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We study free and injective Lie modules by investigating 
the re la t ionship between Lie modules and (associative) modules . 
An important role is played by the universal enveloping ring of 
a Lie ring [4]. If L is an a rb i t r a ry Lie ring and W(L) its 
un iversa l enveloping r ing, we show that the category of Lie 
L-modules and the category of associat ive W(L)-module s a re 
isomorphic (section 2). In section 3 we study free Lie modules 
and show how they may be obtained from free associat ive 
modules . A Lie module is free if and only if it is a d i rec t sum 
of copies of the free Lie module on one genera tor . The existence 
of the injective hull for an associat ive module is well known [2]. 
In section 4 we show that a Lie module, too, p o s s e s s e s an 
injective hull. The free Lie module on one generator s e rves as 
a " tes t module" in the verification of injectivity for Lie modules . 
The f i rs t section gives some basic definitions. 

1. Let L be a commutative (additive) group. L is said 
to be a Lie ring if there is defined a multiplication in L which 
is distr ibutive and which sat isf ies: 

(i) a 2 = 0 , 

(ii) (ab)c + (bc)a + (ca)b = 0 - the Jacobi identity - (for al l 
a, b, c € L,) f 

(i) implies that L is ant icommutat ive; that i s : 
ab = -ba (a, b « L) . 

I wish to thank Professor J, Lambek for many helpful 
suggest ions. 
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Note: The above definition as well as some of those that 
follow may be found in [ l ] (where, however, Lie a l g e b r a s , not 
Lie r ings , are considered) . We include them here for the sake 
of comple teness . 

If L , L are Lie r ings , a Lie ring homomorphism from 
1 2 

L to L is a map f: L -*> L such that f(a+af ) = f(a) + f(af ) 

and f(aa ') =f(a)f(af ), (a,aT e L ). Thus , a homomorphic image 

of a Lie ring is again a Lie r ing. 

A (right) Lie module over the Lie ring L (a Lie L-module) 
is a commutative (additive) group M together with a mul t ip l ica­
tion: M X L -*• M such that 

(i) x(a+a l ) = xa + xa' , (x+x' )a = xa + x' a , 

(ii) x (aa ' ) = (xa)a' - (xa' )a, (x, x' € M; a, a1 * L) . 

We denote the right Lie L-module M by M . Left Lie modules 
L 

a r e defined in a s imi la r manner . Thus, (ii) becomes : 
(aa1 )x = a(a' x) - af (ax) . 

Remarks : 

(a) One can turn the right Lie module M into a left Lie 
L 

module M by defining ax = -xa(x€ M, a € L) . Thus , when 
J—» 

speaking of Lie modules one need not dist inguish between r ight 
and left. 

(b) The Lie r ing L may be considered a s a module over 
itself. The Jacobi identity and the ant icommutat ive law imply 
condition (ii) above. 

(c) A module M , where R is an associa t ive r ing, will 
R 

be called an associa t ive module. 

If M , N a r e two Lie modules , a Lie module homo-
L L • 

morphism (an L-homomorphism) from M to N is a map 

f:M -* N such that f(x+x' ) = f(x) + f(x' ) and f(xa) = f(x)a, 
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(x, x' € M, a € L). Difference modules and submodules of Lie 
modules a r e defined in the obvious way (as for the associa t ive 
case) , and the fundamental homomorphism and i somorphism 
theorems (corresponding to those in the associa t ive case) hold. 
It is easily verified that the c lass of Lie modules (over some 
a rb i t r a ry fixed Lie ring L) forms a category. In section 2 
we shall show that this category is abelian. 

If M (i « I, where I is some index set) is a family of 
i 

Lie L-modules , we form their direct sum Z © M. as follows: 

m 
the additive group of Z © M. is the direct sum of the additive 

groups of the modules M.. Multiplication by the e lements of 
L is defined componentwise: if x = (x.) e Z © M , a € L, 

i l 
then (xa) , the i-th component of xa, is defined to be x a. 

i i 
It is easily verified that with this multiplication Z © M. 
becomes a Lie L-module. It then follows that a Lie-module M 
is a d i rect sum of i ts submodules M.(i* I) if and only if 

M = Z M. (that i s , every element of M is a finite sum of 

e lements of M.) and M. f| Z M. = 0, for al l i , j € I. 

(This is so since the corresponding resul t is known to hold for 
groups. ) 

2. If R is an associat ive ring, we assoc ia te with it a 
Lie ring C(R) as follows. The additive group of C(R) is the 
same a s that of R; multiplication in C(R) is defined by the 
additive commutator: if a ,b € C(R) we define [a ,b ] =ab-ba 
(where the product on the right hand side is that in R). It is 
easi ly verified that with this multiplication C(R) forms a Lie 
ring. 

If R ,R a re associat ive r ings and f:R — R a ring 

homomorphism, then f induces a Lie ring homomorphism 
C(f): C(R ) — C(R ) in the obvious way: if a € C(R ), we set 

i ù 1 

C(f)(a) =f(a). It is easily verified that C i s , in fact, a 
functor from the category of associat ive r ings to that of Lie 
r ings . We shall now define a functor in the opposite direct ion. 
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Let L be a Lie ring. The pair (W(L), u), (where W(L) 
is an associat ive ring, u a Lie ring homomorphism of L into 
C(W(L))) is called a universal enveloping ring (a. e. r. ) of L 
if for any Lie ring homomorphism f of L into the Lie ring 
C(H) (where H is any associat ive ring), there exis ts a unique 
(associative) ring homomorphism g:W(L) —• H such that gu = f . 
That i s , the-accompanying diagram commutes . 

W(L) 
/IS N 

v a 
\ 

-»H 

(To be p rec i se , W(L), H and g should be replaced by 
C(W(L)), C(H) and C(g) respec t ive ly ; however, no confusion 
will a r i s e . ) 

PROPOSITION 2.1 . Every Lie ring L pos se s se s a 
universal enveloping ring (W(L),u). Moreover , JJ. is one-one. 
(Thus, L may be considered as a subring of C(W(L)). ) 

Proof. It is not difficult to show that L p o s s e s s e s a 
u. e. r. Thus, to each a € L let there cor respond (uniquely) 
some element (object) z . Let F(L) be the free assoc ia t ive 

a 
ring with identity generated by al l the z (a € L). Let K be 

a 
the ideal of F(L) generated by all e lements of the form 
z + z - z , and z z, - z z - z (a ,b e L). Let 

a b a+b a b b a ab 
W(L)=F(L) /K and define u: L - C(W(L)) by u(a) = z + K . 

a 
It is not difficult to verify that (W(L), u) is a u. e. r. of L. 
The difficulty a r i s e s in showing that \i is one-one. The proof 
forms the contents of a paper by Witt [4] and will here be omitted. 

Remarks : 

(a) F rom the construction of W(L) it is c lear that it 
possesses an identity element. 

(b) W(L) is generated by u(L). This is a s tandard proof 
[1 , p. 152]. 
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(c) A u. e . r . of L is unique (up to i somorphism) 
[1 . p . 152]. 

The mapping W which assoc ia tes with each Lie ring L 
its u. e. r . W(L) is a functor from the category of Lie r ings to 
that of associa t ive r ings . This may be verified d i rec t ly , but it 
a lso follows from Kan1 s theorem on adjoint functors [3, pp. 58, 59] 
(which also shows, incidentally, that W is an adjoint of C). 

Our object is to show that the category ?7\ (L) of Lie 
modules over any Lie ring L and the category ?7(W(L)) of 
associa t ive modules over the u. e. r . W(L) of L a r e 
isomorphic: that i s , there exist functors F:777(L) •— 7] (W(L)) 
and G:77(W(L)) ->7*7(1,) such that G F = I , FG = V (where 
I and I1 a r e the identity functors of 77? (L) and 77(W(L)) 
respect ively) . To this end we need the following 

LEMMA 2 ,2 . To every Lie L-module M the re c o r -
L 

responds an associa t ive module M (the additive groups 
of the two being identical). Moreover , any L-homomorphism 
h:M "*N (N an a r b i t r a r y Lie module) may be regarded as 

L L L 
a W(L)-homomorphism: M__r/T , -*N_ t r /TV -

w(L) W(L) 

Proof. As mentioned, the additive group of M i s 
w(L) 

the same a s that of M . To define the multiplication: 
L 

MXW(L)-*M, set H = Horn (M, M). If u , v € H , define uv to 
be the mapping u followed by v. Then H is an assoc ia t ive 
ring and M becomes a right H-module. Define a m a p 
f:L -^ C(H) as follows: if a * L, f(a) is a map: M -* M given 
by f(a)(x) =xa (x€ M). It is c lear that f(a) € C(H). If x € M, 
a , b € L,, then f(a+b)(x) = x(a+b) - x a + xb =f(a)(x) + f(b)(x) 
= [f(a)+f(b)](x), and [f(ab)](x) =x(ab) =(xa)b - (xb)a 
= f(a)f(b)(x) - f(b)f(a)(x) =[f(a)f(b) « f(b)f(a)](x). 

Thus, f is a momomorphism of L into C(H). Hence 
there exis ts a unique homomorphism g: W(L) -** H such that 
gp. = f. We now turn M into a W(L)-moduIe as follows: 
if x * M, w€ W(L), define xw = g(w)(x). Since M is an 
H-module, it i s easily verified that M is also a W(L)-moduIe. 
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Now suppose h is an L-homomorphism: M -** N . Let 
-L» Lu 

K = { w € W(L): h(xw) =h(x)w, for al l x « M} . We want K = W(L). 
Let k , k € K, x e M. Then h J X k ^ k ^ ) ] = h f x k ^ x k ^ 

= h ( x k ) - h(xk ) =h(x)k - h(x)k =h(x)(k -k ), and 
1 Z 1 Z 1 Z 

h[x(k i k2)] ^ [ ( x k ^ ] ^ h f x k ^ =[h(x)k4]k2 =h(x)(k i k 2 ) . 

This shows that K is a subring of W(L). If a € L, 
x}j.(a) = g}j.(a)(x) =f(a)(x) = xa. Hence K contains n(L) (since 
h is an L-hornomorphism). But JJL(L) genera tes W(L), hence 
K = W(L). This completes the proof. 

We now define a mapping F from the category /7?(L) of 
Lie L-modules to the category ?7(W(L)) of associa t ive W(L)-
modules as follows: if M T € 7?7(L), set F ( M T ) = M .T . the 

L L W(L) 
W(L)-moduIe a s defined in the above l emma. If h:M -** M' 

i_i JL* 
(Mf € ?7J(L)) then, a lso by the above l emma, h may be 

J—* 

regarded a s a W(L)-homomorphism: F(M ) -* F(Mf ). We 
JLi JLi 

define this to be the mapping F(h). Then it is c l ea r that F 
is a functor. 

We also define a mapping G: 77(W(L)) -*?77(L) as follows: 
tf N / r x € ^ (W(L)) then N may be regarded a s a C(W(L))-

W(L) 
module in the obvious way (the mult ipl icat ions N X W(L) and 
N XC(W(L)) being identical). Since L (more p rec i se ly |JL(L)) 

is a subring of C(W(L)), we obtain an L-module N by 

res t r i c t ing the sca lar multiplication N X C(W(L)) to NX L. 
This is the definition of G(N x) . 

W(L) 

If k:N , % — N1 , v (N1 , « 77(W(L))), then k m a y b e 
W(L) W(L) % W(L) y 

regarded, in the obvious way, a s a mapping: N
C / w / j n ~*NC(W(L))* 

Hence k:NT -*N ! (where, of course , N = G(NT l r / T , ) , 
L L L W(L) 

N' = G(N' )). This is the definition of G(k). Again, it i s 
Lu W \ Lu) 

easy to verify that G is a functor. 

THEOREM 2. 3. The category >?7(L) of Lie modules 
over any Lie ring L and the category ?\ (W(L)) of assoc ia t ive 
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modules over the universa l enveloping r ing W(L) of I* a r e 
i somorphic . 

Proof. We have defined functors F: 77[(L) — >7(W(L)) and 
G:7l(W(L)) -*J7?(L) above. It r emains to show that GF = I, 
FG = T (I and V being the identity functors of ?7](L) and 
?7(W(L)) respect ively) . Let M € ^?(L), then F(M ) = M , x 

L L W(L) 
(as in 2. 2). If now x« G(M ), a € L, then xu(a) = gu(a)(x) 

W(JL) 
= f(a)(x) = xa, (the g and f as in 2 .2) . This shows that 
G{i\fr.T .) = MT (after identification of u(L) with L). That 

W(L) L 
i s , GF(M ) = M . It is c lear that GF(h) = h for any 

J—« Lu 
h:M - M' . Hence GF = I. 

L Lu 

Let now N / T € ?I(W(L)) and set H = H o m (N,N). It 
W(L) Z 

is easi ly verified that the W(L)-moduIe s t ruc ture of N induces 
a r ing homomorphism g1 :W(L) -* H given by g1 (w)(x) = xw 
(w € W(L), x€ N). Now, the module N = G(N , ) i s obtained 

L W(L) 
by r e s t r i c t ing the sca la r multiplication to N X L. Then F(N ) 
is obtained by extending the Lie r ing homomorphism f:L -•* G(H), 
defined by f(a)(x) = xa (x € N, a € L), to a ring homomorphism 
g:W(L) -*H, and then by defining xw = g(w)(x). Since the 
extension g is unique, hence gT = g. Thus FG(N , T X ) - N 

W(L) W(L) 
It is c l ea r that FG(k) = k for any k:N -* N' . Hence 

W(L) vv(Li) 
FG = I! and the ca tegor ies a r e isomorphic . 

COROLLARY 2 .4 . The category of Lie modules (over 
any fixed Lie ring) is abelian. 

Proof. The category of associat ive modules is abelian 
[3, p. 66]7~ 

We shall derive other consequences of the above theorem 
in the next two sect ions . 

3. The module M is said to be a free Lie L-module 
L 

generated by the set X C M (or X is a free set of genera to rs 
of M ) if given any Lie module N and any map f:X -*- N , 

Lu Lu 
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there exists a unique L-homomorphism f :M -* N 
L Lu 

extending f. 

We now show that under the correspondence of t heo rem 
2. 3 free Lie modules correspond to free associa t ive modules . 

PROPOSITION 3. 1. If M — M is the cor respondence 
L W( L) 

between Lie-L-module s and associa t ive W(L)-modules under 
2. 3, then a subset XC M is a free set of genera to rs of M 

- ° L 
if and only if it is a free set of genera tors of M -

Proof. Let M_lr/TX be the free assoc ia t ive W(L)-module 
W(L) 

generated by the set X C M. Let N be an a r b i t r a r y Lie D - L -
—"• J - J 

module and f:X - * N r any map . Then c lear ly f: X -** N 
L W(L) 

(where N cor responds to N under 2. 3). Hence the re 
W(L) L 

exists a unique W(L)-homomorphism fl :M ~* ^ rr 
W(L) vv(L) 

extending f. Then also ff : M -*• N (this la t te r fr i s 
L L 

actually the G(ff ) of 2. 3, but we denote it a lso by F since 
the two maps a re the same on the set M). Now, f is unique 
as a W(L)-homomorphism, and it follows from the c o r r e s ­
pondence of maps under 2. 3 that f is also a unique extension 
of f as an L-homomorphism. That i s , M is a free Lie 

J—* 

L-module generated by X. To prove the converse , one jus t 
r e v e r s e s the s teps . Thus, M is a free Lie L-moduIe if and 

Lu 

only if M is a free associat ive W(L)-module. 
W(L) 

Remarks : 

(a) The free Lie-L-moduIe generated by a set X is 
unique (up to i somorphism) . This follows from the above 
proposition and the well known fact of the uniqueness of the 
free associat ive module on a set of genera to rs . 

(b) As in the associa t ive case , the genera tors X of the 
uie L-moduIe M a re 

Lu 

implies a = 0 (x € X, a € L). 

free Lie L-moduIe M a re tors ion free. That i s , xa = 0 
Lu 
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For , xa = 0 implies xu(a) =o (since xa = xu(a), - see proof of 
theorem 2 .3) . Since }i{a) € W(L) and M is the free 

W(L) 
associa t ive W(L)-module generated by X, it follows that 
u(a) = 0, hence a = 0 (since u is one-one). 

Of par t icu la r in te res t is the free Lie L-module on one 
genera tor . It co r responds , by 3. 1, to the free associa t ive 
W(L)-module on one generator . This may be taken to be W(L) 
(considered a s a module over itself), since W(L) has an identity. 
Thus W(L) (considered now as a Lie L-module) may be taken to 
be the free Lie-L-module on one genera tor . As in the associa t ive 
case , we have 

PROPOSITION 3.2 . M is a free Lie L-module if and 
L 

only if it is isomorphic to a d i rect sum of copies of the free Lie 
L-module on one generator . 

Proof. Let M correspond to M as under 2. 3. 
W(L) L 

Then the following a r e equivalent: 

(i) M is a free Lie L-module; 

(ii) MT i s a free associat ive W(L)-module; 
W(L) 

(iii) MT l r , r is a di rect sum of copies of W(L) (considered 
W(L) 

as a module over itself); 

(iv) M is a d i r e c t sum of copies of W(L) (considered 
L 

now a s a Lie module over L). 

The equivalence of (i) and (ii) follows by 3. 1. It is well 
known that (ii) and (iii) a re equivalent (these being associa t ive 
modules - see , for example, [2, IV]). The equivalence of (iii) 
and (iv) is c lear (since M and M , , have the same additive 

L W(L) 
group). The proposition now follows. 

4. The Lie L-module M is said to be infective if given 
L — 

any Lie modules A , B with A C B , and an L-homomorphism 
L L L L 
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f:A — M , there exis ts an L-homomorphism f! : B -* M 
L L L L 

extending f. An injective hull of the Lie module M is a 

minimal injective extension of M ; that i s , an injective 
J—» 

extension 1 of M such that if J is another injective 
L L LU 

extension of M and J C I , then necessa r i ly J = I. 
-Li 

PROPOSITION 4. 1. Every Lie-module M p o s s e s s e s 
J—» 

an injective hull. 

Proof. Let M , % be the associa t ive module c o r r e s -
W(L) 

ponding to M under 2. 3. Let I be i ts injective hull 

(that this exis ts for associat ive modules is well known - see , 
for example, [2, IVl). Again, let I cor respond to I 

L J 5 L W(L) 
under 2. 3. Then I is the injective hull of M . For , the 

L L 
W(L)-injectivity of I implies (by 2. 3) the L-injectivity 

W(L) 
of I . The i somorphism of the ca tegor ies under 2. 3 a l so 

Lu 
ensures that I is a minimal injective extension of M . 

L L 

Remarks : 

(a) Since injectivity is categorical ly defined, it follows 
from 2. 3 that a Lie D-L-module is L-injective if and only if the 
corresponding associat ive W(L)-moduIe (under 2. 3) is 
W(L)-injective. 

(b) An injective hull of a Lie module is unique (up to 
isomorphism). This follows from the above r e m a r k and the 
well known fact that the injective hull of an associa t ive module 
is unique. 

We now give a c r i te r ion for test ing the injectivity of a 
Lie module internally. 

PROPOSITION 4 .2 . The Lie module M is injective 
L J 

if and only if for every submodule K of F (where F is 
Lu Lu L 

38 

https://doi.org/10.4153/CMB-1966-004-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-004-5


the f r e e L ie L - m o d u i e on one g e n e r a t o r ) , e v e r y f * Horn (K, M) 
lu 

c a n be e x t e n d e d to s o m e f € Horn ( F , M). 
lu 

Proof . The n e c e s s i t y is obv ious . If the a b o v e cond i t i on 
h o l d s , le t MTT . . be the a s s o c i a t i v e m o d u l e c o r r e s p o n d i n g to 

w(L) 
M u n d e r 2. 3. We show tha t MT1 ,_ x i s i n j e c t i v e , h e n c e M 

L vv(L) L 
wi l l be i n j ec t i ve ( s e e r e m a r k (a) above ) . T h u s , l e t A be a 
r i g h t i d e a l of W(L) and s u p p o s e f € Horn ( A , M ) . Le t A 

w(L) L 
be the L ie L - m o d u l e c o r r e s p o n d i n g to the W ( L ) - m o d u I e AT ^ 

** I -»—•/ 
u n d e r 2 . 3. Then A i s a s u b m o d u l e of F and we m a y 

lu LJ 

c o n s i d e r f a s m a p p i n g A in to M ; by h y p o t h e s i s , f m a y 
LJ LJ 

be ex t ended to s o m e f ' : F -*• M . Then a l s o 
lu lu 

f € Horn (W(L) ,M) (by 2 . 2 ) . S ince the above c r i t e r i o n of 
W(L) 

i n j ec t i v i t y i s known to hold for a s s o c i a t i v e m o d u l e s [2 , IV] , 
t h i s shows t h a t M i s i n j ec t ive and c o m p l e t e s t h e proof-

W(L) 

F o r an a r b i t r a r y L ie r i n g L, we have c o n s i d e r e d the 
func to r : M -* M f r o m the c a t e g o r y of Lie L - m o d u I e s to 

L W(L) 
the c a t e g o r y of a s s o c i a t i v e W ( L ) - m o d u l e s and shown t h a t M 

lu 

is L - i n j e c t i v e if and only if M i s W ( L ) - i n j e c t i v e . To 

c o n c l u d e , we c o n s i d e r the func to r : M ~*M/~rc>\ f r o m the 
R. C(R) 

c a t e g o r y of a s s o c i a t i v e R - m o d u l e s (R an a r b i t r a r y a s s o c i a t i v e 
r i ng ) to the c a t e g o r y of L i e C ( R ) - m o d u l e s , and a s k the 
a n a l o g o u s q u e s t i o n : i s M R - i n j e c t i v e if and only if M 

R C(R) 
is C ( R ) - i n j e c t i v e ? To a n s w e r t h i s we f i r s t n e e d a f u r t h e r 
def in i t ion and r e s u l t . 

An e x t e n s i o n E of M i s sa id to be e s s e n t i a l if for 
lu lu — — — — — — 

any n o n - z e r o L - s u b m o d u l e D of E we have D 0 M i- 0. 

LEMMA. 4 . 3. E v e r y e s s e n t i a l e x t e n s i o n of a Lie m o d u l e 
is con t a ined (up to i s o m o r p h i s m ) in any i n j ec t i ve e x t e n s i o n . 

P roof . The proof fo l lows r e a d i l y f r o m 2. 3 (and the known 
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resu l t of the above Lemma for the associa t ive case) . However, 
since a direct proof is s imple , we give it he re . Thus, let E 

L 
be an essent ia l extension of M , 1 an injective extension. 

l-i La 

Let j be the injection mapping of M into 1 . Then j can 
La La 

be extended to some L-homomorphism j f : E -* I . If K is 
JLi La 

the kernel of j f , then K H M = 0 (since j is one-one) , 
hence K = 0 (since E is essent ia l ) . Thus j ' is one-one and 
E is (up to isomorphism) a submodule of I. 

Let us now consider the problem mentioned above in the 
following form: let R be an associa t ive ring, M an a r b i t r a r y 

R 
R-module, I its injective hull. Consider now M as a Lie 

R J 

module M over the Lie r ing C(R) and take i ts injective 

hull J~ , o x » s^y- What is the re la t ionship between I r , / o N and 
C(R) C(R) 

J ? 
C(R) 

Let A_, % be a submodule of I , x such that 
C(R) C(R) 

A^/t> ^ *^rfr> ~ °* Since for any a € A and r € R, a r € A C(R) C(R) 
and I is an R-module, it follows that A is an R-submodule 
of I . Since also A 0 M =0 and I is an essen t i a l 

R R R R 
extension of M (it is well known [2, IV] that the injective hull 

R 
is an essent ia l extension), it follows that A =0. That i s , 

R 
I , % is an essent ia l extension of M , , and hence by 4. 3, 
C(R) C(R) y 

I may be considered as a submodule of J 
C(R) C(R) 

We now show that in general I , ^ J 
B C(R) C(R) 

Thus, let R = Z, the ring of in tegers , and M = Q , the 
additive group of rat ional numbers made into a Z-module in 
the obvious way. It is well known that Q is a divisible group, 
and hence Q is injective as a Z-module [2, IV]. Thus 

For the example that follows, as well as for other helpful 
comments , I wish to thank Professor B. Banaschewski . 

40 

https://doi.org/10.4153/CMB-1966-004-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-004-5


lR - QZ a n d XC(R) - QC(Z)- lt W i U f 0 l l O W * a t lcm * JC(R) 
if we show that Q is not injective (as a Lie module). By 

the r e m a r k following 4. 1 this is so if and only if Q^ (r(7\ ^s 

not injective (as an associat ive module). We shall show that 
this is in fact the case , by showing that Q , , p o s s e s s e s 

7 6 W(C(Z)) ^ 
a proper essent ia l extension (this will do it, since an injective 
extension has no proper essent ia l extensions [2, IV]). 

F i r s t , we determine the u. e. r. of C(Z). Let Z[x] be 
the polynomial ring over Z in one indeterminate x, and 
define a mapping \i: Z -*• Z[x] by u(z) = zx (z € Z). It then 
follows that u is a Lie ring homomorphism: C(Z) -* C(Z[x]). 
We show that (Z[x], u) is the a . e . r . of C(Z). Thus, let H 
be an a r b i t r a r y associat ive ring and f: C(Z) — C(H) a Lie 
ring homomorphism. Define a mapping g:Z[x] -+ H by setting 
g(x) = f(l) (1 being the identity element of Z). Since Z[x] is 
the free associat ive ring generated by x, g can be extended 
uniquely to a ring homomorphism: Z[x] -* H. Then, for 
z € Z, gu(z) = g(zx) = zg(x) = zf(l) = f(z). Hence g\x = f. If 
there exis ts a homomorphism g' : Z[x] —» H such that g' u = f, 
then g ' u ( l ) = f ( l ) . That i s , g ' ( x ) = f ( l ) . Hence gf and g 
coincide on the genera tor x of the free ring Z[x] and must 
therefore be identical . This shows that Z[x] = W(C(Z)). 

By the i somorphism theorem 2. 3 we now have the cor ­
respondence Q -*Q - ,. If q e Q, z€ Z, define a 

C ( Z ) Z [ xj 
multiplication Q x Z[x] -* Q by setting q(zx^) = qz (i > 0 with 

x =1) , extending it to all of Z[x] in the obvious way. This 
makes Q into a Z[x]-module. In fact, this is the module 
Q r , (corresponding to Q_, ) since the res t r i c t ion of the 

Z[x] r & C(Z) 
above multiplication to Q x C ( Z ) gives the module s t ruc ture 
of Q 

C(Z) 

Consider now the polynomial ring Q[y] in the indeter­
minate y. On the additive group of this ring define a Z[x]-
module s t ruc ture as follows: for q € Q, z € Z, put 

k k k-1 o -1 
(qy ) (zx) = qz(y + y ), ( k > 0 , with y = 1 , y =0) , and 

k i k i-1 
define inductively (qy ) (zx ) = [(qy ) (zx )]x, (i > 2) . 
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Extending by l ineari ty to all of Q[y] and Z[x], one easi ly 
verif ies that Q[y] becomes a Z[x]-module; in fact Q(y] is a 
proper extension of the module Q^ r , . 

Z[x] 

It r emains to show that Qfyl^r -, is an essen t i a l extension 
Z[xJ 

of Q_ r ,. Thus, let K r , be a non-ze ro D-submodule of 
Z[x] Z[x] 

QfyLr T Let 0 ^ q e K. Then we may take u Z[xJ 
n k 

q = 2 q y , where q € Q and q ^ 0. Since 
-, « k k n 

k=0 
( x - l ) n € Z[x], hence q(x- l ) € K. But 

n n k 
q(x- l ) = ( 2 q y ) (x-1) =q (this may be easi ly ver i f ied by 

k n 
k=0 

induction on n), hence K f| Q ^ 0- This completes the proof. 

Thus, we have shown that if M is an R-moduIe (R an 
R 

a r b i t r a r y associa t ive r ing) , then the injectivity of M (as an 
R 

associat ive module) does not imply the injectivity of M 
(as a Lie module). However, M injective impl ies M 

C(R) R 
injective. 
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