LETTERS TO THE EDITOR

THE EXPECTED VALUE OF THE ONE-SIDED CUSUM STOPPING TIME

WOLFGANG STADJE,* Universität Osnabrück

Abstract

We derive an asymptotic relation for the expected value of the stopping time $N_x = \inf\{k \ge 0 \mid S_k - \min_{0 \le i \le k} S_i \ge x\}, x > 0$, where S_k is a random walk with negative drift.

WAITING TIME PROCESS; ASYMPTOTIC BEHAVIOUR

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60G70

Let $X_0=0$ and $X_k=\max{(X_{k-1}+\xi_k,0)}$, where ξ_1,ξ_2,\cdots are independent and identically distributed real-valued random variables with negative expected value. Let $S_0=0$, $S_k=\xi_1+\cdots+\xi_k$ for $k\geq 1$ and $N_x=\inf{\{k\geq 0\,|\,X_k\geq x\}}=\inf{\{k\geq 0\,|\,S_k-\min_{0\leq i\leq k}S_i\geq x\}}$. This stopping time appears in the one-sided cusum procedure and is of interest in queueing theory, since $\{X_k,k\geq 0\}$ can be interpreted as the waiting time process for a GI/G/1 system. In Stadje (1987) it is proved that

(1)
$$(1 - a(x))/a(x) \le E(N_x) \le 2E(\tau)/a(x),$$

where $\tau = \inf \{k \ge 1 \mid S_k \le 0\}$ and $a(x) = P(\max_{0 \le k < \tau} S_k \ge x)$. A result of Iglehart (1972) states that if ξ_1 is non-lattice and there exists a $\gamma > 0$ for which $E(\exp(\gamma \xi_1)) = 1$ and $E(\xi_1 \exp(\gamma \xi_1)) < \infty$, then

(2)
$$a(x) \exp(\gamma x) \rightarrow [1 - \exp(\gamma S_{\tau})]^2 / \gamma E(\xi_1 \exp(\gamma \xi_1)) E(\tau), \text{ as } x \rightarrow \infty.$$

The aim of this note is to supplement (1) by the asymptotic relation

(3)
$$\lim_{x \to \infty} a(x) \mathbf{E}(N_x) = \mathbf{E}(\tau).$$

Under the above conditions on the moment-generating function of ξ_1 , (2) and (3) together yield

(4)
$$\lim_{n \to \infty} \exp(-\gamma x) \mathbf{E}(N_x) = \gamma \mathbf{E}(\xi_1 \exp(\gamma \xi_1)) (\mathbf{E}(\tau)/[1 - \exp(\gamma S_\tau))])^2.$$

Proof of (3). Let $A_x = \{ \max_{0 \le k < \tau} X_k < x \}$. Then $P(A_x) = 1 - a(x)$ and we can write

(5)
$$E(N_x) = E((N_x - \tau)1_{A_x}) + E(\tau 1_{A_x}) + E(N_x 1_{A_x})$$

By the strong Markov property we obtain

$$E((N_x - \tau)1_{A_x}) = P(A_x)E(N_x - \tau \mid A_x)$$
$$= (1 - a(x))E(N_x)$$

Received 12 March 1992; revision received 13 July 1992.

^{*} Postal address: Fachbereich Mathematik/Informatik, Universität Osnabrück, Postfach 4469, DW-4500 Osnabrück, Germany.

Letters to the editor 1009

so that by (5)

(6)
$$a(x)E(N_x) = E(\tau 1_{A_x}) + E(N_x 1_{A_x}).$$

Now obviously $P(A_x) \to 1$, as $x \to \infty$, because we assume $E(\xi_1) < 0$. Thus, $E(\tau 1_{A_x}) \to E(\tau)$. Further, on A_x^c we have $N_x \le \tau$; hence $E(N_x 1_{A_x^c}) \le E(\tau 1_{A_x^c}) \to 0$, since τ is integrable (again by the assumption $E(\xi_1) < 0$). Therefore, (6) implies that $a(x)E(N_x) \to E(\tau)$, as claimed.

Note that $a(x)E(N_x) \leq E(\tau)$, so that the factor 2 on the right-hand side of (1) is unnecessary.

Acknowledgement

I am indebted to the referee for valuable comments.

References

IGLEHART, D. L. (1972) Extreme values in the GI/G/1 queue. Ann. Math. Statist. 43, 627-635. STADJE, W. (1987) Asymptotic behavior of a stopping time related to cumulative sum procedures and single-server queues. J. Appl. Prob. 24, 200-214.