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We study free and injective Lie modules by investigating
the relationship between Lie modules and (associative) modules.
An important role is played by the universal enveloping ring of
a Lie ring (¢]. If L is an arbitrary Lie ring and W(L) its
universal enveloping ring, we show that the category of Lie
L-modules and the category of associative W(L)-modules are
isomorphic (section 2). In section 3 we study free Lie modules
and show how they may be obtained from free associative
modules. A Lie module is free if and only if it is a direct sum
of copies of the free Lie module on one generator. The existence
of the injective hull for an associative module is well known [2].
In section 4 we show that a Lie module, too, possesses an
injective hull. The free Lie module on one generator serves as
a "test module' in the verification of injectivity for Lie modules.
The first section gives some basic definitions.

1. Let L be a commutative (additive) group. L 1is said
to be a Lie ring if there is defined a multiplication in L which
is distributive and which satisfies:

(1) a2=0 ,

(ii) (ab)c + (bc)a + (ca)b =0 - the Jacobi identity - (for all
a,b,ce L),

(i) implies that L 1is anticommutative; that is:
ab =-ba (a,be L) .

I wish to thank Professor J. Lambek for many helpful
suggestions.
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Note: The above definition as well as some of those that
follow_m_a—y.' be found in [1] (where, however, Lie algebras, not
Lie rings, are considered). We include them here for the sake
of completeness.

If Li’ L?_ are Lie rings, a Lie ring homomorphism from

L1 to I_.‘2 is a map f: I_,1 - LZ such that f(a+a') =1f(a) + f(a')

and f(aa') =f(a)f{a'), (a,a' € Li). Thus, a homomorphic image

of a Lie ring is again a Lie ring.

A (right) Lie module over the Lie ring L (a Lie L-module)
is a commutative (additive) group M together with a multiplica-
tion: M X LL - M such that

(i) x(a+a') = xa+xa', (x+x')a = xa + x'a,
(i1) x(aa') = (xa)a' - (xa'la, (x,x' € M; a,a' € L) .

We denote the right Lie L-module M by ML. Left Lie modules
are defined in a similar manner. Thus, (ii) becomes:
(aa')x =afa'x) - a'(ax) .

Remarks:

(2) One can turn the right Lie module ML into a left Lie
module LM by defining ax=-xa(xe M, a€ L.). Thus, when
speaking of Lie modules one need not distinguish between right

and left.

(b) The Lie ring L may be considered as a module over
itself. The Jacobi identity and the anticommutative law imply
condition (ii) above.

(c) A module MR, where R is an associative ring, will

be called an associative module.

It ML, NL are two Lie modules, a Lie module homo-

morphism (an L-homomorphism) from ML to NL is a map

f:M - N such that f(x+x') =£{(x) + f(x') and f(xa) = f(x)a,
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(x,x' € M, a€ L). Difference modules and submodules of Lie
modules are defined in the obvious way (as for the associative
case), and the fundamental homomorphism and isomorphism
theorems (corresponding to those in the associative case) hold.
It is easily verified that the class of Lie modules (over some
arbitrary fixed Lie ring L) forms a category. In section 2
we shall show that this category is abelian.

If M, (ie¢l, where I is some index set) is a family of
i

Lie L-modules, we form their direct sum = & M. as follows:
girect sum i
iel
the additive group of £ @ M, is the direct sum of the additive
i
groups of the modules M.,. Multiplication by the elemerts of
i

L is defined componentwise: if x=(x)¢Z ®@ \/I ae L,
then (xa)., the i-th component of xa, is defmed to be x.a.

i i

It is easily verified that with this multiplication T @ M,
1

becomes a Lie L-module. It then follows that a Lie-module M
is a direct sum of its submodules Mi(ie I) if and only if

M=% M, (thatis, every element of M 1is a finite sum of
1

elements of M ) and M N = M =0, forall i,jel.

j#i
(This is so since the corresponding result is known to hold for
groups. )

2. If R is an associative ring, we associate with it a
Lze ring C(R) as follows. The additive group of C(R) is the
same as that of R; multiplication in C(R) is defined by the
additive commutator: if a,b € C(R) we define [a,b] =ab-ba
(where the product on the right hand side is that in R). It is
easily verified that with this multiplication C(R) forms a Lie
ring.

If R1,R2 are associative rings and f:R1 --R2 a ring

homomorphism, then f induces a Lie ring homomorphism

C(f): C(R1) - C(RZ) in the obvious way: if a ¢ C(Ri)’ we set

C(f)(a) =f(a). It is easily verified that C is, in fact, a
functor from the category of associative rings to that of Lie
rings. We shall now define a functor in the opposite direction.
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Let L be a Lie ring. The pair (W(L), p), (where W(L)
is an associative ring, p a Lie ring homomorphism of L into
C(W(L))) is called a universal enveloping ring (u.e.r.) of L
if for any Lie ring homomorphism f of L into the Lie ring
C(H) (where H 1is any associative ring), there exists a unique
(associative)ring homomorphism g:W(L) - H such that gu=f.
That is, the.-accompanying diagram commutes.

W(L)\

(To be precise, W(L), H and g should be replaced by
C{W(L)), C(H) and C(g) respectively; however, no confusion
will arise.)

PROPOSITION 2.1. Every Lie ring L possesses a
universal enveloping ring (W(L),n). Moreover, p is one-one.
(Thus, L may be considered as a subring of C(W(L)).)

Proof. It is not difficult to show that L. possesses a
u.e.r. Thus, to each a e L let there correspond (uniquely)
some element (object) za. Let F(L) be the free associative

ring with identity generated by all the za(a € L). Let K be
the ideal of F(L) generated by all elements of the form
+ - d - - ’ .
za zb Za+b an Zazb zbza Zab (a,be L) Let
W(L) = F(L)/K and define p: L. = C(W(L)) by p(a) = z, + K.

It is not difficult to verify that (W(L),p) is a u.e.r. of L.
The difficulty arises in showing that p is one-one. The proof
forms the contents of a paper by Witt [4] and will here be omitted.

Remarks:

(a) From the construction of W(L) it is clear that it
possesses an identity element.

(b) W(L) is generated by p(L). This is a standard proof
[1, p-152].
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(¢) A u.e.r. of L is unique (up to isomorphism)
[1. p,152].

The mapping W which associates with each Lie ring L
its u.e.r. W(L) is a functor from the category of Lie rings to
that of associative rings. This may be verified directly, but it
also follows from Kan's theorem on adjoint functors {3, pp.58,59]
(which also shows, incidentally, that W is an adjoint of C).

Qur object is to show that the category (L) of Lie
modules over any Lie ring L and the category »(W(L)) of
associative modules over the u.e.r. W(L) of L are
isomorphic: that is, there exist functors F:7M(L) - 77(W(L))
and G:27(W(L)) ="M (L) such that GF =1, FG=1I' (where
I and I' are the identity functors of /(L) and 27 (W(L))
respectively). To this end we need the following

LEMMA 2.2. To every Lie L-module ML there cor-

responds an associative module M (the additive groups

W(L)
of the two being identical). Moreover, any L-homomorphism

h:ML --NL (NL an arbitrary Lie module) may be regarded as

a W(L)-homomorphism: MW(L) *NW(L) .

Proof. As mentioned, the additive group of MW(L) is

the same as that of ML. To define the multiplication:

MXW(L) - M, SetH=HomZ(M, M). If u,veH, define uv to

be the mapping u followed by v. Then H is an associative
ring and M becomes a right H-module. Define a map

f:L, - C(H) as follows: if ae¢ L, f(a) isa map: M - M given
by f(a)(x) =xa (x€ M). It is clear that f(a)e C(H). If xe M,
a,be L, then f(at+b)(x) =x(a+b) =xa + xb =1f(a)(x) + £(b)(x)

= [f(a)+£(b)](x), and [f(ab)](x) =x(ab) =(xa)b - (xb)a

= f(a)f(b)(x) - £(b)f(al(x) = [£(2)f(b) - f(b)i(a)](x).

Thus, f{ is a momomorphism of L into C(H). Hence
there exists a unique homomorphism g: W(L) = H such that
grh=f. We now turn M intoa W(L)-module as follows:
if xe M, we W(L), define xw =g(w)(x). Since M is an
H-module, it is easily verified that M 1is also a W(L)-module.
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Now suppose h is an L-homomorphism: ML —»NL. Let

K={we W(L): h(xw) =h(x)w, for all xe M}. We want K= W(L).
Let ki'kZ € K, x¢ M. Then h[x(ki-kz)] =h(xk1-xk2)

=h(xk,) - h(xk,) =h(x)k, - h(x)k, =h(x)(k -k,), and

2
h(x(k, k)] =h{(xk )k,] =h(xk )k, = [h(x)ki]kz =hix)(k, k).

This shows that K is a subring of W(L). If ae L,

xp(a) = gpfa)(x) =f(a)(x) =xa. Hence K contains p(L) (since
h is an L-homomorphism). But p(L) generates W(L), hence
K =W(L). This completes the proof.

We now define a mapping F from the category #7(L) of
Lie L-modules to the category X (W(L)) of associative W(L)-

modules as follows: if MLG M(L), set F(ML) =MW(L)’ the

W(L)-module as defined in the above lemma. If h:ML - M'L
(M! L e /(L)) then, also by the above lemma, h may be

regarded as a W(L)-homomorphism: F(ML) - F(M! L). We

define this to be the mapping F(h). Then it is clear that F
is a functor.

We also define a mapping G: 27(W(L)) -~ #71(L) as follows:

if NW(L) € 71 (W(L)) then N may be regarded asa C(W(L))-

module in the obvious wéy (the multiplications N X W(L) and
N X C(W(L)) being identical). Since L (more precisely p(L)})
is a subring of C(W(L)), we obtain an L-module N_ by

L
restricting the scalar multiplication N X C(W(L)) to N X L.
This is the definition of G(NW(L)) .
If kN 77 (W(L))), then k may be

wi T Nwm Nw

regarded, in the obvious way, as a mapping: N - N! .
g 4 PPIE" Fe(w(ny ~ T c(w(L))

Hence k:NL - N'L (where, of course, NL = G(NW(L)),
NL = G(N'W,(L))). This is the definition of G(k). Again, itis
easy to verify that G is a functor.

THEOREM 2.3. The category #?77(L) of Lie modules
over any Lie ring L and the category 21 (W(L)) of associative
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maodules over the universal enveloping ring W(L) of L are
isomorphic.

Proof. We have defined functors F: (L) — ?1(W(L)) and
G:h(W(L)) -I71(L) above. It remains to show that GF =1,
FG=I'" (I and I' being the identity functors of 77(L) and

71(W(L)) respectively). Let MLE mM(L), then F(ML):MW(L)

(as in 2.2). If now x¢€ G(MW(L))’ a € L, then xu(a) = gu(al)(x)

=f(a)(x) =xa, (the g and f as in 2.2). This shows that
G(MW(L)) :ML (after identification of p(L) with L). That

is, GF(ML) = ML. It is clear that GF(h) =h for any
h:ML - M’L . Hence GF =1

Let now NW(L)e 71(W(L)) and set H:HomZ(N,N). It

is easily verified that the W({L)-module structure of N induces
a ring homomorphism g':W(L) - H given by g'(w){x) =xw

(we W(L), x€ N). Now, the module NL=G(NW(L)) is obtained

by restricting the scalar multiplication to N X L. Then F(N L)

is obtained by extending the Lie ring homomorphism {:L — C(H),
defined by f(a)(x) =xa (x€ N, a€ L), to a ring homomorphism
g:W(L) - H, and then by defining xw = g(w)(x). Since the

extension g is unique, hence g' =g. Thus FG(N N

wir) = Nw)
It is clear that FG(k) =k for any k:NW(L) - N%N(L)' Hence

FG =1' and the categories are isomorphic.

COROLLARY 2.4. The category of Lie modules (over
any fixed Lie ring) is abelian.

Proof. The category of associative modules is abelian
[3, p. 66].

We shall derive other consequences of the above theorem
in the next two sections.

3. The module ML is said to be a free Lie L-module

generated by the set XC M (or X is a free set of generators
of ML) if given any Lie module NL and any map £:X - N,
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there exists a unique L-homomorphism f' :ML - N

extending f{.

We now show that under the correspondence of theorem
2.3 free Lie modules correspond to free associative modules.

PROPOSITION 3.1. If ML - MW(L) is the correspondence

between Lie-L-modules and associative W({L)-modules under

2.3, then a subset XE M is a free set of generators of ML

if and only if it is a free set of generators of MW(L)'

Proof. Let MW(L) be the free associative W(L)-module

generated by the set XC M. Let NL be an arbitrary Lie D-L-
module and f:X — NL any map. Then clearly f:X — NW(L)

(where NW(L) corresponds to NL under 2.3). Hence there

exists a unique W(L)-homomorphism f{': N

M -
W(L) w(L)
extending f. Then also f': ML - NL (this Iatter f{' is

actually the G(f') of 2.3, but we denote it also by f' since
the two maps are the same on the set M). Now, f' is unique
as a W(L)-homomorphism, and it follows from the corres-
pondence of maps under 2. 3 that f' is also a unique extension
of f as an L-homomorphism. That is, ML is a free Lie

L-module generated by X. To prove the converse, one just
reverses the steps. Thus, ML is a free Lie L-module if and

only if MW is a free associative W{(L)-module.

(L)

Remarks:

(a) The free Lie-L-module generated by a set X is
unique (up to isomorphism). This follows from the above
proposition and the well known fact of the uniqueness of the
free associative module on a set of generators.

(b) As in the associative case, the generators X of the
free Lie L.-module ML are torsion free. Thatis, xa =0

implies a =0 (x€¢ X, a€ L).
36
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For, xa =0 implies xu(a) =o (since xa =xu(a), - see proof of

theorem 2. 3). Since p(a)e W(L) and MW(L) is the free

associative W(L)-module generated by X, it follows that
w(a) =0, hence a =0 (since u is one-one).

Of particular interest is the free Lie L-module on one
generator. It corresponds, by 3.1, to the free associative
W(L)-module on one generator. This may be taken to be W(L)
(considered as a module over itself), since W{(L) has an identity.
Thus W(L) (considered now as a Lie L-module) may be taken to
be the free Lie-L-module on one generator. As in the associative
case, we have

PROPOSITION 3.2. ML is a free Lie L-module if and

only if it is isomorphic to a direct sum of copies of the free Lie
L-module on one generator.

Proof. Let MW(L) correspond to ML as under 2. 3.

Then the following are equivalent:

(i) M_ 1is a free Lie L-module;

L
(ii) MW(L) is a free associative W(L)-module;
(iii) MW(L) is a direct sum of copies of W(L) (considered

as a module over itself);

(iv) ML is a direct sum of copies of W(L) (considered

now as a Lie module over L).

The equivalence of (i) and (ii) follows by 3.1. It is well
known that (ii) and (iii) are equivalent (these being associative
modules - see, for example, [2,IV]). The equivalence of (iii)

and (iv) is clear (since M_ and M have the same additive
L W(L)

group). The proposition now follows.

4. The Lie L-module ML is said to be injective if given

any Lie modules AL, BL with ALC_I B and an L-homomorphism

LJ
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f:AL - ML, there exists an L-homomorphism f': BL - ML

extending f. An injective hull of the Lie module M_ is a

minimal injective extension of M_; that is, an injective
extension IL of ML such that if JL is another injective

extension of ML and JCI, then necessarily J =1

PROPOSITION 4.1. Every Lie-module ML possesses

an injective hull.

Proof. Let MW(L) be the associative module corres-

ponding to ML under 2. 3. Let IW

be its injective hull

(L)
(that this exists for associative modules is well known - see,

for example, (2, IV]). Again, let I_ co dto I
ple, [ D g [, correspond to W(L)

under 2.3. Then IL is the injective hull of ML. For, the

W(L)-injectivity of 1 implies (by 2. 3) the L-injectivity

W(L)
of IL. The isomorphism of the categories under 2. 3 also

ensures that IL is a minimal injective extension of ML.

Remarks:

(a) Since injectivity is categorically defined, it follows
from 2. 3 that a Lie D-L-module is L-injective if and only if the

corresponding associative W(L)-module (under 2. 3) is
W(L)-injective.

(b) An injective hull of a Lie module is unique (up to

isomorphism). This follows from the above remark and the

well known fact that the injective hull of an associative module
is unique.

We now give a criterion for testing the injectivity of a
Lie module internally.

PROPOSITION 4.2. The Lie module ML is injective

if and only if for every submodule KL of FL (where FL is
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the free Lie L-module on one generator), every fe¢ HomL(K, M)

can be extended to some f' € HomL(F, M).

Proof. The necessity is obvious. If the above condition

holds, Iet MW(L) be the associative module corresponding to

ML under 2. 3. We show that MW(L) is injective, hence ML

will be injective (see remark (a) above). Thus, let A be a

right ideal of W{L) and suppose f¢ HomW(L)(A, M). Let AL

be the Lie L-module corresponding to the W(L)-module Al (L)

under 2. 3. Then AL is a submodule of FL and we may

consider f as mapping A_ into M by hypothesis, f may

L L’
be extended to some f': FL - ML. Then also
f' e HomW(L)(W(L), M) (by 2.2). Since the above criterion of
injectivity is known to hold for associative modules [2,IV],
this shows that MW(L) is injective and completes the proof.

For an arbitrary Lie ring L we have considered the

functor: ML - MW(L) from the category of Lie L-modules to

the category of associative W(L)-modules and shown that ML

is L-injective if and only if M is W(L)-injective. To

W(L)

conclude, we consider the functor: M from the

- M
R C(R)
category of associative R-modules (R an arbitrary associative
ring) to the category of Lie C(R)-modules, and ask the

analogous question: is MR. R-injective if and only if MC(R)

is C(R)-injective? To answer this we first need a further
definition and result.

An extension EL of ML is said to be essential if for

any non-zero L-submodule D of E we have DN M # 0.

LEMMA 4.3. Every essential extension of a Lie module
is contained (up to isomorphism) in any injective extension.

Proof. The proof follows readily from 2. 3 (and the known
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result of the above lemma for the associative case). However,
since a direct proof is simple, we give it here. Thus, let E
be an essential extension of ML, IL an injective extension.

Let j be the injection mapping of ML into IL. Then j can

be extended to some L-homomorphism j': EL - IL. If K is

the kernel of j', then KN M=0 (since j is one-one),
hence K =0 (since E 1is essential). Thus j' 1is one-one and
E is (up to isomorphism) a submodule of I.

Let us now consider the problem mentioned above in the
following form: let R be an associative ring, MR an arbitrary

R-module, IR its injective hull. Consider now M as a Lie

module MC(R) over the Lie ring C(R) and take its injective

hull JC(R)’ say. What is the relationship between IC(R) and

JC(R) ?

Let AC(R) be a submodule of IC(R) such that
A N M

C(R) C(R):O' Since for any a€ A and re R, are€ A

and I is an R-module, it follows that A 1is an R-submodule

of IR.' Since also ARﬂ MR=0 and I_ is an essential

extension of MR (it is well known [2,IV] that the injective hull
is an essential extension), it follows that AR. =0. That is,

I f M ) d he e by 4. 3)
( ) 1S an eSSeIltlal extension o an nc
I leay be COIlSldeI ed as a Sub Od e Of J -

e

w show that i 11 LT
e now show that in genera C(R) # JC(R)

Thus, let R =Z, the ring of integers, and M =Q, the
additive group of rational numbers made into a Z-module in
the obvious way. It is well known that Q is a divisible group,
and hence QZ is injective as a Z-module [2,IV]. Thus

For the example that follows, as well as for other helpful
comments, I wish to thank Professor B. Banaschewski.
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IR (®) = QC(Z)' It will follow that IC(R) # JC(R)

if we show that QC(Z) is not injective (as a Lie module). By

th k following 4. 1 this is so if and only if is
e remark following is i if and only QW(C(Z))

not injective (as an associative module). We shall show that

this is in fact the case, by showing that Q__
’ ¢ w(C(Z)

a proper essential extension (this will do it, since an injective
extension has no proper essential extensions [2,IV]).

=QZ and IC

possesses

First, we <::2rmine the u.e.r. of C(Z). Let Z[x] be
the polynomial ring over Z in one indeterminate x, and
define a mapping p: Z - Z{x] by u(z) =zx(z€ Z). It then
follows that p is a Lie ring homomorphism: C(Z) - C(Z[x]).
We show that (Z[x],u) is the u.e.r. of C(Z). Thus, let H
be an arbitrary associative ring and f: C(Z) - C(H) a Lie
ring homomorphism. Define a mapping g:Z[x] = H by setting
g(x) =£(1) (1 being the identity element of Z). Since Z[x] is
the free associative ring generated by x, g can be extended
uniquely to a ring homomorphism: Z[x] - H. Then, for
z€ Z, gu(z) = g(zx) = zg(x) =zf(1) =£(z). Hence gp=£f. I
there exists a homomorphism g': Z[x] = H such that g'u =f,
then g'wu(1) =£(1). Thatis, g'(x)=£(1). Hence g' and g
coincide on the generator x of the free ring Z[x] and must
therefore be identical. This shows that Z[x] = W(C(Z)).

By the isomorphism theorem 2. 3 we now have the cor-
respondence QC(Z) _’QZ[X]. If qe Q, z¢ Z, define a

multiplication Q x Z[x] - Q by setting q(le) =qz (1> 0 with

x = 1), extending it to all of Z[x] in the obvious way. This
makes Q into a Z[x]-module. In fact, this is the module

QZ[x] (corresponding to QC(Z)) since the restriction of the

above multiplication to Q x C(Z) gives the module structure

of QC(Z)'

Consider now the polynomial ring Q[y] ir the indeter-
minate y. On the additive group of this ring define a Z[x]-
module structure as follows: for qe€ Q, z€¢ Z, put

k-1

k -1
(qy ) (zx) =qz(yk+ y ), (k>0, with y‘ozi, v =0), and

define inductively (qyk) (zx) = [(qyk) (zx1-1)]x, (i>2).
41
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Extending by linearity to all of Q[y] and Z[x], one easily
verifies that Q[y] becomes a Z[x]-module; in fact Q[y] is a
proper extension of the module QZ[x] .

It remains to show that Q[YJZ[K] is an essential extension

[x]

of QZ Thus, let K

be a2 non-zero D-submodule of
Z[x]

Let 0+# qe K. Then we may take

k
q= Z q vy, where q €Q and g # 0. Since
k=0 k k n

(x-i)ne Z[x], hence q(x—i)n € K. But
n n
q(x-1) =( =

k
qky ) (x—i)n =q (this may be easily verified by
n

k=0
induction on n), hence K1 Q# 0. This completes the proof.
Thus, we have shown that if MR is an R-module (R an
arbitrary associative ring), then the injectivity of MR (as an

associative module) does not imply the injectivity of M

C(R)
(2s a Lie module). However, MC(R) injective implies MR
injective.
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