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Abstract

We continue the study of operators from an Archimedean vector lattice E into a cofinal sublattice H
which have the property that there is X > 0 such that if x e E, h e H and \x\ *S \h\, then \Tx\ « \\h\.
The collection Z(E\H) of all of those operators forms an algebra under composition. We investigate
the relationship between the properties of having an identity, being Abelian and being semi-simple for
such algebras, culminating in a proof that they are equivalent if H is Dedekind complete. We also
study various spectra for such an operator T, showing that, apart from 0, its spectrum relative to
Z(E\H) is the same as that of T\H relative to Z(H) and that of T relative to JC(E) (provided £ is a
Banach lattice and H is closed).

1980 Mathematics subject classification (Amer. Math. Soc): 47 B 55, 47 A 10, 46 A 40.

1. Introduction

In Wickstead (1980) we introduced the class Z(E\H) of relatively central opera-
tors from an Archimedean vector lattice E into a cofinal sublattice H. These are
linear operators T: E -» H with the property that there is a constant A such that
if x e E, h e H and |JC| < \h\, then |7JC| < A|A|. If E = C(Q) and H is a closed
sublattice containing the constants, then a linear operator T: E -» H is relatively
central if and only if it is an averaging operator. Many of the results in Wickstead
(1980) were proved by choosing h e H+y restricting T to the ideal Eh generated
by h in E, extending T to the completion of this for the order unit norm induced
by h, and then applying the Kakutani representation theorem and this fundamen-
tal example.

0 1986 Australian Mathematical Society 0263-6115/86 $A2.00 + 0.00

287

https://doi.org/10.1017/S144678870002752X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002752X


288 P. T. N. McPolin and A. W. Wickstead [21

Z(E\H) need not have a particularly nice order theoretic structure, but if H is
a Dedekind complete vector lattice, then so is Z(E\H). We also showed in
Wickstead (1980) that if £ is a Banach lattice and H a closed cofinal sublattice of
E, then the compact operators in Z(E\H) form a lattice. The expression
||r||n = inf{X > 0: \Tx\ < X\h\ whenever x e E, h e H and |JC| < |A|} defines a
norm on Z(E\H) called the natural norm. If H is relatively uniformly complete,
then Z(E\H) is complete for the natural norm.

In this note we investigate the structure of Z(E\H) as an algebra under
composition. The natural norm is readily seen to be submultiplicative. It is not
entirely clear that an identity for Z(E\H) need have norm 1, but Z(E\H) can
certainly be renormed as a (real) normed algebra (Rickart (I960)). Examples in
Section 3 will show that Z(E\H) need not, in general, have an identity, be
Abelian nor be semi-simple. It does, however, turn out that there is a very close
relationship between these properties. In the case that H = E is a normed lattice,
Z(E\H) reduces to the familiar class of central operators Z(E) on E, which is
algebra isomorphic to a dense unital subalgebra of some C(ti) (Theorem 1.2 of
Wils (1971)), and so is both Abelian and semi-simple. In this case it is well known
that the spectrum of T e Z(E) is the same whether it is taken relative to Z(E) or
to the algebra of all bounded linear operators on E. In Section 4 we shall see that
there are similar results in our context. Before proceeding to the results on the
algebra structure of Z(E\H), we wish to introduce a restricted class of sublattices
which feature in the main results in Section 3.

2. Projection sublattices

Throughout this paper, E will denote an Archimedean vector lattice and H a
cofinal sublattice of E, unless extra conditions are explicitly imposed.

DEFINITION 2.1. (i) A downward directed net { x y } y e r in E+ is said to
decrease to 0 relative to H if each xy — xy, e H, and if h e H+ with h < xy for
each y e T implies that h = 0.

(ii) A positive linear operator T: E -* H is relatively order continuous {with
respect to H) if for each net {jcy}1,er

 m E+ which decreases to 0 relative to H,
the net {Txy }y e r decrease to 0 in H.

(iii) H is a projection sublattice of E if there is a relatively order continuous
positive linear projection of E onto H.

The following proposition gives a rather more natural criterion for a sublattice
to be a projection sublattice.
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PROPOSITION 2.2. A cofinal sublattice H of an Archimedean vector lattice E is a
projection sublattice if and only if for each x G E+, infH{h 6 / / : h > x) and
suP//{ n G H'- n ^ x} °°th exist and are equal. If H is a projection sublattice of E,
then the associated relatively order continuous projection is unique and is a lattice
homomorphism.

PROOF. If H is a projection sublattice, let P denote a projection associated with
H. If x G E+, then the set A = {x — h: h G H and h < x) decreases to 0
relative to H, so that iniH{P(x) - h: h G H and h < x) = 0. Hence supH{h G
H: h < x) exists and is equal to P(x). Similarly infH{h G H: h > x) exists and
equals P(x). This establishes both that supH{h e H: h < x} = infh{h e H:
h ^ x}, and that P is unique.

Now suppose that Hdoes have the property that for each x e E+, infH{h e H:
h > x) and supH{/i G //: /i < x) exist and are equal. Define P: E+-> H by
P(x) = infH{h G H: h > x}. Then /* is clearly positive homogeneous. It is also
additive, for if x, y G E+, then we have

P(x + y) = supH{/i G //: ^ < x + y)

< infw{A &H: h>x) +iniH{h & H: h > y) = P(x) + P(y)

= supH{h e H: h ^ x} + supH{h e H: h ^y)

< infw{/i e H: h> x + y} = /)(x + y).

We may now extend P to a positive linear operator from E into H by defining
P(JC — y) = i*(x) — P(>») for x, y G £ + . P is clearly a projection and is a lattice
homomorphism since, if x, y G £ + , then we have

/ ^ x ) A P(y) = supH{h G H: h < JC} A supH{/i e /^: A <_y}

= supw{/i A h': h,h' e /f, /i < x,/;' <>-}

= supw{A ^ H: h ^ x A y} = P(x Ay).
All that remains now is to prove that P is relatively order continuous. Suppose

that { x y } y e r is a net in E+ which decreases to 0 relative to H. Since for each y,
y' e T, we have xy - xy, G i/, it follows that P(xy) - xy = P(xy) - xy- If
h G H+ with h < ^Cx ,̂) for all y G T, we must show that h — 0. Fix y o e r and
observe that

h < xy + P(xy) - xy = xr + [P(xJ - xyo] (y G T).

Thus if h' > [^Cx^) - x y j + we have h - W < xy for all y G T, so that h < h'.
Thus

= 0,

https://doi.org/10.1017/S144678870002752X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002752X


290 P. T. N. McPolin and A. W. Wickstead 14]

since h' < [^(*.,,0) - * Y o ] + implies that

= o.
EXAMPLE 2.3. If E = R2 with the usual order, and if H = {(x, x): x e R},

then there are many positive projections of E onto H, but H is not a projection
sublattice of E as

infH{h e H: h> (0,1)} = (1,1) =f= (0,0) = supH{h e # : A < (0,1)}.

In view of the importance of our basic example of E = C(fi) and / / a closed
sublattice containing the constants, it is of obvious interest to know as much as
possible about the projection sublattices in this case. Whilst we do not have a
complete description, we do have sufficiently many results to construct a signifi-
cant example. If P is a lattice homomorphism, and a projection, of E onto H,
then there is a continuous map <j>: fl -> fi such that Pf = f ° <j> (Ellis (1964)). The
fact that P is a projection implies that <j> is a retract of B onto K = <#>(fl). Let r
denote the topology of 8 relativised to K. The set <j>(ti\K) is contained in K.
Let Q denote its interior for the T topology.

EXAMPLE 2.4. Wirf/i the notation above:
(i)IfQ= 0 , then H is a projection sublattice.
(ii) If H is a projection sublattice and K is a Gs in fi, then Q = 0.

PROOF, (i) If / e E+, let / T : K -» R be defined by / T(>0 = sup{ / (x ) :

<#>(x)=j>}, so that / T is upper semi-continuous by, for example, 7.5.5 of
Semadeni (1971). If A = {h e H. h>f), then A = {g ° <J>: g e £ and g ° <#>!*
> / T } . As / f i su . s . c , for each ^ e AT we have / T(>0 = inf{g(.y): g G C(A")
and g e / 1 } , by 6.3.4 of Semadeni (1971). Hence / T ( y ) = i n f { g » c ^ ^ ) : g°<j>
^ A}, since {g°<t>\tc'- g s C(S2)} = C(K) by the Tietze-Urysohn extension
theorem and the fact that <J>2 = <f>. Thus if h is any lower bound in H for A, we

must have h\K < / T . However, / T U \ * ( a \ ^ ) = / | * \ t < a \ * ) > s 0 t h a t Al*\*(fl\^) <
f\K\^Q\Ky If Q — 0 , then ^ \ < ^ ( f i \ K ) is dense in ^ , so that, by continuity,
h I K < / 1 A:- Hence h = h°<S>^f°^, and it follows that inf H { /i e / / : h^f} =
f ° <t>. The proof that supw {h ^ H: h^f}=f°<j> is similar, and so H must be a
projection sublattice of E.

(ii) Observe first that Proposition 2.2 tells us that inf H {h e H: h > / } =
supH{h e H: h < / } = Pf = f « <>. As we are supposing S2\^T to be an Fa in Q,
we have Q\K = U~_j Fn, where each Fn is closed in fi. As <>(S2 \ A") = U ^ = 1 ( F J ,
if we had Q ¥= 0, then for some « e N , <j>(En) would have a non-empty
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T-interior, since K is a Baire space. Let x0 e Fn with <j>(x0) in the T-interior of
4>(Fn). There is / G C(£2)+ with / | ^ = 1 and /(<f»jco) = 0. Now inf{A G # :
h>f}*f°<t>, for if we define h0 e"C(A"), so that 0 < /i0 < 1, A0(4>x0) = 1,
and /i0 vanishes off the T-interior of 4>(Fn), and if we let h0 be any norm-preserv-
ing extension of h0 to C(8), then we have 7iQ ° <j>\K < / f , and yet 7i0 ° <f> =£ / ° <J>.

NOTE 2.5. If, in fact, 0 = 0 and K is a G« in £2, then for each /<= C(fi)+,
there are countable sets //x and i/2, with /ix < / < h2 for each hx^ Hx and

^2 e ^2> S U C n

EXAMPLE 2.6. Let fi be any Stonean space, and let w0 be a non-isolated point in
Q, (e.g. 8 = )3(N)) and <oo G ̂ (M \ N). Let oo be some object not in fi and give
X = 12 U { oo } the disjoint union topology, under which it is a Stonean space. Let
4>: X-> X be defined by <*>|B = ida and <|>(oo) = w0. Then {f°<j>: / G C(X)} =
{/ G C(A"): /(c») = /(w0)} is a proper Dedekind complete projection sublattice
of C(X), since fj>(X\K) = ^>({oo}) = {w0} has empty T-interior as w0 is not
isolated in K = 8.

Some idea of the importance of projection sublattices in the theory of relatively
central operators is given by:

PROPOSITION 2.7. If E is an Archimedean vector lattice and H a cofinalprojection
sublattice of it then the restriction map from Z(E\H) into Z(H) is an order and
algebra isomorphism.

PROOF. It is immediate from Proposition 2.2 that the relatively order continu-
ous projection P from E onto H lies in Z{E\H). If S G Z(E\H) and x e E+,
then \Sx\ < \\S\\nh for each he H with x < h, so that |S*| < ||S||n • />*. Thus i>
is an order unit for Z(E\H), and in particular Z(E\H) is positively generated.
We show that for each T G Z(E\H), we have T° P = T. In order to prove this it
clearly suffices to prove that if T G Z(E\H)+ and x G E+, then T(PA:) = Tx.
But if /i G H with /i > x, we have Th> Tx and, as T ^ G Z(H) is order
continuous,

= T(infH{h: h>x,h<=H})

= inf w {Th: h> x,h& H) > 7x .

We see similarly that T(Px) < Tx, thus estabhshing that T°P = T.
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It follows immediately that T -* T\H is injective, since T° P = (T\H)° P. The
map T-> T\H is surjective, since if T e Z(H), then T'° P e Z{E\H) and
T° P\H= T. The map is clearly positive, and if T\H^ 0, then T= (T\H)°P>0,
so that the order isomorphism is established. That the restriction map is an
algebra homomorphism is clear, and so the proof is complete.

In particular, note that Proposition 2.7 together with Example 2.6 tells us that
we cannot hope to deduce that H = E from properties of Z{E\H).

3. The algebra structure of Z(E\H)

The first task we shall devote ourselves to in this section is to determine the
relationship between the properties of having an identity, being Abelian, and
being semi-simple for Z(E\H). Let us first notice that we have easily:

LEMMA 3.1. If E is an Archimedean vector lattice, if H is a cofinal sublattice of E,
and if Z(E\H) has an identity, then Z(E\H) is isomorphic to a subalgebra of
Z(H), and so is Abelian and semi-simple.

PROOF. If J is an identity for Z{E\H), then the restriction map T -» T\H,
which is an algebra homomorphism, is injective, since T= T°J = {T\H)°J.
Hence T = 0 if and only if T\H = 0.

The converse of this is false.

EXAMPLE 3.2. In Example 4.3(ii) of Wickstead (1980) we saw that Z(/oo, c) may
be identified with c0 for both the order and algebraic structures. This is semi-
simple and Abelian but has no identity.

PROBLEM 3.3. If Z(E\H) has an identity, must the restriction to Z(H) be
bipositive? In particular, it would follow that the identity would be an order unit.
This is the case if Z(E\H) is positively generated.

The properties of being Abelian and semisimple are equivalent for Z(E\H),
provided that Z{E\H) is positively generated, but before we prove this we shall
identify the radical 0t{Z{E\H)) of Z(E\H).

PROPOSITION 3.4. If E is an Archimedean vector lattice, H a cofinal sublattice of
E, andTe Z(E\H), then

def
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PROOF.

= \\T\HL
Conversely, the fact that ||r*||n > \\Tk\H\\ for each k e N shows that v(T)

COROLLARY 3.5. If E is an Archimedean vector lattice and H a cofinal sublattice
of E, then

®{Z{E\H)) = {TeZ(E\H): v(T) = 0} = {TeZ(E\H): T\H = 0 } .

PROOF. By Proposition 3.4, the last two sets coincide. The set {T e Z(E\H):
T\H = 0} is a two-sided ideal in Z(E\H) consisting of nilpotent elements (as
each such T has zero square), so it is contained in !%(Z(E\H)) by Rickart (1960),
Theorem 2.3.2. On the other hand, Theorem 2.3.4 of Rickart (1960) tells us that
@(Z(E\H)) is contained in { T e Z(E\H): v{T) = 0), so the equality of all
three sets is established.

PROPOSITION 3.6. If E is an Archimedean vector lattice and H a cofinal sublattice
of E, then

(i) ifZ(E\H) is semi-simple, then Z(E\H) is Abelian;
(ii) ifZ(E\H) is Abelian and positively generated, then Z(E\H) is semi-simple.

PROOF, (i) If S, T e Z(E\H), then ST\H = S\HT\H = T\HS\H, so that
(ST - TS)\H = 0. Hence ST - TS e £(Z(E\H)) = {0}, so that ST = TS.

(ii) Suppose T\H = 0. Then for every h e H+, T\H^ = 0. If we can show that
this forces T\E =0 , then we have T= 0, and Z(E\H) is semi-simple. This
argument, together with a uniform extension process, as indicated at the top of
page 194 of Wickstead (1980), allows us to consider our basic example (Wickstead
(1980), Theorem 2.3).

Let 5, T e Z(C(fl)|C(tf)C(2)) be represented by the mappings X and ju,
respectively, and suppose that S 3s T, -T. For a e 2 and / e C(Q), we have

dX(a)=f(Tf)d\(a) = ST(f)l.1
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since Sf <= C(ir)C(2) and r|C() r )C(2) = 0. Thus, either (i(a) = 0 or else JldX(a)
= 0. As A(a) > 0, this forces X(a) = 0, and hence ju(a) = 0, since A(a) > ||u(a)|.
Thus, in either case, ju(O) = 0, and hence T = 0.

PROBLEM 3.7. Does Z(E\H) Abelian always imply that Z(E\H) is semi-
simple?

It is not the case that Z{E\H) is always Abelian.

EXAMPLE 3.8. Let E = U2, and let H = {(x, x): x e R } with the usual order.
Then Z(E\H) may be identified with R2 via the correspondence T «-> (a, ft),
where

T(x, y) = (ax + by, ax + by).

If we define R, S e Z(E\H) by l?(x, >>) = (x, x) and S(x, >0 = (y, y), then
RS = S * R = SR, so that Z(E\H) is not Abelian (and hence certainly not
semi-simple).

If H is Dedekind complete, the relationship between the various algebraic
properties that Z(E\H) may have is much clearer.

THEOREM 3.9. If E ia an Archimedean vector lattice and H a Dedekind complete
cofinal sublattice of E, then the following are equivalent.

(a) Z(E\H) has an identity.
(b) Z(E\H) is Abelian.
(c) Z(E\H) is semi-simple.
(d) The restriction map of Z(E\H) into Z(H) is a surjective lattice and algebra

isomorphism.
(e) H is a projection sublattice of E.

PROOF. Proposition 2.7 asserts precisely that (e) => (d). Clearly (d) =» (a) and
(a) => (c) by Lemma 3.1. The fact that (c) => (b) constitutes Proposition 3.6(i),
and so we need only prove that (b) =» (e).

Suppose H is not a projection sublattice of E. Then we shall prove that
Z(E\H) is not Abelian. In this case Proposition 2.2 tells us that we can find
JC e E+ with

hx = inf{/i G H: h> x) # sup{/i e H: h < x) = h2.

If xl = hx — x and x2
 = x — h2, then x1 and x2 must be linearly independent,

and x1 + x2 = ht — h2e H+\{0}. If K is the linear span of x: and x2, then we
may define linear maps 7\, T2: K -* (xl + x2) • R by Tl(\xl + jux2) = X(x1 +
x2) and T2(\xr + /ix2) = n(xl + x2). Once we have shown that 7\ and T2 may
be extended to Tv T2 e Z(E\H), the proof will be complete, since Tl and 72 do
not commute, and so their extensions certainly cannot.
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Define a sublinear map p: E -» H by p(x) = infH{h e H: h > |x|}. If we
show that h e H, and /i > \\xx + jax2| imply that h > max{|X|, |ju|}(x1 + x2),
then it will follows that |7^(^)| < p(y) for / = 1, 2. If X = /i there is nothing to
prove. We now consider separately the cases X > ju and X < /i.

If X > ft, then h > |Xxj + jux2| implies that h > Xxj + fix2 = (X — / i ) ^ +
/*(*! + JC2), so that (X - /i)xx < /i - JU(XJ + x2) = h' <= H. Thus

(X - ju)-V > x : = hx - x,

which implies that

As /i2 = sup{g e //: g < x}, it follows that hx - (X - ju)"1/;' < /i2. Hence

/I = n(Xl + X2) + h'> n(Xl + X2) +(X - /!)(/!! - h2)

Similarly, if X < pi, we can show that h > [i(xx + x2), so that h > max{X,
+ x2). The same argument with X replaced by -X and n by -/* will show that
h > max{-X, - ^ }(xx + x2), so that h > max{ |X|, l/ilJC^! + x2).

We may now use the Hahn-Banach extension theorem to extend 7\ and T2 to
7\ and T2 defined on the whole of E and dominated by p. These extensions are
clearly relatively central, and so the proof is complete.

We conclude this section by pointing out a useful property that Z(E\H) must
have if H is uniformly complete. This is of special interest in view of Example
3.10(ii) of Huijsmans and De Pagter (1982), which exhibits a uniformly complete
/-algebra in which square roots do not exist.

THEOREM 3.10. Let E be an Archimedean vector lattice and H a uniformly
complete cofinal sublattice of E. If T e Z(E\H)+ and n e N, then T has a unique
positive n'th root S e Z(E\H) with \\S\\n = \\T\\\/n.

PROOF. Consider first the basic example. Let /i represent T e
Z(C(fi)|C(w)C(2)), and let / = T\. Note that if g e C(fl), then

Thus i f / ( a ) > 0, we have
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The left hand function in this inequality is continuous o n { a e 2 : / ( a ) > 0 } and
will extend continuously to the whole of 2 by defining it to be zero on (a e 2:
/ ( a ) = 0}. Call this extension Sg(a). The map g -> Sg is clearly a positive linear
map of C(Q) into C(TT)C(2). It is relatively central because

and because of Theorem 2.3 of Wickstead (1980). Note that

S"g= {S\H)"-1Sg= [ / . / - (-»/»]<-1>[/-<-i>/»l7 'g= Tg.

This mapping S is the only possible positive nth root of T, for if U" = T, U > 0,
and if U is represented by v, then the uniqueness is clear on {a e 2: / (a) > 0}.
If / ( a ) = 0, then ju(a) = 0 (as [i > 0), so that [ / l ^ a ) ] " " 1 ^ ) = 0. The
positivity of v implies that v(o) = 0. The equality for the norm is obvious.

Consider now the general case. If n e / / + , consider T\E. This may be
extended, by continuity for the natural norm, t o f e Z(Eh\Eh), where Eh is the
completion of Eh for the natural norm. By the basic example, and by the
Kakutani representation, T has a unique positive nth root S e Z(Eh\Hh). Now
S\F is the unique positive nth root of T\E. The uniqueness allows us to piece
together these operators as n varies, so as to obtain the unique positive nth root
of T. The relationship between the norms follows easily once we note that, for
C/e Z(£|i/),wehave

n = sup{|f/|£J|n:ne//+

4. Spectra for relatively central operators

If T is a central operator on a Banach lattice E, then we may calculate the two
spectra oZ(E)(T) and a^^^T) relative to the algebras Z(E) and y(Ec) (the
algebra of all bounded linear operators on the complexification of E) respec-
tively. It is well known that the two spectra coincide. When dealing with relatively
central operators from E into H, we have oZ(H){T\H) available as well as
°Z(E\H)(T), which replaces oZ(E)(T). Proposition 3.4 and Corollary 3.5 lead us to
expect these to be closely related in general, even if E is not a Banach lattice. This
is indeed the case:

PROPOSITION 4.1. If E is an Archimedean vector lattice and H a cofinal sublattice
ofE, then for each T E Z(E\H), we have

= oZ(H)(T\H)\{0).
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PROOF. If 0 # X e oZ(H)(T\H), then (X~1T|//) is quasi-singular. This means
that for each U e Z(H), either {/"(X^T^) or ( X ^ T ^ ) " U is non-zero, where
V°W= V+ W - VW is the circle operation defined on page 16 of Rickart
(1960). In particular, if S e Z(E\H), then either ( 5 | / / ) ° ( \ - 1 r | / / ) or
(X"1r|//)<>(S|//) is non-zero. Hence, one of S "(X^T) and (X~1T)°S is non-sin-
gular, since V\H°W\H = (V°W)\H. Hence X^T is quasi-singular in Z(E\H)
and X G aZ(ElH)(T).

If we now have 0 =£ X £ 0z(//)(^l//)>tnen (^ ~ ^)lw n a s a n inverse in Z(H).
If S = -(X- Tlfj)-1!, then routine calculations show that S°(X~lT) =
(X~lT)° S = 0, so that X £ aZ(E[H)(T).

NOTES 4.2. (i) Examples 4.5(i) and (ii) will show that the exclusion of 0 is
essential.

(ii) In particular, this tells us that oZ(£ |W)(r) c R.
(iii) The proof shows that oZ(Em(T)\{0} = oZ(H)(T\H)\ {0} if £ is normed

and T e Z(£|/T), the continuous operators in Z(E\H).

THEOREM 4.3. / / E is a Banach lattice and H a closed sublattice of E such that
EH, the ideal generated by H in E, is dense in E, then for each T e Z(E\H), we
have

oZ(Em(T)\{0).

PROOF. Recall that if 0 # X e oZ(E^H){T), then X e oZ(H)(T\H) by Proposition
4.1 (we may identify Z(EH\H) with Z(E\H) by continuity). As the spectrum is
all boundary, X lies in the approximate point spectrum of T\H (Schaefer (1974),
page 310). Clearly X will also lie in the approximate point spectrum of T, and
hence X e o^(Ec){T).

Now suppose that X ¥= 0 and that X lies in the approximate point spectrum of
T. Choose x, e E with ||x,|| = 1 and \\{T - X)JC,|| -» 0. Then

but

so that (recalling that 7JC, £ / / ) , X lies in the approximate point spectrum of
T\ff . Thus the non-zero boundary points of o^ ( £ c ) ( r ) lie in O&(H)(T\H ) =

oZ(H){T\H). But ffz(ff)(r|ff) c R, so that o#(Ec^(T) is all boundary and we
certainly have

Combining this with Proposition 4.1 gives the desired inclusion.
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We conclude the paper with a discussion of zero.

[12]

L E M M A 4.4. With the notation of Theorem 4 .3 , I / O G °Z{E\H)(T), or if 0 e
aSf(E )(T)-

PROOF. If 0 £ o^.(£c)(r), then T is invertible, and so in particular is surjective.
It follows that H = E, so that Z(E\H) = Z(H) = Z(E), and we are reduced to
the well-known equality o#{Ec)(T) = oZ(E)(T) for central operators T.

The following examples show that these are the only implications that do hold
for zero.

EXAMPLES 4.5. (i) Recall from Example 2.6(iii) of Wickstead (1980) that there is
a Banach lattice E and a closed cofinal sublattice H of E with Z(E\H) = {0}. If
Q is any compact Hausdorff space, then we may identify Z(C(fi)ffi£|C(fl)ffi//)
with Z(C(fi)). The band projection P of C(fi) © E onto C(B) © {0} is the
identity of this algebra, and so 0 <2 aZ(C.(B)eE|C(n)ffiH)(/>). Both P and P\C(a)9H

are proper projections, so that 0 e a^,{C(a)&E)(P), andO e oz^C(Q)BH)(P\C(a)9H).
(ii) In Example 3.8, Z(E\H) has no identity, for otherwise it would be Abelian.

Thus 0 e oZ(E\H)(R). Also R is not surjective, whence 0 e o[s?(£:c)(^). On the
other hand, R\H is the identity on H, so that 0 € oZ(H)(R\H).
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