠. This amounts to[
𝜋0𝐼𝑛 + 𝜋𝐴
𝐴 + 𝜋𝐼𝑛

]
=

[
𝑋1𝑍

𝑡

𝑋2𝑍
𝑡

]
.

https://doi.org/10.1017/fms.2025.10079 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10079


Forum of Mathematics, Sigma 11

From the above, we get 𝐴+𝜋𝐼𝑛 = 𝑋2𝑍
𝑡 , which by condition (2) translates to 𝐴 = 𝑌𝑍 𝑡 −𝜋𝐼𝑛. Thus, A can

be expressed in terms of𝑌, 𝑍 . In addition, by condition (2) and in particular by the relations 𝑋1 = 𝐴𝑌 and
𝑋2 = 𝑌 , we deduce that the matrix X is given in terms of 𝑌, 𝑍 . Conversely, from 𝑌 = 𝑋2, we get that the
matrix Y is given in terms of 𝐴, 𝑋 (Below we will also show that Z can be expressed in terms of 𝐴, 𝑋).

Observe from 𝑋1 = 𝜋𝑋2 that all the entries of 𝑋1 are in the maximal ideal and thus a minor involving
entries of 𝑋1 cannot be a unit. Recall that the matrix X has an invertible 𝑠 × 𝑠-minor and 𝑋2 = 𝑌 from
condition (2). Thus, the matrix Y has a 𝑠 × 𝑠-minor. Let

𝑌 =

⎡⎢⎢⎢⎢⎢⎣
𝑦1,1 · · · 𝑦1,𝑠
...

. . .
...

𝑦𝑛,1 · · · 𝑦𝑛,𝑠

⎤⎥⎥⎥⎥⎥⎦
, 𝑍 =

⎡⎢⎢⎢⎢⎢⎣
𝑧1,1 · · · 𝑧1,𝑠
...

. . .
...

𝑧𝑛,1 · · · 𝑧𝑛,𝑠

⎤⎥⎥⎥⎥⎥⎦
=
[

z1 · · · z𝑠
]
,

and

𝑌 ′ =

⎡⎢⎢⎢⎢⎢⎣
𝑦𝑖1 ,1 · · · 𝑦𝑖1 ,𝑠
...

. . .
...

𝑦𝑖𝑠 ,1 · · · 𝑦𝑖𝑠 ,𝑠

⎤⎥⎥⎥⎥⎥⎦
= 𝐼𝑠 , (4.1.1)

where 1 ≤ 𝑖𝑘 ≤ 𝑛 for 𝑘 = 1, . . . , 𝑠. Here, we want to mention how we can express Z in terms of 𝐴, 𝑋 .
From the above, we have 𝑌𝑍 𝑡 = 𝐴 + 𝜋𝐼𝑛 and

𝑌𝑍 𝑡 =

⎡⎢⎢⎢⎢⎢⎣

∑𝑠
𝑒=1 𝑦1,𝑒z𝑡𝑒

...∑𝑠
𝑒=1 𝑦𝑛,𝑒z𝑡𝑒

⎤⎥⎥⎥⎥⎥⎦
.

By using (4.1.1), for any 1 ≤ 𝑘 ≤ 𝑠, the 𝑖𝑘 -th row of the matrix 𝑌𝑍 𝑡 gives z𝑡𝑘 . Since 𝑌𝑍 𝑡 = 𝐴 + 𝜋𝐼𝑛, we
can easily see that the matrix Z can be expressed in terms of 𝐴, 𝑋 .

We replace A by 𝑌𝑍 𝑡 − 𝜋𝐼𝑛. Hence, conditions (1) and (3) are equivalent to

𝑍𝑌 𝑡 = −𝐽𝑛𝑌𝑍
𝑡 𝐽𝑛, (4.1.2)

𝑌𝑍 𝑡𝑌 = 2𝜋𝑌 . (4.1.3)

From the above, we deduce the following.

Lemma 4.1. An affine chart 1U𝑟 ,𝑠 of M around (F0, 𝑡Λ𝑚) is given by Spec𝑂𝐹 [𝑌, 𝑍]/ℐ, where

ℐ = (𝑌 ′ − 𝐼𝑠 , 𝑍𝑌 𝑡 + 𝐽𝑛𝑌𝑍
𝑡 𝐽𝑛, 𝑌 𝑍

𝑡𝑌 − 2𝜋𝑌 )

and 𝑌 ′ is a submatrix composed of s rows of Y (see the relation (4.1.1)).

Note that the affine chart 1U𝑟 ,𝑠 of M depends on the matrix 𝑌 ′ we fixed (see Remark 4.4). Our next
goal is to give a simplification of the above equations (see Theorem 4.2). We first study the relation
𝑍𝑌 𝑡 = −𝐽𝑛𝑌𝑍 𝑡 𝐽𝑛. Consider the matrix 𝑃 = (𝑝𝑖, 𝑗 ) of size 𝑛 = 2𝑚 with 𝑃𝑡 = −𝐽𝑛𝑃𝐽𝑛. By a direct
calculation, we get

𝑝𝑖, 𝑗 = 𝑝𝑛+1− 𝑗 ,𝑛+1−𝑖

for 1 ≤ 𝑖, 𝑗 ≤ 𝑚 or 𝑚 + 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and

𝑝𝑖, 𝑗 = −𝑝𝑛+1− 𝑗 ,𝑛+1−𝑖
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for 1 ≤ 𝑖 ≤ 𝑚 and 𝑚 + 1 ≤ 𝑗 ≤ 𝑛, or 1 ≤ 𝑗 ≤ 𝑚 and 𝑚 + 1 ≤ 𝑖 ≤ 𝑛. By using this observation and by
setting 𝑃 = 𝑌𝑍 𝑡 , the relation 𝑍𝑌 𝑡 = −𝐽𝑛𝑌𝑍 𝑡 𝐽𝑛 gives

𝑠∑
𝑘=1

𝑧𝑖,𝑘 𝑦 𝑗 ,𝑘 = ±
𝑠∑
𝑘=1

𝑧𝑛+1− 𝑗 ,𝑘 𝑦𝑛+1−𝑖,𝑘 (4.1.4)

for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, where the different signs ± depends on the position of 𝑖, 𝑗 as above. Consider the
following 2 cases:

Case 1: Assume that 1 ≤ 𝑖𝑘 ≤ 𝑚 for all 𝑘 ∈ {1, . . . , 𝑠}. By setting 𝑖 = 𝑛 + 1 − 𝑖𝑞 and 𝑗 = 𝑖𝑝 ,
the equation (4.1.4) gives 𝑧𝑛+1−𝑖𝑞 , 𝑝 = −𝑧𝑛+1−𝑖𝑝 ,𝑞 . In particular, if 𝑝 = 𝑞, we get 𝑧𝑛+1−𝑖𝑝 , 𝑝 = 0 for all
𝑝 ∈ {1, . . . , 𝑠}. By setting 𝑑𝑝,𝑞 = 𝑧𝑛+1−𝑖𝑝 ,𝑞 , we get the matrix 𝐷 = (𝑑𝑝,𝑞)𝑝,𝑞 of size 𝑠 × 𝑠 such that

𝐷 =

⎡⎢⎢⎢⎢⎢⎣
𝑑1,1 · · · 𝑑𝑠,1
...

. . .
...

𝑑1,𝑠 · · · 𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
𝑧𝑛+1−𝑖1 ,1 · · · 𝑧𝑛+1−𝑖𝑠 ,1

...
. . .

...
𝑧𝑛+1−𝑖1 ,𝑠 · · · 𝑧𝑛+1−𝑖𝑠 ,𝑠

⎤⎥⎥⎥⎥⎥⎦
. (4.1.5)

The matrix D is skew-symmetric (i.e., 𝐷 = −𝐷𝑡 ). Next, by setting 𝑗 = 𝑖𝑘 in (4.1.4), we obtain

𝑧𝑖,𝑘 =

{ ∑𝑠
𝑒=1 𝑑𝑘,𝑒𝑦𝑛+1−𝑖,𝑒 if 1 ≤ 𝑖 ≤ 𝑚,
−
∑𝑠
𝑒=1 𝑑𝑘,𝑒𝑦𝑛+1−𝑖,𝑒 if 𝑚 + 1 ≤ 𝑖 ≤ 𝑛.

Thus, we have 𝑍 = 𝑌 · 𝐷, where

𝑌 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦𝑛,1 · · · 𝑦𝑛,𝑠
...

. . .
...

𝑦𝑚+1,1 · · · 𝑦𝑚+1,𝑠
−𝑦𝑚,1 · · · −𝑦𝑚,𝑠

...
. . .

...
−𝑦1,1 · · · −𝑦1,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, in this case, the equations (4.1.4) give 𝑍 = 𝑌 · 𝐷.
Case 2: In general, we let 1 ≤ 𝑡 ≤ 𝑠 and assume that

1 ≤ 𝑖1, . . . , 𝑖𝑡 ≤ 𝑚 and 𝑚 + 1 ≤ 𝑖𝑡+1, . . . , 𝑖𝑠 ≤ 𝑛.

By setting 𝑑𝑝,𝑞 = 𝑧𝑛+1−𝑖𝑝 ,𝑞 and using the same arguments as above, we get the matrix 𝐷 = (𝑑𝑝,𝑞)𝑝,𝑞
of size 𝑠 × 𝑠 such that

𝑑𝑝,𝑞 = −𝑑𝑞,𝑝

for 1 ≤ 𝑝, 𝑞 ≤ 𝑡 or 𝑡 + 1 ≤ 𝑝, 𝑞 ≤ 𝑛, and

𝑑𝑝,𝑞 = 𝑑𝑞,𝑝

for 1 ≤ 𝑝 ≤ 𝑡 and 𝑡 + 1 ≤ 𝑞 ≤ 𝑛, or 1 ≤ 𝑞 ≤ 𝑡 and 𝑡 + 1 ≤ 𝑝 ≤ 𝑛. Next, by setting 𝑗 = 𝑖𝑘 in (4.1.4) for
1 ≤ 𝑘 ≤ 𝑡, we obtain

𝑧𝑖,𝑘 =

{ ∑𝑠
𝑒=1 𝑑𝑘,𝑒𝑦𝑛+1−𝑖,𝑒 if 1 ≤ 𝑖 ≤ 𝑚,
−
∑𝑠
𝑒=1 𝑑𝑘,𝑒𝑦𝑛+1−𝑖,𝑒 if 𝑚 + 1 ≤ 𝑖 ≤ 𝑛.
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Also, by setting 𝑗 = 𝑖𝑘 for 𝑡 + 1 ≤ 𝑘 ≤ 𝑠, we get

𝑧𝑖,𝑘 =

{
−
∑𝑠
𝑒=1 𝑑𝑘,𝑒𝑦𝑛+1−𝑖,𝑒 if 1 ≤ 𝑖 ≤ 𝑚,∑𝑠

𝑒=1 𝑑𝑘,𝑒𝑦𝑛+1−𝑖,𝑒 if 𝑚 + 1 ≤ 𝑖 ≤ 𝑛.

From the above, we have 𝑍 = 𝑌 · 𝐷, where 𝐷 = (𝑑𝑖, 𝑗 )𝑖, 𝑗 is the 𝑠 × 𝑠 matrix defined as

𝐷 =

⎡⎢⎢⎢⎢⎢⎣
𝑑1,1 · · · 𝑑𝑡 ,1 −𝑑𝑡+1,1 · · · −𝑑𝑠,1
...

. . .
...

...
. . .

...
𝑑1,𝑠 · · · 𝑑𝑡 ,𝑠 −𝑑𝑡+1,𝑠 · · · −𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦
.

It is easy to see that the matrix 𝐷 is skew symmetric (i.e., 𝑑𝑖, 𝑗 = −𝑑 𝑗 ,𝑖). In particular, we have the
following 4 cases: when 1 ≤ 𝑖, 𝑗 ≤ 𝑡, we have 𝑑𝑖, 𝑗 = 𝑑𝑖, 𝑗 = −𝑑 𝑗 ,𝑖 = −𝑑 𝑗 ,𝑖 . For 1 ≤ 𝑖 ≤ 𝑡 and
𝑡 + 1 ≤ 𝑗 ≤ 𝑠, we have 𝑑𝑖, 𝑗 = −𝑑𝑖, 𝑗 = −𝑑 𝑗 ,𝑖 = −𝑑 𝑗 ,𝑖 . When 1 ≤ 𝑗 ≤ 𝑡 and 𝑡 + 1 ≤ 𝑖 ≤ 𝑠, we get
𝑑𝑖, 𝑗 = 𝑑𝑖, 𝑗 = 𝑑 𝑗 ,𝑖 = −𝑑 𝑗 ,𝑖 . Lastly, for 𝑡 + 1 ≤ 𝑖, 𝑗 ≤ 𝑠, we obtain 𝑑𝑖, 𝑗 = −𝑑𝑖, 𝑗 = 𝑑 𝑗 ,𝑖 = −𝑑 𝑗 ,𝑖 .

Combining the above cases, for any 1 ≤ 𝑖1, . . . , 𝑖𝑠 ≤ 𝑛, the equations (4.1.4) show that there exists a
skew symmetric matrix D of size 𝑠 × 𝑠 such that

𝑍 = 𝑌 · D.

By abuse of notation, write 𝐷 for D. Next, define 𝑄 := 𝑌 𝑡 · 𝑌 of size 𝑠 × 𝑠. Note that 𝑄𝑡 = −𝑄. We are
now ready to show the following:

Theorem 4.2. For any signature (𝑟, 𝑠), there is an affine chart 1U𝑟 ,𝑠 ⊂ M which is isomorphic to
Spec𝑂𝐹 [𝐷,𝑌 ]/𝐼, where

𝐼 =
(
𝑌 ′ − 𝐼𝑠, 𝐷 + 𝐷𝑡 , 𝐷 · 𝑄 + 2𝜋𝐼𝑠

)
for some choice of 𝑌 ′.

Proof. Recall from Lemma 4.1 that U = Spec𝑂𝐹 [𝑌, 𝑍]/ℐ, where

ℐ = (𝑌 ′ − 𝐼𝑠 , 𝑍𝑌 𝑡 + 𝐽𝑛𝑌𝑍
𝑡 𝐽𝑛, 𝑌 𝑍

𝑡𝑌 − 2𝜋𝑌 ).

From the above discussion, we have that the relation 𝑍𝑌 𝑡 = −𝐽𝑛𝑌𝑍 𝑡 𝐽𝑛 gives 𝑍 = 𝑌 ·𝐷. Thus, it suffices
to focus on the relation 𝑌𝑍 𝑡𝑌 − 2𝜋𝑌 = 0. Observe that 𝑌 · 𝑍 𝑡 · 𝑌 = −𝑌 · 𝐷 · 𝑄. Thus,

𝑌𝑍 𝑡𝑌 − 2𝜋𝑌 = −𝑌 · (𝐷 · 𝑄 + 2𝜋𝐼𝑠) = 0.

Now, by using the relation with the minors (4.1.1), we can easily see that the relation 𝑌𝑍 𝑡𝑌 − 2𝜋𝑌 = 0
gives 𝐷 · 𝑄 + 2𝜋𝐼𝑠 = 0. Therefore, 1U𝑟 ,𝑠 is isomorphic to

Spec
𝑂𝐹 [𝐷,𝑌 ]

(𝑌 ′ − 𝐼𝑠 , 𝐷 + 𝐷𝑡 , 𝐷 · 𝑄 + 2𝜋𝐼𝑠)
. �

In particular, when the signature (𝑟, 𝑠) = (𝑛 − 2, 2), we have

𝐷 =

[
0 𝑑
−𝑑 0

]
, 𝑄 =

[
0 𝑞

−𝑞 0

]
,

where 𝑑 = 𝑑2,1 = −𝑑12 and 𝑞 =
∑𝑚
𝑗=1 𝑦𝑛+1− 𝑗 ,1𝑦 𝑗 ,2 −

∑𝑛
𝑗=𝑚+1 𝑦𝑛+1− 𝑗 ,1𝑦 𝑗 ,2.
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Corollary 4.3. When (𝑟, 𝑠) = (𝑛 − 2, 2), there is an affine chart 1U𝑟 ,𝑠 ⊂ M which is isomorphic to
𝑉 (𝐼) = Spec𝑂𝐹 [𝑑, (𝑦𝑖,1)1≤𝑖≤𝑛, (𝑦𝑖,2)1≤𝑖≤𝑛]/𝐼, where

𝐼 = (𝑦𝑖0 ,1 − 1, 𝑦 𝑗0 ,2 − 1, 𝑦 𝑗0 ,1, 𝑦𝑖0 ,2, 𝑑 (
𝑚∑
𝑗=1

𝑦𝑛+1− 𝑗 ,1𝑦 𝑗 ,2 −
𝑛∑

𝑗=𝑚+1
𝑦𝑛+1− 𝑗 ,1𝑦 𝑗 ,2) − 2𝜋)

for some 1 ≤ 𝑖0, 𝑗0 ≤ 𝑛.

Remark 4.4. Recall that 1U𝑟 ,𝑠 is an affine chart around (F0, 𝑡Λ𝑚). Note that for different choices of 𝑌 ′,
we get different equations from 𝐷 · 𝑄 = −2𝜋𝐼𝑠 and so different affine charts 1U𝑟 ,𝑠 which in general are
not isomorphic. For instance, in Corollary 4.3, there are two different 𝑉 (𝐼) up to isomorphism when
we choose different places for 𝑖0, 𝑗0 (see §5.2 for more details). In Proposition 5.2, we show that for any
such a choice, the affine scheme 𝑉 (𝐼) has semi-stable reduction over 𝑂𝐹 .

4.2. An Affine Chart 2U𝑟 ,𝑠
Keep the same notation as above. As in [18], we set Λ𝑚 = Λ′ ⊕ Λ′′, where

Λ′ = span𝑂𝐹0
{−𝜋−1𝑒1,−𝑒1, . . . ,−𝑒𝑚, 𝜋𝑒𝑚+1, . . . , 𝜋𝑒𝑛−1},

Λ′′ = span𝑂𝐹0
{𝑒𝑛, 𝜋𝑒𝑛,−𝜋

−1𝑒2, . . . ,−𝜋
−1𝑒𝑚, 𝑒𝑚+1, . . . , 𝑒𝑛−1}.

In this subsection, we are going to write down the equations that define M in a neighborhood 2U𝑟 ,𝑠 of
(F0,Λ′).

The matrix of the form ( , ) in this basis is
[

0𝑛 𝑆
𝑆𝑡 0𝑛

]
,

where S is the skew-symmetric matrix of size n given by

𝑆 =

[
𝐽𝑡2 0
0 𝐽𝑛−2

]
.

Observe that 𝑆2 = −𝐼𝑛 since 𝐽2
𝑛 = −𝐼𝑛. For any point (F0,F1) ∈M, we ask that (F0,F1) satisfy the

following conditions:

(1) F⊥1 = F1,
(2) F0 ⊂ F1,
(3) (𝑡 − 𝜋)F0 = (0),
(4) (𝑡 + 𝜋)F1 ⊂ F0.

Similar to §4.1, we consider

F1 =

[
𝐼𝑛
𝐴

]
, F0 = 𝑋 =

[
𝑋1
𝑋2

]
,

where 𝐼𝑛, 𝐴 are 𝑛 × 𝑛-matrices, and 𝑋1, 𝑋2 are 𝑛 × 𝑠-matrices. Recall that F0 has rank s, so X has a
no-vanishing 𝑠 × 𝑠 minor. Write down the matrix A by

𝐴 =

[
𝑇 𝐵
𝐶 𝑌

]
,
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where T is a 2 × 2-matrix, B (resp. C) is a 2 × (𝑛 − 2)-matrix (resp. (𝑛 − 2) × 2-matrix) and Y is of size
(𝑛 − 2) × (𝑛 − 2). Then condition (1) is equivalent to 𝐴𝑡𝑆 = 𝑆𝐴. This translates to

𝑇 𝑡 = −𝐽2𝑇𝐽2, 𝐶 = 𝐽𝑛−2𝐵
𝑡 𝐽2, 𝑌 𝑡 = −𝐽𝑛−2𝑌𝐽𝑛−2.

Note that the first equation immediately gives 𝑇 = diag(𝑥, 𝑥) for some variable x, and the second
equation shows that C is given in terms of B. Condition (2) is equivalent to

∃𝑀 :
[
𝑋1
𝑋2

]
=

[
𝐼𝑛
𝐴

]
· 𝑀,

where M is a 𝑛 × 𝑠-matrix. This amounts to 𝑋1 = 𝑀, 𝑋2 = 𝐴𝑀 . Let

𝑀 =

[
𝑀1
𝑀2

]
,

where 𝑀1 is of size 2× 𝑠 and 𝑀2 is of size (𝑛− 2) × 𝑠. We can see that 𝑋1, 𝑋2 can be expressed in terms
of 𝐴, 𝑀1, 𝑀2. More precisely, we get

𝑋1 = 𝑀 =

[
𝑀1
𝑀2

]
, 𝑋2 = 𝐴𝑀 =

[
𝑥𝑀1 + 𝐵𝑀2
𝐶𝑀1 + 𝑌𝑀2

]
.

The map 𝑡 : Λ𝑚 → Λ𝑚 is represented by the matrix

𝑀𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑡0
𝐼𝑛−2

𝑡0
𝜋0𝐼𝑛−2

⎤⎥⎥⎥⎥⎥⎥⎦
,

where 𝑡0 is the 2 × 2-antidiag matirx
[

𝜋0
1

]
. Condition (3) translates to

𝑀𝑡 ·

[
𝑋1
𝑋2

]
=

[
𝜋𝑋1
𝜋𝑋2

]
.

By setting 𝐵𝑖 as the i-th row of B and by using condition (2), the above relation amounts to

𝑀1 =

[
𝜋𝑀0
𝑀0

]
, 𝐵1𝑀2 = 𝜋𝐵2𝑀2, 𝐶𝑀1 + 𝑌𝑀2 = 𝜋𝑀2,

where 𝑀0 is the second row of 𝑀1. Finally, condition (4) is equivalent to

(𝑀𝑡 + 𝜋𝐼2𝑛) ·

⎡⎢⎢⎢⎢⎢⎢⎣

𝐼2
𝐼𝑛−2

𝑇 𝐵
𝐶 𝑌

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝑀1
𝑀2

𝑥𝑀1 + 𝐵𝑀2
𝐶𝑀1 + 𝑌𝑀2

⎤⎥⎥⎥⎥⎥⎥⎦
·
[
𝑍 𝑡1 𝑍 𝑡2

]
,

where 𝑍1 is of size 2 × 𝑠 and 𝑍2 is of size (𝑛 − 2) × 𝑠. This, in turn, gives

𝑀0𝑍
𝑡
1 = [1 𝜋], 𝑀0𝑍

𝑡
2 = 0, 𝑀2𝑍

𝑡
1 = 𝐶,

𝑀2𝑍
𝑡
2 = 𝜋𝐼𝑛−2 + 𝑌, 𝑌

2 = 𝜋0𝐼𝑛−2, 𝐵1 = 𝐵2𝑌 .

From the above equations, we can see that A is given in terms of 𝑥, 𝐶,𝑌 by condition (1). Note that
𝐶 = 𝑀2𝑍

𝑡
1, and 𝑌 = 𝑀2𝑍

𝑡
2 − 𝜋𝐼𝑛−2 by condition (4). Thus, the matrix A is given in terms of 𝑀, 𝑍1, 𝑍2

and a variable x. Meanwhile, we have 𝑋1 = 𝑀, 𝑋2 = 𝐴𝑀 by condition (2), so that 𝑋1, 𝑋2 are also given
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in terms of 𝑀, 𝑍1, 𝑍2. However, we have 𝑀 = 𝑋1, and we claim that 𝑍1, 𝑍2 can be expressed in terms
of 𝐴, 𝑋1, 𝑋2 (we will show this later in this section).

Before we move on, let us simplify our equations first. By replacing 𝑌 = 𝑀2𝑍
𝑡
2 − 𝜋𝐼𝑛−2, the equation

𝑌 𝑡 = −𝐽𝑛−2𝑌𝐽𝑛−2 from condition (1) amounts to (𝑀2𝑍
𝑡
2)
𝑡 = −𝐽𝑛−2 (𝑀2𝑍

𝑡
2)𝐽𝑛−2, and the equations that

involve Y from condition (3), (4) translate to

𝐶𝑀1 + (𝑀2𝑍
𝑡
2)𝑀2 = 2𝜋𝑀2, (𝑀2𝑍

𝑡
2)

2 = 2𝜋(𝑀2𝑍
𝑡
2), 𝐵1 + 𝜋𝐵2 = 𝐵2 (𝑀2𝑍

𝑡
2).

Finally, we replace C by 𝑀2𝑍
𝑡
1, and deduce the following.

Lemma 4.5. The affine chart 2U𝑟 ,𝑠 of M around (F0,Λ′) is given by

Spec𝑂𝐹 [𝑥, 𝐵, 𝑀0, 𝑀2, 𝑍1, 𝑍2]/ℐ,

where ℐ is the ideal generated by the entries of following equations:

𝑀2𝑍
𝑡
1 = 𝐽𝑛−2𝐵

𝑡 𝐽2, (𝑀2𝑍
𝑡
2)
𝑡 = −𝐽𝑛−2 (𝑀2𝑍

𝑡
2)𝐽𝑛−2, (𝑀2𝑍

𝑡
2)

2 = 2𝜋(𝑀2𝑍
𝑡
2),

𝐵1𝑀2 = 𝜋𝐵2𝑀2, 𝐵1 + 𝜋𝐵2 = 𝐵2(𝑀2𝑍
𝑡
2), 𝑀0𝑍

𝑡
2 = 0,

𝑀0𝑍
𝑡
1 = [1 𝜋], (𝑀2𝑍

𝑡
1)𝑀1 + (𝑀2𝑍

𝑡
2)𝑀2 = 2𝜋𝑀2.

Here, 𝐵𝑖 is the i-th row of B for 𝑖 = 1, 2.
Remark 4.6. Condition (3) also gives the equations:

𝐵𝐶 = 0, 𝐶𝑡0 + 𝑌𝐶 = 0.

In [18, §5.3], the authors show that these two equations are automatically true if 𝐵,𝐶,𝑌 satisfy

𝑌2 = 𝜋0𝐼𝑛−2, 𝑌
𝑡 = −𝐽𝑛−2𝑌𝐽𝑛−2,

𝐵1 = 𝐵2𝑌, 𝐶 = 𝐽𝑛−2𝐵
𝑡 𝐽2.

4.2.1. The case (𝑟, 𝑠) = (𝑛 − 1, 1)
In this and the next subsection, our goal is to give a simplification of the equations in Lemma 4.5. We
first consider the affine chart 2U𝑛−1,1 ⊂M for the signature (𝑛 − 1, 1). Note that 𝑀0 is of size 1 × 1 in
this case. Since

𝑀0𝑍
𝑡
1 = [1 𝜋] ≠ 0,

we get 𝑀0 ≠ 0. Without loss of generality, we assume 𝑀0 = 1 as rank(F0)=1.
Theorem 4.7. When the signature (𝑟, 𝑠) = (𝑛− 1, 1), the affine chart 2U𝑛−1,1 is smooth and isomorphic
to A𝑛−1

𝑂𝐹
.

Proof. From 𝑀0𝑍
𝑡
1 = [1 𝜋], 𝑀0𝑍

𝑡
2 = 0, we obtain

𝑍 𝑡1 =
[

1 𝜋
]
, 𝑍 𝑡2 = 0.

Let 𝑀2 = [𝑎1 · · · 𝑎𝑛−2]
𝑡 be an (𝑛 − 2) × 1 vector. Then 𝐶 = 𝑀2𝑍

𝑡
1 amounts to

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1 𝜋𝑎1
...

...
𝑎𝑚−1 𝜋𝑎𝑚−1
𝑎𝑚 𝜋𝑎𝑚
...

...
𝑎𝑛−2 𝜋𝑎𝑛−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Also, from 𝐵 = 𝐽2𝐶
𝑡 𝐽𝑛−2, we get

𝐵 =

[
−𝜋𝑎𝑛−2 · · · −𝜋𝑎𝑚 𝜋𝑎𝑚−1 · · · 𝜋𝑎1
𝑎𝑛−2 · · · 𝑎𝑚 −𝑎𝑚−1 · · · −𝑎1

]
.

It is easy to see that the relation 𝑌 = 𝑀2𝑍
𝑡
2 − 𝜋𝐼𝑛−2 gives 𝑌 = −𝜋𝐼𝑛−2 and 𝐵1 + 𝜋𝐵2 = 𝐵2(𝑀2𝑍

𝑡
2) = 0.

Finally, we check that

𝐵1𝑀2 = 𝜋𝐵2𝑀2 = 𝜋(
∑𝑚−1
𝑖=1 𝑎𝑖𝑎𝑛−1−𝑖 −

∑𝑚−1
𝑖=1 𝑎𝑖𝑎𝑛−1−𝑖) = 0,

𝐶𝑀1 + (𝑀2𝑍
𝑡
2)𝑀2 = 2𝜋 · [𝑎1 · · · 𝑎𝑛−2]

𝑡 = 2𝜋𝑀2.

From the above, the conditions on the 𝑎𝑖 are automatically satisfied. We deduce that the affine chart
2U𝑛−1,1 is isomorphic to

Spec𝑂𝐹 [𝑥, 𝑎1, . . . , 𝑎𝑛−2] = A
𝑛−1
𝑂𝐹

. �

4.2.2. The cases for 𝑠 ≥ 2
In this subsection, we consider the explicit equations of 2U𝑟 ,𝑠 for the signature (𝑟, 𝑠) with 𝑠 ≥ 2. Observe
that F1 = {𝑣 + 𝐴(𝑣) | 𝑣 ∈ Λ′ ⊗ O𝑆}. In the special fiber (where O𝑆 = 𝑘), we have 𝑡F1 ⊂ F0, and
𝑡 (Λ′ ⊗ 𝑘) = span𝑂𝐹0

{−𝑒1}, which implies −𝑒1 + 𝑡𝐴(𝑣) ∈ F0. Since

F0 = 𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑀1
𝑀2

𝑥𝑀1 + 𝐵𝑀2
𝐶𝑀1 + 𝑌𝑀2

⎤⎥⎥⎥⎥⎥⎥⎦
,

we can always assume that −𝑒1 + 𝑡𝐴(𝑣) is the first generating element of F0. In the matrix language,
this is equivalent to assume that the second row of X (i.e., 𝑀0) is equal to [1 0 · · · 0]. Thus, we have

𝑀1 =

[
𝜋 0 · · · 0
1 0 · · · 0

]
.

By using 𝑀0𝑍
𝑡
1 = [1 𝜋], 𝑀0𝑍

𝑡
2 = 0, we set

𝑍 𝑡1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 𝜋
𝑧1,2 𝑧2,2
...

...
𝑧1,𝑠 𝑧2,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑍 𝑡2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
𝑧′1,2 · · · 𝑧

′
𝑛−2,2

...
. . .

...
𝑧′1,𝑠 · · · 𝑧

′
𝑛−2,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and

𝑀2 =
[

a1 · · · as
]
=

⎡⎢⎢⎢⎢⎢⎣
𝑎1,1 · · · 𝑎1,𝑠
...

. . .
...

𝑎𝑛−2,1 · · · 𝑎𝑛−2,𝑠

⎤⎥⎥⎥⎥⎥⎦
.

We claim that 𝑍1, 𝑍2 can be expressed in terms of 𝐴, 𝑋1, 𝑋2. Observe from 𝐶𝑀1 +𝑌𝑀2 = 𝜋𝑀2 that all
the entries of 𝐶𝑀1 + 𝑌𝑀2 are in the maximal ideal, and thus a minor involving entries of 𝐶𝑀1 + 𝑌𝑀2
cannot be a unit. Similarly, the entries of the first row of 𝑥𝑀1 + 𝐵𝑀2 are also in the maximal ideal.
By replacing the order of basis {𝜋𝑒𝑚, . . . , 𝜋𝑒𝑛} if necessary, we can assume that the matrix 𝑀2 has an
invertible (𝑠 − 1) × (𝑠 − 1)-minor. Let 𝑀 ′2 be a submatrix of 𝑀2 composing (𝑠 − 1) rows along with the
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corresponding s columns. We set

𝑀 ′2 =

⎡⎢⎢⎢⎢⎢⎣
𝑎𝑖2 ,1 𝑎𝑖2 ,2 · · · 𝑎𝑖2 ,𝑠
...

...
. . .

...
𝑎𝑖𝑠 ,1 𝑎𝑖𝑠 ,2 · · · 𝑎𝑖𝑠 ,𝑠

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦
for 1 ≤ 𝑖2, · · · , 𝑖𝑠 ≤ 𝑛 − 2. Consider the matrix 𝐶 = 𝑀2𝑍

𝑡
1. We have

𝐶 =
[

a1 + 𝑧1,2a2 + · · · + 𝑧1,𝑠as 𝜋a1 + 𝑧2,2a2 + · · · + 𝑧2,𝑠as
]
.

By setting 𝑖 = 𝑖2, . . . , 𝑖𝑠 , it is easy to see that 𝑍1 can be expressed in terms of C. Similarly, 𝑍2 can be
expressed in terms of Y as 𝑀2𝑍

𝑡
2 = 𝜋𝐼𝑛−2 + 𝑌 . Thus, 𝑍1, 𝑍2 are given in terms of 𝐴, 𝑋1, 𝑋2.

Set

𝐷 =

⎡⎢⎢⎢⎢⎢⎣
𝑑2,2 · · · 𝑑2,𝑠
...

. . .
...

𝑑𝑠,2 · · · 𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦
, 𝑄 =

⎡⎢⎢⎢⎢⎢⎣
𝑞2,2 · · · 𝑞2,𝑠
...

. . .
...

𝑞𝑠,2 · · · 𝑞𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦
,

where 𝑞𝑖, 𝑗 =
∑𝑚−1
𝑘=1 (𝑎𝑘,𝑖𝑎𝑛−1−𝑘, 𝑗 − 𝑎𝑛−1−𝑘,𝑖𝑎𝑘, 𝑗 ). The matrix Q depends on 𝑀2. Note that 𝑄𝑡 = −𝑄 by

definition.

Theorem 4.8. For any signature (𝑟, 𝑠) with 𝑠 ≥ 2, there is an affine chart 2U𝑟 ,𝑠 ⊂ M which is
isomorphic to

A𝑠−1
𝑂𝐹
× Spec𝑂𝐹 [𝐷, 𝑀2]/𝐼,

where

𝐼 = (𝑀 ′2 − [0 | 𝐼𝑠−1], 𝐷 + 𝐷𝑡 , 𝐷 · 𝑄 + 2𝜋𝐼𝑠−1)

for some choice of 𝑀 ′2. [0 | 𝐼𝑠−1] is of size (𝑠 − 1) × 𝑠, with the first column 0.

Proof. The proof is similar to the proof of Theorem 4.2. Consider (𝑀2𝑍
𝑡
2)
𝑡 = −𝐽𝑛−2 (𝑀2𝑍

𝑡
2)𝐽𝑛−2 first.

We claim that 𝑍 𝑡2 depends on 𝑀2 and D. Since 𝑀2𝑍
𝑡
2 = (

∑𝑠
𝑘=2 𝑎𝑖,𝑘 𝑧

′
𝑗 ,𝑘 )𝑖 𝑗 , the relation (𝑀2𝑍

𝑡
2)
𝑡 =

−𝐽𝑛−2 (𝑀2𝑍
𝑡
2)𝐽𝑛−2 amounts to

𝑎𝑖,2𝑧
′
𝑗 ,2 + · · · + 𝑎𝑖,𝑠𝑧

′
𝑗 ,𝑠 = ±(𝑎𝑛−1− 𝑗 ,2𝑧

′
𝑛−1−𝑖,2 + · · · + 𝑎𝑛−1− 𝑗 ,𝑠𝑧

′
𝑛−1−𝑖,𝑠),

where the different sign ± depends on the position of 𝑖2, . . . , 𝑖𝑠 . We obtain

𝑧′𝑛−1−𝑖2 ,2 = 𝑧′𝑛−1−𝑖3 ,3 = · · · = 𝑧′𝑛−1−𝑖𝑠 ,𝑠 = 0,

by letting 𝑖 = 𝑖𝑘 , 𝑗 = 𝑛 − 1 − 𝑖𝑘 for 𝑘 = 2, . . . , 𝑠. To write down 𝑍 𝑡2 explicitly, we need to consider the
positions of 𝑖2, . . . , 𝑖𝑠 .

Case 1: Assume that 1 ≤ 𝑖2, . . . , 𝑖𝑠 ≤ 𝑚 − 1. In this case, we have 𝑧′𝑛−1−𝑖𝑝 ,𝑞 = −𝑧′𝑛−1−𝑖𝑞 , 𝑝 by letting
𝑖 = 𝑖𝑝 , 𝑗 = 𝑛 − 1 − 𝑖𝑞 . Set 𝑑𝑝,𝑞 = 𝑧′𝑛−1−𝑖𝑝 ,𝑞 . We obtain

⎡⎢⎢⎢⎢⎢⎣
𝑧′𝑛−1−𝑖2 ,2 · · · 𝑧

′
𝑛−1−𝑖2 ,𝑠

...
. . .

...
𝑧′𝑛−1−𝑖𝑠 ,2 · · · 𝑧

′
𝑛−1−𝑖𝑠 ,𝑠

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
𝑑2,2 · · · 𝑑2,𝑠
...

. . .
...

𝑑𝑠,2 · · · 𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦
= 𝐷,

where 𝑑𝑝,𝑞 = −𝑑𝑞,𝑝 for 2 ≤ 𝑝, 𝑞 ≤ 𝑠. This implies that D is skew-symmetric.
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For 𝑖 = 𝑖2, we have

𝑧′𝑗 ,2 = ±(𝑎𝑛−1− 𝑗 ,2𝑑2,2 + · · · + 𝑎𝑛−1− 𝑗 ,𝑠𝑑2,𝑠).

Since 1 ≤ 𝑖2 ≤ 𝑚 − 1, the sign ± is positive when 1 ≤ 𝑗 ≤ 𝑚 − 1, and is negative when 𝑚 ≤ 𝑗 ≤ 𝑛 − 2.
Similar to 𝑖 = 𝑖𝑘 for 𝑘 = 3, . . . , 𝑠. We have

𝑍 𝑡2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
𝑑2,2 · · · 𝑑2,𝑠
...

. . .
...

𝑑𝑠,2 · · · 𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎣
𝑎𝑛−2,2 · · · 𝑎𝑚,2 −𝑎𝑚−1,2 · · · −𝑎1,2

...
. . .

...
...

. . .
...

𝑎𝑛−2,𝑠 · · · 𝑎𝑚,𝑠 −𝑎𝑚−1,𝑠 · · · −𝑎1,𝑠

⎤⎥⎥⎥⎥⎥⎦
.

Case 2: In general, we assume that

1 ≤ 𝑖2, . . . , 𝑖𝑡 ≤ 𝑚 − 1 and 𝑚 ≤ 𝑖𝑡+1, . . . , 𝑖𝑠 ≤ 𝑛 − 2.

Set 𝑑𝑝,𝑞 = 𝑧′𝑛−1−𝑖𝑝 ,𝑞 . By letting 𝑖 = 𝑖𝑝 , 𝑗 = 𝑛 − 1 − 𝑖𝑞 , we obtain

𝑑𝑝,𝑞 = −𝑑𝑞,𝑝 , for 2 ≤ 𝑝, 𝑞 ≤ 𝑡, or 𝑡 + 1 ≤ 𝑝, 𝑞 ≤ 𝑠,
𝑑𝑝,𝑞 = 𝑑𝑞,𝑝 , for 2 ≤ 𝑝 ≤ 𝑡, 𝑡 + 1 ≤ 𝑞 ≤ 𝑠, or 𝑡 + 1 ≤ 𝑝 ≤ 𝑠, 2 ≤ 𝑞 ≤ 𝑡.

Thus, 𝑧′𝑗 ,𝑘 = ±(𝑎𝑛−1− 𝑗 ,𝑘𝑑𝑘,2 + · · · + 𝑎𝑛−1− 𝑗 ,𝑠𝑑𝑘,𝑠), where the sign ± is positive if 1 ≤ 𝑗 ≤ 𝑚, 2 ≤ 𝑘 ≤ 𝑡,
or 𝑚 ≤ 𝑗 ≤ 𝑛 − 2, 𝑡 + 1 ≤ 𝑘 ≤ 𝑠, and negative otherwise. Therefore, 𝑍 𝑡2 can be expressed as

𝑍 𝑡2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
𝑑2,2 · · · 𝑑2,𝑠
...

. . .
...

𝑑𝑡 ,2 · · · 𝑑𝑡 ,𝑠
−𝑑𝑡+1,2 · · · −𝑑𝑡+1,𝑠

...
. . .

...
−𝑑𝑠,2 · · · −𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡⎢⎢⎢⎢⎢⎣
𝑎𝑛−2,2 · · · 𝑎𝑚,2 −𝑎𝑚−1,2 · · · −𝑎1,2

...
. . .

...
...

. . .
...

𝑎𝑛−2,𝑠 · · · 𝑎𝑚,𝑠 −𝑎𝑚−1,𝑠 · · · −𝑎1,𝑠

⎤⎥⎥⎥⎥⎥⎦
.

Set

𝐷 = [𝑑𝑝,𝑞]2≤𝑝,𝑞≤𝑠 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑2,2 · · · 𝑑2,𝑠
...

. . .
...

𝑑𝑡 ,2 · · · 𝑑𝑡 ,𝑠
−𝑑𝑡+1,2 · · · −𝑑𝑡+1,𝑠

...
. . .

...
−𝑑𝑠,2 · · · −𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For 2 ≤ 𝑝, 𝑞 ≤ 𝑡, we have 𝑑𝑝,𝑞 = 𝑑𝑝,𝑞 = −𝑑𝑞,𝑝 = −𝑑𝑞,𝑝 . Similarly, it is easy to see that 𝑑𝑝,𝑞 = −𝑑𝑞,𝑝
for all the other positions of 𝑝, 𝑞. Hence, the matrix 𝐷 is skew-symmetric.

Combining the above cases, for any 1 ≤ 𝑖2, . . . , 𝑖𝑠 ≤ 𝑛 − 2, there exists a skew-symmetric matrix D
of size (𝑠 − 1) × (𝑠 − 1) such that

𝑍 𝑡2 =

[
0 · · · 0
D

]
·

⎡⎢⎢⎢⎢⎢⎣
𝑎𝑛−2,2 · · · 𝑎𝑚,2 −𝑎𝑚−1,2 · · · −𝑎1,2

...
. . .

...
...

. . .
...

𝑎𝑛−2,𝑠 · · · 𝑎𝑚,𝑠 −𝑎𝑚−1,𝑠 · · · −𝑎1,𝑠

⎤⎥⎥⎥⎥⎥⎦
. (4.2.1)
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By abuse of notation, write 𝐷 for D. Our next goal is to show that the second column of 𝑍 𝑡1 depends on
the first column of 𝑍 𝑡1 and 𝑀2. Recall that

𝐶 =
[

a1 + 𝑧1,2a2 + · · · + 𝑧1,𝑠as 𝜋a1 + 𝑧2,2a2 + · · · + 𝑧2,𝑠as
]

and 𝐵 = 𝐽2𝐶
𝑡 𝐽𝑛−2. By using (4.2.1), the (𝑛 − 1 − 𝑖𝑘 )-th columns (𝑘 = 2, . . . , 𝑠) of the relation

𝐵1 + 𝜋𝐵2 = 𝐵2 (𝑀2𝑍
𝑡
2) give

⎡⎢⎢⎢⎢⎢⎣
𝑧2,2
...

𝑧2,𝑠

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
𝑑2,2 · · · 𝑑2,𝑠
...

. . .
...

𝑑𝑠,2 · · · 𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝑞2,1 · · · 𝑞2,𝑠
...

. . .
...

𝑞𝑠,1 · · · 𝑞𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
𝑧1,2
...

𝑧1,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝜋

⎡⎢⎢⎢⎢⎢⎣
𝑧1,2
...

𝑧1,𝑠

⎤⎥⎥⎥⎥⎥⎦
, (4.2.2)

where 𝑞𝑖, 𝑗 =
∑𝑚−1
𝑘=1 (𝑎𝑘,𝑖𝑎𝑛−1−𝑘. 𝑗 − 𝑎𝑛−1−𝑘,𝑖𝑎𝑘, 𝑗 ). It is easy to see that the rest columns in 𝐵1 + 𝜋𝐵2 =

𝐵2 (𝑀2𝑍
𝑡
2) are automatically satisfied when (4.2.2) holds.

Finally, consider𝐶𝑀1+(𝑀2𝑍
𝑡
2)𝑀2 = 2𝜋𝑀2. By using the relations (4.2.1) and (4.2.2), it is equivalent

to

𝐷 · 𝑄 = −2𝜋𝐼𝑠−1,

where

𝐷 =

⎡⎢⎢⎢⎢⎢⎣
𝑑2,2 · · · 𝑑2,𝑠
...

. . .
...

𝑑𝑠,2 · · · 𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦
, 𝑄 =

⎡⎢⎢⎢⎢⎢⎣
𝑞2,2 · · · 𝑞2,𝑠
...

. . .
...

𝑞𝑠,2 · · · 𝑞𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦
.

There are two relations we still need to consider: 𝐵1𝑀2 = 𝜋𝐵2𝑀2, and (𝑀2𝑍
𝑡
2)

2 = 2𝜋(𝑀2𝑍
𝑡
2). We leave

it to the reader to verify that these conditions are already satisfied when 𝐷 · 𝑄 = −2𝜋𝐼𝑠−1.
From all the above, we deduce that an affine neighborhood around (F0,Λ′) is given by 2U𝑟 ,𝑠 �

Spec𝑂𝐹 [𝑥, 𝑧1,2, . . . , 𝑧1,𝑠 , 𝐷, 𝑀2]/𝐼, where

𝐼 = (𝑀 ′2 − [0 | 𝐼𝑠−1], 𝐷 + 𝐷𝑡 , 𝐷 · 𝑄 + 2𝜋𝐼𝑠−1).

Set A𝑠−1
𝑂𝐹

= Spec𝑂𝐹 [𝑥, 𝑧1,2, . . . , 𝑧1,𝑠]. For 𝑠 ≥ 2, we have

2U𝑟 ,𝑠 � A𝑠−1
𝑂𝐹
× Spec𝑂𝐹 [𝐷, 𝑀2]/𝐼 . �

In particular, for the signature (𝑟, 𝑠) = (𝑛 − 3, 3), we have

𝐷 =

[
0 𝑑
−𝑑 0

]
, 𝑄 =

[
0 𝑞
−𝑞 0

]
,

where we set 𝑑 = 𝑑2,3 = −𝑑3,2, 𝑞 = 𝑞2,3 = −𝑞3,2. Recall that 𝑞 =
∑𝑚−1
𝑘=1 (𝑎𝑘,2𝑎𝑛−1−𝑘,3 − 𝑎𝑛−1−𝑘,2𝑎𝑘,3).

The equation 𝐷 · 𝑄 = −2𝜋𝐼𝑠−1 amounts to 𝑑 · 𝑞 − 2𝜋 = 0.

Corollary 4.9. When (𝑟, 𝑠) = (𝑛 − 3, 3), there is an affine chart 2U𝑛−3,3 which is isomorphic to

𝑉 (𝐼) = Spec𝑂𝐹 [𝑥, 𝑧1,2, 𝑧1,3, 𝑑, (𝑎𝑘,1)1≤𝑘≤𝑛−2, (𝑎𝑘,2)1≤𝑘≤𝑛−2, (𝑎𝑘,3)1≤𝑘≤𝑛−2]/𝐼,
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where

𝐼 = (𝑎𝑖2 ,1, 𝑎𝑖3 ,1, 𝑎𝑖2 ,2 − 1, 𝑎𝑖3 ,2, 𝑎𝑖2 ,3, 𝑎𝑖3 ,3 − 1, 𝑑 ·
𝑚−1∑
𝑘=1
(𝑎𝑘,2𝑎𝑛−1−𝑘,3 − 𝑎𝑛−1−𝑘,2𝑎𝑘,3) − 2𝜋)

for some 1 ≤ 𝑖2, 𝑖3 ≤ 𝑛 − 2.

Remark 4.10. As in Remark 4.4, for different choices of 𝑀 ′2, we get different equations from 𝐷 · 𝑄 =
−2𝜋𝐼𝑠 and so different affine charts 2U𝑟 ,𝑠 which in general are not isomorphic. For instance, in
Corollary 4.9, there are two different affine charts up to isomorphism when we choose different posi-
tions for 𝑖2, 𝑖3 (see §5.3 for details). In Proposition 5.7, we show that for any such a choice, the affine
scheme 𝑉 (𝐼) has semi-stable reduction over 𝑂𝐹 .

5. Splitting models Mspl

In this section, we will first show that the naive splitting model M is not flat over Spec𝑂𝐹 for a general
signature (𝑟, 𝑠). Then we will define the closed subscheme Mspl ⊂M. We show that Mspl is smooth for
the signature (𝑟, 𝑠) = (𝑛 − 1, 1) and has semi-stable reduction for the signature (𝑟, 𝑠) = (𝑛 − 2, 2) and
(𝑟, 𝑠) = (𝑛 − 3, 3).

5.1. Naive Splitting Models M
By using the explicit description of the two affine charts 1U𝑟 ,𝑠, 2U𝑟 ,𝑠 ⊂M, that we obtained in §4, we
will show that M is not flat over Spec𝑂𝐹 .

Proposition 5.1. For any signature (𝑟, 𝑠), the naive splitting model M is not flat over Spec𝑂𝐹 .

Proof. It is enough to show a) When s is odd, the generic fiber 1U𝑟 ,𝑠 ⊗𝑂𝐹 𝐹 is empty and so the point
(F0, 𝑡Λ𝑚) does not lift to characteristic zero, and b) When s is even, the generic fiber 2U𝑟 ,𝑠 ⊗𝑂𝐹 𝐹 is
empty and so the point (F0,Λ′) does not lift to characteristic zero.

Observe that for a skew-symmetric matrix P of size 𝑠 × 𝑠, the determinant of P is equal to 0 if s is
odd. Recall that we denote by 1U𝑟 ,𝑠 the affine chart around the point (F0, 𝑡Λ𝑚) ∈M. By Theorem 4.2,
the affine chart 1U𝑟 ,𝑠 is isomorphic to Spec𝑂𝐹 [𝐷,𝑌 ]/𝐼, where

𝐼 = (𝑌 ′ − 𝐼𝑠 , 𝐷 + 𝐷𝑡 , 𝐷 · 𝑄 + 2𝜋𝐼𝑠),

for any signature (𝑟, 𝑠). Here, D is a skew-symmetric matrix of size 𝑠 × 𝑠. Thus, when s is odd, we have
det(𝐷) = 0. In this case, we can see that the generic fiber 1U𝑟 ,𝑠 ⊗𝑂𝐹 𝐹 is empty since

0 = det(𝐷) det(𝑄) = det(𝐷 · 𝑄) = det(−2𝜋𝐼𝑠) = (−2𝜋)𝑠 .

It follows that the point (F0, 𝑡Λ𝑚) does not lift to characteristic zero when s is odd.
Recall that we denote by 2U𝑟 ,𝑠 the affine chart around the point (F0,Λ′) ∈M. By Theorem 4.8, the

affine chart 2U𝑟 ,𝑠 is isomorphic to A𝑠−1
𝑂𝐹
× Spec𝑂𝐹 [𝐷, 𝑀2]/𝐼, where

𝐼 = (𝑀 ′2 − [0 | 𝐼𝑠], 𝐷 + 𝐷𝑡 , 𝐷 · 𝑄 + 2𝜋𝐼𝑠−1).

When s is even, we see that the generic fiber 2U𝑟 ,𝑠 ⊗𝑂𝐹 𝐹 is empty since D is of size (𝑠 − 1) × (𝑠 − 1)
and 0 = det(𝐷 · 𝑄) = (−2𝜋)𝑠−1. Therefore, the point (F0,Λ′) does not lift to characteristic zero when
s is even. �

Recall that there is a forgetful morphism 𝜏 : M→ M∧ ⊗𝑂𝑂𝐹 . From [18, Remark 5.3], [20, Remark
2.6.10], the authors show that the wedge local model M∧ is not topological flat for any signature when n
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is even. Consider the local model Mloc to be the scheme-theoretic closure in M∧ of its generic fiber. We
have a closed morphism Mloc ↩→ M∧. Define the splitting model as the inverse image of Mloc; that is,

Mspl := 𝜏−1(Mloc) = M ×M∧ Mloc.

The restriction of the forgetful morphism 𝜏 on Mspl gives

𝜏 : Mspl → Mloc.

5.2. The Case (𝑟, 𝑠) = (𝑛 − 2, 2)

By using the explicit description of 1U𝑛−2,2 in §4.1, we show the following.

Proposition 5.2. When (𝑟, 𝑠) = (𝑛 − 2, 2), 1U𝑛−2,2 has semi-stable reduction over 𝑂𝐹 . In particular,
1U𝑛−2,2 is regular and has special fiber a reduced divisor with two smooth irreducible components
intersecting transversely.

Proof. From Corollary 4.3, it is enough to show that the scheme 𝑉 (𝐼) has semi-stable reduction over
𝑂𝐹 . It suffices to prove that 𝑉 (𝐼) is regular and its special fiber is reduced with smooth irreducible
components that have smooth intersections with correct dimensions (see [13, §2.16]).

First, we rename our variables as follows: 𝑥𝑖 := 𝑦𝑖,1 and 𝑦𝑖 := 𝑦𝑖,2 for 1 ≤ 𝑖 ≤ 𝑛. Thus, 𝑉 (𝐼) =
Spec𝑂𝐹 [𝑑, 𝑥, 𝑦]/𝐼, where

𝐼 = (𝑥𝑖0 − 1, 𝑦 𝑗0 − 1, 𝑥 𝑗0 , 𝑦𝑖0 , 𝑑 (
𝑚∑
𝑗=1

𝑦𝑛+1− 𝑗𝑥 𝑗 −
𝑛∑

𝑗=𝑚+1
𝑦𝑛+1− 𝑗𝑥 𝑗 ) − 2𝜋).

By symmetry, as above, there two cases to consider: Case 1 when 1 ≤ 𝑖0, 𝑗0 ≤ 𝑚 and Case 2 when
1 ≤ 𝑖0 ≤ 𝑚 and 𝑚 + 1 ≤ 𝑗0 ≤ 𝑛. We consider these two cases separately in this proof.

In Case 1, we can assume, for simplicity, that 𝑖0 = 1 and 𝑗0 = 2. Thus, 𝑉 (𝐼) is isomorphic to
𝑉 (I) = Spec 𝑅/I, where

𝑅 = 𝑂𝐹 [𝑑, (𝑥𝑖)3≤𝑖≤𝑛, (𝑦𝑖)3≤𝑖≤𝑛],

and

I = (𝑑 (𝑥𝑛−1 +

𝑛−3∑
𝑖=𝑚+1

𝑥𝑖𝑦𝑛+1−𝑖 − 𝑦𝑛 −
𝑚∑
𝑖=3

𝑥𝑖𝑦𝑛+1−𝑖) − 2𝜋).

Over the special fiber (𝜋 = 0), we have 𝑉 (I𝑠) � Spec 𝑅̄/I𝑠 , where

𝑅̄ = 𝑘 [𝑑, (𝑥𝑖)3≤𝑖≤𝑛, (𝑦𝑖)3≤𝑖≤𝑛], I𝑠 = (𝑑 (𝑥𝑛−1 +

𝑛−3∑
𝑖=𝑚+1

𝑥𝑖𝑦𝑛+1−𝑖 − 𝑦𝑛 −
𝑚∑
𝑖=3

𝑥𝑖𝑦𝑛+1−𝑖)).

It has two smooth irreducible components 𝑉 (I𝑖) = Spec 𝑅̄/I𝑖 , where

I1 = (𝑑), I2 = (𝑥𝑛−1 +

𝑛−3∑
𝑖=𝑚+1

𝑥𝑖𝑦𝑛+1−𝑖 − 𝑦𝑛 −
𝑚∑
𝑖=3

𝑥𝑖𝑦𝑛+1−𝑖),

that are isomorphic to A2𝑛−4
𝑘 . Their intersection is also smooth and of dimension 2𝑛− 5. Next, we prove

that𝑉 (I𝑠) is reduced by showing that I𝑠 = I1∩I2. Clearly, I𝑠 ⊂ I1∩I2. Let 𝑔 ∈ I1∩I2. Thus, 𝑔 ∈ I1
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and 𝑔 = 𝑓1𝑑 for 𝑓1 ∈ 𝑅̄. Also, 𝑔 ∈ I2 and so 𝑓1𝑑 ∈ I2. I2 is a prime ideal and 𝑑 ∉ I2. Thus, 𝑓1 ∈ I2 and

𝑔 = 𝑑𝑓1 ≡ 𝑑 (𝑥𝑛−1 +

𝑛−3∑
𝑖=𝑚+1

𝑥𝑖𝑦𝑛+1−𝑖 − 𝑦𝑛 −
𝑚∑
𝑖=3

𝑥𝑖𝑦𝑛+1−𝑖) 𝑓2 ≡ 0 mod I𝑠

for 𝑓2 ∈ 𝑅̄. Thus, 𝑔 ∈ I𝑠 and so I𝑠 = I1∩I2. Lastly, we can easily see that the ideals I1, I2 are principal
over 𝑉 (I). From the above, we deduce that 𝑉 (I) is regular (see [10, Remark 1.1.1]).

In Case 2, we set Δ = {1, . . . , 𝑛− 2}/{𝑚, 𝑚 + 1} and let 𝑖0 = 𝑚, 𝑗0 = 𝑚 + 1. Then 𝑉 (𝐼) is isomorphic
to 𝑉 (J ) = Spec 𝑅′/J , where 𝑅′ = 𝑂𝐹 [𝑑, (𝑥𝑖)𝑖∈Δ , (𝑦𝑖)𝑖∈Δ ] and

J = (𝑑 (1 +
𝑚−1∑
𝑖=1

𝑥𝑖𝑦𝑛+1−𝑖 −
𝑛∑

𝑖=𝑚+2
𝑥𝑖𝑦𝑛+1−𝑖) − 2𝜋).

To see that𝑉 (J ) has semi-stable reduction over 𝑂𝐹 , one proceeds exactly as in Case 1. Over the special
fiber (𝜋 = 0), we have 𝑉 (J𝑠) � Spec 𝑅̄′/J𝑠 where 𝑅̄ = 𝑘 [𝑑, (𝑥𝑖)𝑖∈Δ , (𝑦𝑖)𝑖∈Δ ] and

J𝑠 = (𝑑 (1 +
𝑚−1∑
𝑖=1

𝑥𝑖𝑦𝑛+1−𝑖 −
𝑛∑

𝑖=𝑚+2
𝑥𝑖𝑦𝑛+1−𝑖)).

It has two smooth irreducible components 𝑉 (J𝑖) = Spec 𝑅/J𝑖 , where

J1 = (𝑑), J2 = (1 +
𝑚−1∑
𝑖=1

𝑥𝑖𝑦𝑛+1−𝑖 −
𝑛∑

𝑖=𝑚+2
𝑥𝑖𝑦𝑛+1−𝑖)

of dimension 2𝑛−4. (Note that in this case, the second component𝑉 (J2) is not isomorphic to the affine
space A2𝑛−4

𝑘 as in Case 1.) Their intersection is also smooth and of dimension 2𝑛 − 5. By using similar
arguments as Case 1, we can show that 𝑉 (J𝑠) is reduced and 𝑉 (J ) is regular. �

Since 1U𝑛−2,2 has semi-stable reduction, and is therefore flat over 𝑂𝐹 , we have 1U𝑛−2,2 ⊂ Mspl. Our
next goal is to prove that Mspl has semi-stable reduction over 𝑂𝐹 for the signature (𝑟, 𝑠) = (𝑛 − 2, 2).
From §4.1, it is enough to show that G-translates of 1U𝑛−2,2 cover Mspl (see Theorem 5.4).

Assume that s is even. Recall from §4.1 the G-equivariant morphism 𝜏 : Mspl → Mloc ⊗𝑂 𝑂𝐹 which
is given by (F0,F1) ↦→ F1. Let 𝜏𝑠 : Mspl ⊗ 𝑘 → Mloc ⊗ 𝑘 be the morphism over the special fiber.
Let (F0,F1) be point of the special fiber of Mspl. Over the special fiber the condition (4) amounts to
𝑡F0 = (0) and so (0) ⊂ F0 ⊂ 𝑡Λ𝑚 ⊗ 𝑘 (see §3 for the definition of the naive splitting models). Hence,
we consider the morphism

𝜋 : Mspl ⊗ 𝑘 → Gr(𝑠, 𝑛) ⊗ 𝑘

given by (F0,F1) ↦→ F0. Here, Gr(𝑠, 𝑛) ⊗ 𝑘 is the finite-dimensional Grassmannian of s-dimensional
subspaces of 𝑡Λ𝑚 ⊗ 𝑘. This has a section

𝜙 : Gr(𝑠, 𝑛) ⊗ 𝑘 → Mspl ⊗ 𝑘

given by F0 ↦→ (F0,F1) with F1 = 𝑡Λ𝑚 ⊗ 𝑘. The image of the section 𝜙 is an irreducible component of
Mspl ⊗𝑂𝐹 𝑘 which is the fiber 𝜏−1

𝑠 (𝑡Λ𝑚 ⊗ 𝑘) over the ‘worst point’ of Mloc ⊗ 𝑘 – that is, the unique closed
G-orbit supported in the special fiber (see [19, §5]). Hence, 𝜏−1

𝑠 (𝑡Λ𝑚) is isomorphic to the Grassmannian
Gr(𝑠, 𝑛) ⊗ 𝑘 of dimension 𝑠(𝑛 − 𝑠).

We equip 𝑡Λ𝑚 ⊗ 𝑘 with the nondegenerate alternating form 〈 , 〉′ which is defined as 〈𝑡𝑣, 𝑡𝑤〉′ :=
(𝑣, 𝑡𝑤) = 𝑣𝑡 𝐽𝑛𝑤. Note that this is well defined (see [25, §5.2] for more details). Denote by Q(𝑠, 𝑛) the
closed subscheme of 𝜙(Gr(𝑠, 𝑛) ⊗ 𝑘) of dimension 𝑠(2𝑛−3𝑠+1)/2 which parametrizes all the isotropic
s-subspaces F0 in the n-space 𝑡Λ𝑚 ⊗ 𝑘 .
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Next, we give a couple of useful observations concerning the special fiber of the affine chart 1U𝑟 ,𝑠
(see §4.1 for the notation), which will be used in the proof of the following theorem.

Remark 5.3. Recall from Theorem 4.2 that over the special fiber of 1U𝑟 ,𝑠 , we have 𝐷 = −𝐷𝑡 , 𝐷 ·𝑄 = 0
and the minor relations from (4.1.1).

a) Observe that if 𝐷 = 0, then 𝑍 = 0, which gives 𝐴 = 0 since 𝐴 = 𝑌𝑍 𝑡 over the special fiber. If 𝐴 = 0,
then F1 = 𝑡Λ𝑚. Hence, 1U𝑟 ,𝑠 ∩ 𝜏−1 (𝑡Λ𝑚) is a smooth irreducible component of dimension 𝑠(𝑛 − 𝑠).

b) Recall that

F0 =

[
𝜋𝑌
𝑌

]
and 𝑌 =

[
y1 · · · y𝑠

]
,

where y𝑖 are the columns of the matrix 𝑌 . By direct calculations, we get that the entries 𝑞𝑖, 𝑗 of the
matrix Q are given by 𝑞𝑖, 𝑗 = 〈y𝑖 , y 𝑗〉′. Thus, over the special fiber, we have 〈F0,F0〉

′ = 𝑄, and so from
the rank of 𝑄, we read how isotropic F0 is with respect to 〈 , 〉′. When the rank of the matrix Q is zero,
which actually occurs, we have 〈F0,F0〉

′ = 0 .
c) From (a) and (b), we can easily see that 1U𝑟 ,𝑠 contains points (F0,F1) where F0 ∈ Q(𝑠, 𝑛) and

F1 = 𝑡Λ𝑚.

Theorem 5.4. When (𝑟, 𝑠) = (𝑛 − 2, 2), G-translates of 1U𝑛−2,2 cover Mspl.

Proof. From §5.1, we have the forgetful G-equivariant morphism 𝜏 : Mspl → Mloc ⊗𝑂 𝑂𝐹 given by
(F0,F1) ↦→ F1. As in [15, §4] and [18, §2.4.2, 5.5], the worst point of Mloc ⊗𝑂 𝑂𝐹 is given by the k-
valued point 𝑡Λ𝑚 ⊗ 𝑘 . From the construction of splitting models and local models, in order to show that
G-translates of 1U𝑛−2,2 cover Mspl, it is enough to prove that G-translates of 1U𝑛−2,2 cover 𝜏−1(𝑡Λ𝑚).

Recall that 𝜏−1
𝑠 (𝑡Λ𝑚 ⊗ 𝑘) � Gr(2, 𝑛) ⊗ 𝑘 and G𝑘 acts via its action by reduction to 𝑡Λ𝑚 ⊗ 𝑘/𝑡2Λ𝑚 ⊗ 𝑘 .

This action factors through the symplectic group 𝑆𝑝(𝑛)𝑘 of the symplectic form 〈 , 〉′ on 𝑡Λ𝑚 ⊗ 𝑘 and
gives the map G𝑘 → 𝑆𝑝(𝑛)𝑘 . As in [19, §4], G𝑘 has 𝑆𝑝(𝑛)𝑘 as its maximal reductive quotient. Therefore,
the map G𝑘 → 𝑆𝑝(𝑛)𝑘 is surjective.

Next, the 𝑆𝑝(𝑛)𝑘 -action on Gr(2, 𝑛) has two orbits. More precisely, the orbits are

𝑄(0) = {F0 ∈ Gr(2, 𝑛) | F0 contains no isotropic vectors}

and

𝑄(2) = {F0 ∈ Gr(2, 𝑛) | F0 is totally isotropic}.

Observe that 𝑄(2) is contained in the (Zariski) closure of 𝑄(0), and so 𝑄(2) = Q(2, 𝑛) is the unique
closed orbit (see, for example, [3, §3.1] and [1]). Thus, Q(2, 𝑛) is contained in the closure of each orbit
𝑄(𝑖), 𝑖 = 0, 2.

Lastly, from Remark 5.3, we have that 1U𝑛−2,2 ⊗ 𝑘 contains points (F0, 𝑡Λ𝑚) with F0 ∈ Q(2, 𝑛)
and so 1U𝑛−2,2 contains points from all the orbits. Therefore, from all the above, we deduce that the
G-translates of 1U𝑛−2,2 cover 𝜏−1(𝑡Λ𝑚). �

Corollary 5.5. When (𝑟, 𝑠) = (𝑛 − 2, 2), the scheme Mspl has semi-stable reduction. In particular, Mspl

is regular and has special fiber a reduced divisor with two smooth irreducible components intersecting
transversely.

Proof. The proof follows from Proposition 5.2 and Theorem 5.4. �

Remark 5.6. Note that the construction of 𝜙 : Gr(𝑠, 𝑛) ⊗ 𝑘 � 𝜏−1
𝑠 (𝑡Λ𝑚 ⊗ 𝑘) and the observations in

Remark 5.3 are true for any even s. In fact, for any even s, if we could show that the affine chart 1U𝑟 ,𝑠 is
flat, then 1U𝑟 ,𝑠 ⊂ Mspl. By using a similar argument as above, we then could prove that G-translates of
1U𝑟 ,𝑠 cover Mspl.
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5.3. The Case (𝑟, 𝑠) = (𝑛 − 1, 1) and (𝑟, 𝑠) = (𝑛 − 3, 3)

By using the explicit description of 2U𝑛−3,3 in 4.2, we show

Proposition 5.7. When (𝑟, 𝑠) = (𝑛 − 3, 3), the affine chart 2U𝑛−3,3 has semi-stable reduction over 𝑂𝐹 .
In particular, 2U𝑛−3,3 is regular and has special fiber a reduced divisor with two smooth irreducible
components intersecting transversely.

Proof. Recall from §4.2.2 that the quadratic polynomial
∑𝑚−1
𝑘=1 (𝑎𝑘,2𝑎𝑛−1−𝑘,3 − 𝑎𝑛−1−𝑘,2𝑎𝑘,3) depends

on the positions of 𝑖2, 𝑖3. By symmetry, we only need to consider the case when 1 ≤ 𝑖2, 𝑖3 ≤ 𝑚 − 1 and
the case when 1 ≤ 𝑖2 ≤ 𝑚 − 1, 𝑚 ≤ 𝑖3 ≤ 𝑛 − 2.

We consider these two cases separately in this proof. In the first case, for simplicity, we can set
𝑖2 = 1, 𝑖3 = 2. Thus, 2U𝑛−3,3 is isomorphic to 𝑉 (I) = Spec 𝑅/I, where

𝑅 = 𝑂𝐹 [𝑥, 𝑑, 𝑧1,2, 𝑧1,3, (𝑎𝑖,1)3≤𝑖≤𝑛−2, (𝑎𝑖,2)3≤𝑖≤𝑛−2, (𝑎𝑖,3)3≤𝑖≤𝑛−2],

and

I = (𝑑 (𝑎𝑛−2,3 +

𝑚−1∑
𝑘=3

𝑎𝑛−1−𝑘,3𝑎𝑘,2 −
𝑛−4∑
𝑘=𝑚

𝑎𝑛−1−𝑘,3𝑎𝑘,2 − 𝑎𝑛−3,2) − 2𝜋).

It is easy to see that we have two irreducible components in the special fiber, where

𝐼1 = (𝑑), 𝐼2 = (𝑎𝑛−2,3 +

𝑚−1∑
𝑘=3

𝑎𝑛−1−𝑘,3𝑎𝑘,2 −
𝑛−4∑
𝑘=𝑚

𝑎𝑛−1−𝑘,3𝑎𝑘,2 − 𝑎𝑛−3,2).

Both irreducible components are isomorphic toA3(𝑛−3)
𝑘 , so they are smooth with the correct dimension.

Their intersection is isomorphic to A3(𝑛−3)−1
𝑘 , which is also smooth. Since 𝐼1, 𝐼2 are prime ideals, it

is enough to prove that the special fiber 𝑉 (I𝑠) is reduced by showing I𝑠 = 𝐼1 ∩ 𝐼2. By using similar
arguments as in Proposition 5.2, we get that 𝑉 (I𝑠) is reduced and 𝑉 (I) is regular.

In the second case, we can set Δ = {1, . . . , 𝑛 − 2}/{𝑚 − 1, 𝑚}, and let 𝑖2 = 𝑚 − 1, 𝑖3 = 𝑚. Then
2U𝑛−3,3 is isomorphic to 𝑉 (J ) = Spec 𝑅′/J , where

𝑅′ = 𝑂𝐹 [𝑥, 𝑑, 𝑧1,2, 𝑧1,3, (𝑎𝑖,1)𝑖∈Δ , (𝑎𝑖,2)𝑖∈Δ , (𝑎𝑖,3)𝑖∈Δ ],

and

J = (𝑑 (1 +
𝑚−2∑
𝑘=1

𝑎𝑛−1−𝑘,3𝑎𝑘,2 −
𝑛−2∑
𝑘=𝑚+1

𝑎𝑛−1−𝑘,3𝑎𝑘,2) − 2𝜋).

Again, we have two irreducible components over the special fiber:

J1 = (𝑑), J2 = (1 +
𝑚−2∑
𝑘=1

𝑎𝑛−1−𝑘,3𝑎𝑘,2 −
𝑛−2∑
𝑘=𝑚+1

𝑎𝑛−1−𝑘,3𝑎𝑘,2).

Both of them are smooth and of dimension 3(𝑛−3) (Note that in this case, the second component𝑉 (J2)

is not isomorphic to A3(𝑛−3)
𝑘 ). Their intersection is also smooth and of dimension 3𝑛 − 10. By using the

same arguments as above, we can show that 𝑉 (J𝑠) is reduced and 𝑉 (J ) is regular. Thus, 2U𝑛−3,3 has
semi-stable reduction over 𝑂𝐹 . �

From Theorem 4.7 and Proposition 5.7, we have that 2U𝑛−1,1 is smooth and 2U𝑛−3,3 has semi-stable
reduction. Thus, both 2U𝑛−1,1 and 2U𝑛−3,3 are 𝑂𝐹 -flat. As in §5.2, we deduce that these affine charts
are open subschemes of the corresponding splitting model Mspl. We will prove that Mspl is smooth
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when (𝑟, 𝑠) = (𝑛 − 1, 1) and Mspl has semi-stable reduction when (𝑟, 𝑠) = (𝑛 − 3, 3) by showing that
G-translates of 2U𝑛−1,1 and 2U𝑛−3,3 cover Mspl.

Recall from §3 theG-equivariant morphism 𝜏 : Mspl → Mloc⊗𝑂𝑂𝐹 which is given by (F0,F1) ↦→ F1
and let 𝜏𝑠 : Mspl ⊗ 𝑘 → Mloc ⊗ 𝑘 be the morphism over the special fiber. When s is odd, the unique
closed G-orbit of Mloc ⊗ 𝑘 is the orbit of Λ′ ⊗ 𝑘 (see §3). From the construction of the local model, it is
enough to show that G𝑘 -translates of 2U𝑛−1,1 ⊗ 𝑘 and 2U𝑛−3,3 ⊗ 𝑘 cover 𝜏−1

𝑠 (Λ
′ ⊗ 𝑘).

When (𝑟, 𝑠) = (𝑛 − 1, 1), the inverse image 𝜏−1
𝑠 (Λ

′ ⊗ 𝑘) contains points (F0,Λ′ ⊗ 𝑘) satisfying
𝑡Λ′ ⊂ F0. Observe that 𝑡Λ′ = span𝑘 {−𝑒1} and F0 has rank 1. Thus, 𝜏−1

𝑠 (Λ
′ ⊗ 𝑘) = (span𝑘 {−𝑒1},Λ′ ⊗ 𝑘)

is just a unique point (Note that it is different from the case when s is even, see §5.2, where we have
𝑡Λ𝑚 = 0). From §4.2, we see that 2U𝑛−1,1 ⊗ 𝑘 contains that point and so G𝑘 -translates of 2U𝑛−1,1 ⊗ 𝑘
cover 𝜏−1

𝑠 (Λ
′ ⊗ 𝑘). Hence, G-translates of 2U𝑛−1,1 cover Mspl.

When s is odd and ≥ 3, we have

𝜏−1
𝑠 (Λ

′ ⊗ 𝑘) = {(F0,Λ
′) | span𝑘 {−𝑒1} ⊂ F0 ⊂ Λ′ ⊗ 𝑘, 𝑡F0 = (0)}.

Set F0 = span𝑘 {𝑒1, 𝑣2, . . . , 𝑣𝑠}. Then 𝑡F0 = 0 and F0 ⊂ Λ′ ⊗ 𝑘 imply that 𝑣2, . . . , 𝑣𝑠 are a linear
combination of {−𝑒2, . . . ,−𝑒𝑚, 𝜋𝑒𝑚+1, . . . , 𝜋𝑒𝑛−1}. Thus, we consider the morphism

𝜋 : 𝜏−1
𝑠 (Λ

′ ⊗ 𝑘) → Gr(𝑠 − 1, 𝑛 − 2) ⊗ 𝑘

given by (F0,Λ′) ↦→ span𝑘 {𝑣2, · · · , 𝑣𝑠}. Here, Gr(𝑠 − 1, 𝑛 − 2) ⊗ 𝑘 is the Grassmannian of (𝑠 − 1)-
dimensional subspaces of

Λ′/{−𝜋−1𝑒1,−𝑒1} = span𝑘 {−𝑒2, . . . ,−𝑒𝑚, 𝜋𝑒𝑚+1, . . . , 𝜋𝑒𝑛−1}.

We also have a section

𝜙 : Gr(𝑠 − 1, 𝑛 − 2) ⊗ 𝑘 → Mspl ⊗ 𝑘,

given by 𝑊 → (span𝑘 (𝑒1,𝑊),Λ′). Similar to §5.2, it is easy to see that the image of the section 𝜙 is
𝜏−1
𝑠 (Λ

′⊗𝑘). Hence, 𝜏−1
𝑠 (Λ

′⊗𝑘) is isomorphic to Gr(𝑠−1, 𝑛−2)⊗𝑘 . As in §5.2, we can equip 𝜏−1
𝑠 (Λ

′⊗𝑘)
with a nondegenerate alternating form; that is, 〈𝑡𝑣, 𝑡𝑤〉′ := (𝑡𝑣, 𝑤) = 𝑣𝑡 𝐽𝑛−2𝑤 for 𝑡𝑣, 𝑡𝑤 ∈ 𝜏−1

𝑠 (Λ
′ ⊗ 𝑘).

Denote by Q(𝑠− 1, 𝑛− 2) the closed subscheme of Gr(𝑠− 1, 𝑛− 2) ⊗ 𝑘 which parametrizes all isotropic
(𝑠 − 1)-subspaces with respect to 〈 , 〉′.

The following observations concern the special fiber of 2U𝑟 ,𝑠 when s is odd. We keep the same
notation as in §4.2.

Remark 5.8. (1) Set a𝑖 the i-th column of the matrix 𝑀2; a𝑖 can be expressed as the element 𝑡𝑣 ∈
𝜏−1
𝑠 (Λ

′ ⊗ 𝑘), where 𝑡𝑣 = [0 0 𝑎1,𝑖 · · · 𝑎𝑛−2,𝑖 | 0 · · · 0]𝑡 . Thus,

〈a𝑖 , a 𝑗〉′ = [𝑎1,𝑖 · · · 𝑎𝑛−2,𝑖]𝐽𝑛−2 [𝑎1, 𝑗 · · · 𝑎𝑛−2, 𝑗 ]
𝑡

=
𝑚−1∑
𝑘=1
(𝑎𝑘,𝑖𝑎𝑛−1−𝑘. 𝑗 − 𝑎𝑛−1−𝑘.𝑖𝑎𝑘, 𝑗 )

= 𝑞𝑖, 𝑗 .

(2) For the special fiber Mspl ⊗ 𝑘 , consider (2U𝑟 ,𝑠 ⊗ 𝑘) ∩ 𝜏−1
𝑠 (Λ

′ ⊗ 𝑘). We get 𝐶 = 0 since 𝐴 = 0. The
first column of C is a1 + 𝑧1,2a2 + · · · + 𝑧1,𝑠a𝑠 . By setting 𝑖 = 𝑖2, . . . , 𝑖𝑠 , this gives us 𝑧1,2 = · · · = 𝑧1,𝑠 = 0
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and so a1 = 0. Thus,

F0 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑀1
𝑀2
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
,

where

𝑀1 =

[
0 0 · · · 0
1 0 · · · 0

]
, 𝑀2 =

[
0 a2 · · · a𝑠

]
=

⎡⎢⎢⎢⎢⎢⎣
0 𝑎1,2 · · · 𝑎1,𝑠
...

...
...

0 𝑎𝑛−2,2 · · · 𝑎𝑛−2,𝑠

⎤⎥⎥⎥⎥⎥⎦
.

By definition, 𝑄 = [𝑞𝑖, 𝑗 ] = 0 is equivalent to 〈a𝑖 , a 𝑗〉′ = 0 for 2 ≤ 𝑖, 𝑗 ≤ 𝑠. Therefore, 𝜋(F0) is totally
isotropic under 〈 , 〉′ if and only if 𝑄 = 0 (which actually occurs). Thus,

𝜙(Q(𝑠 − 1, 𝑛 − 2)) ⊂ (2U𝑟 ,𝑠 ⊗ 𝑘) ∩ 𝜏−1
𝑠 (Λ

′ ⊗ 𝑘).

Theorem 5.9. When (𝑟, 𝑠) = (𝑛 − 3, 3), G-translates of 2U𝑛−3,3 cover Mspl.

Proof. It is enough to prove that G-translates of 2U𝑛−3,3 cover 𝜏−1(Λ′). We use similar arguments as
in the proof of Theorem 5.4. Since G𝑘 acts on 𝜏−1

𝑠 (Λ
′ ⊗ 𝑘) � Gr(2, 𝑛 − 2) ⊗ 𝑘 , this action factors

through the symplectic group 𝑆𝑝(𝑛 − 2)𝑘 of the symplectic form 〈 , 〉′ on Λ′/{−𝜋−1𝑒1,−𝑒1}, and gives
the surjective map G𝑘 → 𝑆𝑝(𝑛 − 2)𝑘 , where

𝑆𝑝(𝑛 − 2)𝑘 = {𝑔 ∈ 𝑆𝐿(𝑛 − 2)𝑘 | 𝑔𝑡 𝐽𝑛−2𝑔 = 𝐽𝑛−2}.

By [3, §3], the 𝑆𝑝(𝑛 − 2)𝑘 -action on Gr(2, 𝑛 − 2) ⊗ 𝑘 has two orbits: 𝑄(0) and 𝑄(2), where

𝑄(𝑖) = {F0 ∈ Gr(2, 𝑛 − 2) | dim(𝑟𝑎𝑑 (F0)) = 𝑖},

for 𝑖 = 0, 2. Similar to the proof of Theorem 5.4, we have 𝑄(2) ⊂ 𝑄(0). Thus, 𝑄(2) is the unique closed
orbit. Observe that 𝑄(2) contains all totally isotropic subspaces 𝜋(F0), and so 𝑄(2) = Q(2, 𝑛 − 2).

From Remark 5.8 (2), we have that 2U𝑛−3,3⊗ 𝑘 contains points (F0,Λ′ ⊗ 𝑘) with 𝜋(F0) ∈ Q(2, 𝑛−2).
By identifying 𝜏−1

𝑠 (Λ
′ ⊗ 𝑘) with Gr(2, 𝑛−2) ⊗ 𝑘 , we get that 2U𝑛−3,3 contains points from all the orbits.

Therefore, from all the above, we deduce that the G-translates of 2U𝑛−3,3 cover 𝜏−1(Λ′). �

From Propositions 4.7 and 5.7 and Theorem 5.9, we have the following:

Corollary 5.10.

a) When (𝑟, 𝑠) = (𝑛 − 1, 1), Mspl is a smooth scheme.
b) When (𝑟, 𝑠) = (𝑛 − 3, 3), Mspl has semi-stable reduction over 𝑂𝐹 . In particular, Mspl is regular and

has special fiber a reduced divisor with two smooth irreducible components intersecting transversely.

Remark 5.11. For s odd and ≥ 5, note that we have

𝜋 : 𝜏−1
𝑠 (Λ

′ ⊗ 𝑘)
∼
→ Gr(𝑠 − 1, 𝑛 − 2) ⊗ 𝑘,

and

Q(𝑠 − 1, 𝑛 − 2) ⊂ (2U𝑟 ,𝑠 ⊗ 𝑘) ∩ 𝜏−1
𝑠 (Λ ⊗ 𝑘).

If we can show that the affine chart 2U𝑟 ,𝑠 is flat, then we have 2U𝑟 ,𝑠 ⊂ Mspl. By using a similar argument
as the proof of Theorem 5.9, we could prove that G-translates of 2U𝑟 ,𝑠 cover Mspl.
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Remark 5.12. When (𝑟, 𝑠) = (𝑛−1, 1), the local model Mloc ⊂ M∧ is smooth (see [18, §5.3]). Consider
the morphism 𝜏 : Mspl −→ Mloc ⊗𝑂 𝑂𝐹 . The generic fiber of all of these is the same (see §3). In
particular, from all the above discussion in this section, we can see that Mspl � Mloc ⊗𝑂 𝑂𝐹 .

6. Application to Shimura varieties

In this section, we give the most immediate application of Corollaries 5.5 and 5.10 to unitary Shimura
varieties. Indeed, by using work of Rapoport and Zink [24], we first construct p-adic integral models
for the signatures (𝑛 − 𝑠, 𝑠) with 𝑠 ≤ 3 where the level subgroup at p is the special maximal parahoric
subgroup 𝑃{𝑚} defined in §2.2. These models have simple and explicit moduli descriptions and are
étale locally around each point isomorphic to naive local models. Then by using the above corollaries
and producing a linear modification, we obtain smooth integral models of the corresponding Shimura
varieties when 𝑠 = 1 and semi-stable models when 𝑠 = 2 or 𝑠 = 3 (i.e., they are regular and the
irreducible components of the special fiber are smooth divisors crossing normally). (See Theorem 6.1.)

We start with an imaginary quadratic field K and we fix an embedding 𝜀 : 𝐾 → C. Let W be a
n-dimensional K-vector space, equipped with a nondegenerate hermitian form 𝜙. Consider the group
𝐺 = GU𝑛 of unitary similitudes for (𝑊, 𝜙) of dimension 𝑛 ≥ 3 over K. Assume that 𝑛 = 2𝑚 is even. We
fix a conjugacy class of homomorphisms ℎ : ResC/RG𝑚,C → GU𝑛 corresponding to a Shimura datum
(𝐺, 𝑋) = (GU𝑛, 𝑋ℎ) of signature (𝑟, 𝑠). The pair (𝐺, 𝑋) gives rise to a Shimura variety Sh(𝐺, 𝑋) over
the reflex field E. (See [18, §1.1] and [15, §3] for more details on the description of the unitary Shimura
varieties.) Let p be an odd prime number which ramifies in K. Set 𝐾1 = 𝐾 ⊗Q Q𝑝 with a uniformizer 𝜋,
and 𝑉 = 𝑊 ⊗Q Q𝑝 . We assume that the hermitian form 𝜙 is split on V (i.e., there is a basis 𝑒1, . . . , 𝑒𝑛
such that 𝜙(𝑒𝑖 , 𝑒𝑛+1− 𝑗 ) = 𝛿𝑖 𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛). We denote by

Λ𝑖 = span𝑂𝐾1
{𝜋−1𝑒1, . . . , 𝜋

−1𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒𝑛}

the standard lattices in V. We can complete this into a self dual lattice chain by setting Λ𝑖+𝑘𝑛 := 𝜋−𝑘Λ𝑖
(see §2.1). Denote by 𝑃{𝑚} the stabilizer ofΛ𝑚 in𝐺 (Q𝑝). We letL be the self-dual multichain consisting
of lattices {Λ 𝑗 } 𝑗∈𝑛Z±𝑚. Here, G = Aut(L) is the (smooth) group scheme over Z𝑝 with 𝑃{𝑚} = G (Z𝑝)
the subgroup of 𝐺 (Q𝑝) fixing the lattice chain L.

Choose also a sufficiently small compact open subgroup 𝐾 𝑝 of the prime-to-p finite adelic points
𝐺 (A𝑝𝑓 ) of G and set K = 𝐾 𝑝𝑃{𝑚}. The Shimura variety ShK(𝐺, 𝑋) with complex points

ShK(𝐺, 𝑋) (C) = 𝐺 (Q)\𝑋 × 𝐺 (A 𝑓 )/K

is of PEL type and has a canonical model over the reflex field E. We set O = 𝑂𝐸𝑣 , where v the unique
prime ideal of E above (𝑝).

We consider the moduli functor Anaive
K over SpecO given in [24, Definition 6.9]:

A point of Anaive
K with values in the O-scheme S is the isomorphism class of the following set of data

(𝐴, 𝜄, 𝜆̄, 𝜂):
(1) An object (𝐴, 𝜄), where A is an abelian scheme with relative dimension n over S (terminology of

[24]), compatibly endowed with an action of O:

𝜄 : O→ End 𝐴 ⊗ Z𝑝 .

(2) A Q-homogeneous principal polarization 𝜆̄ of the L-set A.
(3) A 𝐾 𝑝-level structure

𝜂 : 𝐻1(𝐴,A
𝑝
𝑓 ) � 𝑊 ⊗ A𝑝𝑓 mod 𝐾 𝑝

which respects the bilinear forms on both sides up to a constant in (A𝑝𝑓 )
× (see loc. cit. for details).

The set A should satisfy the determinant condition (i) of loc. cit.
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For the definitions of the terms employed here, we refer to loc.cit., 6.3–6.8 and [15, §3]. The functor
Anaive

K is representable by a quasi-projective scheme over O. Since the Hasse principle is satisfied for
the unitary group, we can see as in loc. cit. that there is a natural isomorphism

Anaive
K ⊗O 𝐸𝑣 = ShK(𝐺, 𝑋) ⊗𝐸 𝐸𝑣 .

As is explained in [24] and [15], the naive local model Mnaive is connected to the moduli scheme
Anaive

K via the local model diagram

Anaive
K

𝜓1
←−− Ãnaive

K (𝐺, 𝑋)
𝜓2
−−→ Mnaive,

where the morphism 𝜓1 is a G-torsor and 𝜓2 is a smooth and G-equivariant morphism. Therefore, there
is a relatively representable smooth morphism

Anaive
K → [G\Mnaive]

where the target is the quotient algebraic stack.
Next, denote by Aflat

K the flat closure of ShK(𝐺, 𝑋) ⊗𝐸 𝐸𝑣 in Anaive
K . Recall from §3 that the flat

closure of Mnaive ⊗O 𝐸𝑣 in Mnaive is by definition the local model Mloc. By the above, we can see, as in
[18], that there is a relatively representable smooth morphism of relative dimension dim(𝐺),

Aflat
K → [G\Mloc] .

This of course implies that Aflat
K is étale locally isomorphic to the local model Mloc.

One can now consider a variation of the moduli of abelian schemes AK where we add in the moduli
problem an additional subspace in the Hodge filtration Fil0(𝐴) ⊂ 𝐻1

𝑑𝑅 (𝐴) of the universal abelian
variety A (see [7, §6.3] for more details) with certain conditions to imitate the definition of the naive
splitting model M. (See §3 for the definition of naive splitting models.) More precisely, AK associates
to an 𝑂𝐾1 -scheme S the set of isomorphism classes of objects (𝐴, 𝜄, 𝜆̄, 𝜂,ℱ0). Here, (𝐴, 𝜄, 𝜆̄, 𝜂) is an
object of Anaive

K (𝑆). Set ℱ1 := Fil0(𝐴). The final ingredient ℱ0 of an object of AK is the subspace
ℱ0 ⊂ ℱ1 ⊂ 𝐻1

𝑑𝑅 (𝐴) of rank s which satisfies the following conditions:

(𝜄(𝜋) + 𝜋)ℱ1 ⊂ ℱ0, (𝜄(𝜋) − 𝜋)ℱ0 = (0).

There is a forgetful projective morphism

𝜏1 : AK −→ Anaive
K ⊗O 𝑂𝐾1

defined by (𝐴, 𝜄, 𝜆̄, 𝜂,ℱ0) ↦→ (𝐴, 𝜄, 𝜆̄, 𝜂). Moreover, AK has the same étale local structure as M; it is a
‘linear modification’ of Anaive

K ⊗O 𝑂𝐾1 in the sense of [15, §2] (see also [17, §15]). As we showed in
Proposition 5.1, the scheme M is never flat, and by the above, the same is true for AK.

Theorem 6.1. Assume that (𝑟, 𝑠) = (𝑛 − 1, 1) or (𝑛 − 2, 2) or (𝑛 − 3, 3). For every 𝐾 𝑝 as above, there
is a scheme Aspl

K , flat over Spec (𝑂𝐾1), with

Aspl
K ⊗𝑂𝐾1

𝐾1 = ShK(𝐺, 𝑋) ⊗𝐸 𝐾1,
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and which supports a local model diagram

Ãspl
K (𝐺, 𝑋)

Aspl
K Mspl

𝜋
reg
𝐾

𝑞
reg
𝐾 (6.0.1)

such that

a) 𝜋
reg
K is a G-torsor for the parahoric group scheme G that corresponds to 𝑃{𝑚}.

b) 𝑞
reg
K is smooth and G-equivariant.

c) When (𝑟, 𝑠) = (𝑛 − 1, 1), Aspl
K is a smooth scheme.

c’) When (𝑟, 𝑠) = (𝑛 − 2, 2) or (𝑟, 𝑠) = (𝑛 − 3, 3), Aspl
K is regular and has special fiber which is a

reduced divisor with normal crossings.

Proof. From the above, we have the local model diagram

Ãloc
K (𝐺, 𝑋)

Aloc
K Mloc,

𝜓1 𝜓2

where the morphism 𝜓1 is a G-torsor and 𝜓2 is a smooth and G-equivariant morphism. Set

Ãspl
K (𝐺, 𝑋) = Ãloc

K (𝐺, 𝑋) ×Mloc Mspl,

which carries a diagonal G-action. Since 𝜏 : Mspl → Mloc ⊗𝑂 𝑂𝐹 is projective (see §5), we can see
([15, §2]) that the quotient

𝜋
reg
𝐾 : Ãspl

K −→ Aspl
K := G\Ãspl

𝐾 (𝐺, 𝑋)

is represented by a scheme and gives a G-torsor. (Recall that the morphism 𝜏 induces an isomorphism
on the generic fibers.) This is an example of a linear modification; see [15, §2]. The projection gives a
smooth G-morphism

𝑞
reg
K : Ãspl

K −→ Mspl

which completes the local model diagram. Property (c) (resp. (c’)) follows from Theorem 5.10 (resp.
Corollaries 5.5 and 5.10) and properties (a) and (b) which imply thatAspl

K and Mspl are locally isomorphic
for the étale topology. �

Remarks 6.2. Similar results can be obtained for corresponding Rapoport-Zink formal schemes. (See
[12, §4] for an example of this parallel treatment.)

7. Moduli description of Mspl

In this section, we show that by adding the ‘spin condition’ in the naive splitting model M, we get the
splitting model Mspl for signature 𝑠 ≤ 3.

We use the notation of §2, §3, and we set 𝑊 = ∧𝑛𝐹 (𝑉 ⊗𝐹0 𝐹). Recall that the symmetric form ( , )
splits over V, and thus, there is a canonical decomposition

𝑊 = 𝑊1 ⊕𝑊−1

https://doi.org/10.1017/fms.2025.10079 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10079


Forum of Mathematics, Sigma 31

of 𝑊 as an SO2𝑛 (( , ))(𝐹)-representation (see [23, §7], [27, §2]). For a standard lattice Λ𝑖 in V (see §2),
we set 𝑊 (Λ𝑖) = ∧𝑛 (Λ𝑖 ⊗𝑂𝐹0

𝑂𝐹 ) and 𝑊 (Λ𝑖)±1 = 𝑊±1 ∩𝑊 (Λ). For an 𝑂𝐹 -scheme S and 𝜖 ∈ {±1}, we
set

𝐿𝑖, 𝜖 (𝑆) = im[𝑊 (Λ𝑖)𝜖 ⊗𝑂𝐹 O𝑆 −→ 𝑊 (Λ) ⊗𝑂𝐹 O𝑆] .

We now formulate the spin condition:
(5) (Spin condition) the line bundle ∧𝑛F1 ⊂ 𝑊 (Λ𝑚) ⊗𝑂𝐹 O𝑆 is contained in 𝐿𝑚, (−1)𝑠 (𝑆).
The spin splitting modelMspin is the closed subscheme ofM defined by imposing the spin condition.

We have the following inclusions of closed subschemes Mspl ⊂ Mspin ⊂ M which are all equalities
between generic fibers (see [18, §7] and [23, §9]). The restriction of 𝜏 on Mspin gives us

𝜏 : Mspin → Mspin ⊗𝑂 𝑂𝐹 ,

where Mspin is the spin local model defined in [18]. In particular, Mspin is the closed subscheme of M∧
that classifies points given by F1 which satisfy the spin condition. We want to mention that Smithling
[26, Theorem 1.3] proved that Mspin is topologically flat. Also, from [23, Remark 9.9], we get that the
spin condition can be characterized as the following condition:

(5’) The rank of (𝑡 + 𝜋) on F1 has the same parity as s.1
Remark 7.1. Recall from the proof of Proposition 5.1 that the point (F0, 𝑡Λ𝑚) when s is odd and the
point (F0,Λ′) when s is even does not lift to the generic fiber. However, we can easily see that these
points do not satisfy the condition (5’) and so they are not in Mspin.
Proposition 7.2.
a) When s is even, 1U𝑟 ,𝑠 ⊂Mspin.
b) When s is odd, 2U𝑟 ,𝑠 ⊂Mspin.
Proof. It is enough to consider the rank((𝑡 + 𝜋)F1) over the special fiber (𝜋 = 0) for the following two
cases.

Case 1: Consider the affine chart 1U𝑟 ,𝑠 around (F0,Λ𝑚). Recall from §4.1 that

F1 =

[
𝐴
𝐼𝑛

]
, F0 =

[
𝑋1
𝑋2

]
.

By (𝑡 + 𝜋)F1 ⊂ F0, we get

(𝑡 + 𝜋)F1 =

[
𝜋0𝐼𝑛 + 𝜋𝐴
𝐴 + 𝜋𝐼𝑛

]
=

[
𝑋1
𝑋2

]
𝑍 𝑡 ,

where Z is of size 𝑛 × 𝑠. Since rank(F0) = 𝑠, the rank of (𝑡 + 𝜋)F1 amounts to rank(𝑍 𝑡 ). Note that
𝑍 𝑡 = 𝐷𝑡 · 𝑌 𝑡 , where D is of size 𝑠 × 𝑠 and rank(𝑌 ) = 𝑠. Thus, rank(𝑍 𝑡 ) = rank(𝐷𝑡 ). Since D is a
skew-symmetric matrix, the rank of D is always an even number. Therefore the rank of (𝑡 + 𝜋)F1, where
(F0,F1) ∈ 1U𝑟 ,𝑠 , is always even.

Case 2: Consider the affine chart 2U𝑟 ,𝑠 around (F0,Λ′). In this case, from §4.2, we have

F1 =

[
𝐼𝑛
𝐴

]
, F0 = 𝑋 =

[
𝑋1
𝑋2

]

and

(𝑡 + 𝜋)F1 =

[
𝑋1
𝑋2

]
·
[
𝑍 𝑡1 𝑍 𝑡2

]
,

1We interchange r and s in the notation relative to [23].
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where 𝑍1 is of size 2×𝑠 and 𝑍2 is of size (𝑛−2)×𝑠. Thus, the rank of (𝑡+𝜋)F1 amounts to rank([𝑍 𝑡1 𝑍
𝑡
2]).

Over the special fiber, we have

𝑍 𝑡1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0
𝑧1,2 𝑧2,2
...

...
𝑧1,𝑠 𝑧2,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑍 𝑡2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
𝑧′1,2 · · · 𝑧

′
𝑛−2,2

...
. . .

...
𝑧′1,𝑠 · · · 𝑧

′
𝑛−2,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We treat 𝑍 𝑡1, 𝑍
𝑡
2 separately. By (4.2.1), 𝑍 𝑡2 can be expressed as

𝑍 𝑡2 =

[
0 · · · 0
𝐷

]
· 𝑀̃2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
𝑑2,2 · · · 𝑑2,𝑠
...

. . .
...

𝑑𝑠,2 · · · 𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
· 𝑀̃2,

where D is a skew-symmetric matrix, and 𝑀̃2 contains an 𝐼𝑠−1-minor. Thus, 𝑍 𝑡2 is generated by the

columns of
[

0 · · · 0
𝐷

]
. For 𝑍 𝑡1, we claim that the second column is generated by

[
0 · · · 0
𝐷

]
. From (4.2.2),

we have

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
𝑧2,2
...

𝑧2,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
𝑑2,2 · · · 𝑑2,𝑠
...

. . .
...

𝑑𝑠,2 · · · 𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
𝑞2,1 · · · 𝑞2,𝑠
...

. . .
...

𝑞𝑠,1 · · · 𝑞𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
𝑧1,2
...

𝑧1,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
in the special fiber. Recall that 𝐷 · 𝑄 = 0, where

𝑄 =

⎡⎢⎢⎢⎢⎢⎣
𝑞2,2 · · · 𝑞2,𝑠
...

. . .
...

𝑞𝑠,2 · · · 𝑞𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎦
.

Then

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
𝑧2,2
...

𝑧2,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
∗ 0 · · · 0
...
...
. . .

...
∗ 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
𝑧1,2
...

𝑧1,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
∗
...
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

which can be expressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
∗
...
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑞2,1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
𝑑2,2
...

𝑑𝑠,2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ · · · + 𝑞𝑠,1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
𝑑2,𝑠
...

𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, the second column is generated by
[

0 · · · 0
𝐷

]
. From all the above, we deduce that the rank of
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[𝑍 𝑡1 𝑍 𝑡2] amounts to the rank of

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
𝑧1,2 𝑑2,2 · · · 𝑑2,𝑠
...

...
. . .

...
𝑧1,𝑠 𝑑𝑠,2 · · · 𝑑𝑠,𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Since rank(D) is even, and the first column is linear independent to the rest of the columns, the rank of
(𝑡 + 𝜋)F1, where (F0,F1) ∈2 U𝑟 ,𝑠, is always odd.

Therefore, 1U𝑟 ,𝑠 ⊂Mspin if and only if s is even and 2U𝑟 ,𝑠 ⊂Mspin if and only if s is odd. �

In particular, when 𝑠 = 2, we have 1U𝑛−2,2 ⊂ Mspin, and when 𝑠 = 3, we have 2U𝑛−3,3 ⊂ Mspin.
Moreover, since Mspin is topologically flat, or in other words, the underlying topological spaces of Mspin

and Mloc coincide, we can repeat the G-translates argument as in Theorems 5.4 and 5.9 and obtain the
following.

Proposition 7.3.

a) When (𝑟, 𝑠) = (𝑛 − 2, 2), G-translates of 1U𝑛−2,2 cover Mspin.
b) When (𝑟, 𝑠) = (𝑛 − 3, 3), G-translates of 2U𝑛−3,3 cover Mspin.

From Theorems 5.4, 5.9 and Proposition 7.3, we deduce the following.

Theorem 7.4. For the signatures (𝑛 − 𝑠, 𝑠) with 𝑠 ≤ 3, we have Mspin = Mspl.

Therefore, we obtain a moduli-theoretic description of Mspl and by Theorem 6.1 for the corresponding
integral model Aspl

K . In particular, the closed subscheme Aspl
K ⊂ AK (see §6 for the explicit definition of

AK) is obtained by imposing the following additional condition on the moduli problem of AK:
Spin condition. The rank of (𝜄(𝜋) + 𝜋) on Fil0 (𝐴) has the same parity as s.

Remark 7.5. Recall theG-equivariant morphism 𝜏 : Mspl → Mloc⊗𝑂𝑂𝐹 , which is given by (F0,F1) ↦→
F1. By the above remark, we have Mspin = Mspl for the signatures (𝑛 − 𝑠, 𝑠) with 𝑠 ≤ 3. Define
𝜏𝑠 : Mspl⊗ 𝑘 → Mloc⊗ 𝑘 over the special fiber. For a point (F0,F1) ∈ Mspl⊗ 𝑘 , we have (0) ⊂ 𝑡F1 ⊂ F0
and 𝑡F0 = (0) which gives (0) ⊂ F0 ⊂ 𝑡Λ𝑚 ⊗ 𝑘 . Also, we have

F1 ⊂ F⊥0 , 𝑡Λ𝑚 ⊗ 𝑘 ⊂ F⊥0 ,
F1 ⊂ 𝑡−1(F0), 𝑡Λ𝑚 ⊗ 𝑘 ⊂ 𝑡−1(F0).

The spaces 𝑡−1(F0), F⊥0 have rank 𝑛 + 𝑠, 2𝑛 − 𝑠, respectively, and we indicate with ⊥ the orthogonal
complement with respect to ( , ). From above, we obtain that

F1 ⊂ F1 + 𝑡Λ𝑚 ⊗ 𝑘 ⊂ F⊥0 ∩ 𝑡−1(F0) ⊂ 𝑡−1(F0). (7.0.1)

A) When the signature (𝑟, 𝑠) = (𝑛 − 2, 2), we have a morphism 𝜋 : Mspl ⊗ 𝑘 → Gr(2, 𝑛) ⊗ 𝑘 given
by (F0,F1) ↦→ F0. Let 𝑀1 = 𝜏−1

𝑠 (𝑡Λ𝑚 ⊗ 𝑘), and 𝑀2 = 𝜋−1 (Q(2, 𝑛)). Recall that 𝑀1 is isomorphic to
the Grassmannian Gr(2, 𝑛) ⊗ 𝑘 of dimension 2𝑛− 4. The spin condition translates to: rank(𝑡F1) = even.
Since 0 ⊂ 𝑡F1 ⊂ F0, we get rank(𝑡F1) = 0 or 2, (i.e., 𝑡F1 = 0 or 𝑡F1 = F0).

Furthermore, from 𝑡F1 = 0, we get F1 ⊂ 𝑡Λ𝑚 ⊗ 𝑘 which implies F1 = 𝑡Λ𝑚 ⊗ 𝑘 , so (F0,F1) ∈ 𝑀1.
However, if 𝑡F1 = F0, we have rank(𝑡 (F1+𝑡Λ𝑚⊗𝑘)) = rank (𝑡F1) = 2. Thus, rank(F1+𝑡Λ𝑚⊗𝑘) ≥ 𝑛+2.
By rank(𝑡−1 (F0)) = 𝑛 + 2 and (7.0.1), we get F1 + 𝑡Λ𝑚 ⊗ 𝑘 = F⊥0 ∩ 𝑡−1(F0) = 𝑡−1(F0), which implies
𝑡−1(F0) ⊂ F⊥0 . As in [28, §2.1], observe that F0 ∈ Q(2, 𝑛) (i.e., 〈F0,F0〉

′ = 0) is equivalent to
rank (𝑡−1(F0) ∩ F⊥0 ) = 𝑛 + 2 (i.e., 𝑡−1(F0) ⊂ F⊥0 ). So (F0,F1) ∈ 𝑀2.

Therefore, Mspl ⊗ 𝑘 = 𝑀1 ∪ 𝑀2. Moreover, from the above, we can easily see that 𝜏′ : 𝑀2 \ 𝑀1 �
Mloc \ {𝑡Λ𝑚 ⊗ 𝑘}, so that 𝑀2 maps birationally to the special fiber of Mloc.
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Lastly, the fiber 𝜋−1 ({F0}) with F0 ∈ Q(2, 𝑛) contains all (F0,F1) with F1 satisfying F0 ⊂
(𝑡−1 (F0))

⊥ ⊂ F1 ⊂ 𝑡−1(F0). These {F1} correspond to isotropic, with respect to ( , ), subspaces in the
four-dimensional space 𝑡−1(F0)/(𝑡

−1(F0))
⊥, and they are parameterized by the orthogonal Grassman-

nian OGr(2, 4). Therefore, 𝑀2 is a OGr(2, 4)-bundle over Q(2, 𝑛) with dimension 2𝑛 − 4, and 𝑀1, 𝑀2
intersect transversally over the smooth scheme Q(2, 𝑛) of rank 2𝑛 − 5.

B) When the signature (𝑟, 𝑠) = (𝑛 − 3, 3), the unique closed G-orbit in Mloc ⊗ 𝑘 is not the point
𝑡Λ𝑚 ⊗ 𝑘 but the orbit of Λ′ ⊗ 𝑘 which we denote by 𝑂𝑤𝑡 . Let

𝑀1 = 𝜏−1
𝑠 (𝑂𝑤𝑡 ) = {(F0,F1) ∈ Mspl ⊗ 𝑘 | F1 = 𝑔 · Λ′ for some 𝑔 ∈ G}

and

𝑀2 = {(F0,F1) ∈ Mspl ⊗ 𝑘 | F0 is totally isotropic under 〈 , 〉′}.

The spin condition translates to rank(𝑡F1) = odd. By 0 ⊂ 𝑡F1 ⊂ F0, we get rank(𝑡F1) = 1 or 3.
If rank(𝑡F1) = 3, we have 𝑡F1 = F0 which implies rank(F1 + 𝑡Λ𝑚 ⊗ 𝑘) ≥ 𝑛 + 3. By (7.0.1), we get

F⊥0 ∩ 𝑡−1(F0) = 𝑡−1(F0). Thus, F0 is totally isotropic under 〈 , 〉′. Next, assume that rank(𝑡F1) = 1, or
in other words, consider

F1 ∩ 𝑡Λ𝑚
⊂

⊂
𝑡Λ𝑚

F1
⊂

⊂

F1 + 𝑡Λ𝑚

where the quotients arising from all slanted inclusions are finitely generated projective k-modules of
rank 1. We can easily see that this holds for F1 = Λ′ ⊗ 𝑘 . Since 𝑡Λ𝑚 is fixed by the action of G and the
G-orbit 𝑂𝑤𝑡 is closed, we can deduce that rank(𝑡F1) = 1 if and only if F1 ∈ 𝑂𝑤𝑡 . Therefore, as in (A),
we get Mspl ⊗ 𝑘 = 𝑀1 ∪ 𝑀2, where 𝑀2 maps birationally to the special fiber of Mloc.
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