
JFP 12 (6): 549–566, November 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S0956796801004294 Printed in the United Kingdom

549

The lambda calculus is algebraic

PETER SELINGER

Department of Mathematics and Statistics,

University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

(e-mail: selinger@mathstat.uottawa.ca)

Abstract

This paper serves as a self-contained, tutorial introduction to combinatory models of the

untyped lambda calculus. We focus particularly on the interpretation of free variables. We

argue that free variables should not be interpreted as elements in a model, as is usually done,

but as indeterminates. We claim that the resulting interpretation is more natural and leads

to a closer correspondence between models and theories. In particular, it solves the problem

of the notorious ξ-rule, which asserts that equations should be preserved under binders, and

which fails to be sound for the usual interpretation.

Capsule Review

The paper discusses the question of whether the lambda calculus is algebraic despite the

fact that the variable-binding xi-rule is not a priori an algebraic congruence rule. The

positive answer (which depends on the way you interpret equations) is folklore, however this

is an issue which confuses even experts in the area. Aside from resolving this confusion,

Peter Selinger’s paper gives an accessible introduction to models of the untyped lambda

calculus.

Introduction

The correspondence between Curry’s type-free lambda calculus and Schönfinkel’s

combinatory algebras is among the oldest known and the most aesthetically pleasing

facts about the lambda calculus. However, the combinatory interpretation of the

lambda calculus is also known to be somewhat imperfect, because it does not

satisfy the ξ-rule: under the interpretation, M = N does not necessarily imply

λx.M = λx.N (Barendregt, 1984). Thus, the class of lambda algebras is not sound

for lambda theories, and one is forced to consider the non-equational class of lambda

models instead. It seems to follow that the lambda calculus does not correspond to

an equationally definable class of algebras.

A similar problem arises whenever one tries to model languages that contain

binders. Recall that the terms of universal algebra are constructed from vari-

ables and n-ary operations from some signature. On the other hand, the terms of

most programming languages also contain bound variables. The question arises

whether languages with binders are fundamentally more expressive than languages

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

550 P. Selinger

without them, or whether binders are, at least in principle, a dispensable con-

venience.

There are good reasons for dealing with algebraic languages, rather than languages

with binders, under certain circumstances; particularly in connection with equational

reasoning. Algebraic languages have simple and well-understood model theories, and

the models allow standard constructions such as cartesian products, subalgebras,

quotients, and the construction of free algebras.

The above-mentioned problem with the ξ-rule seems to suggest that the lambda

calculus is not quite equivalent to an algebraic theory, and thus, that languages

with binders are fundamentally more powerful than algebraic languages. In this

paper, we take a different point of view. We suggest another way of looking at

the problem, which yields a sense in which the lambda calculus is equivalent to an

algebraic theory.

The basic observation is that the failure of the ξ-rule is not a deficiency of the

lambda calculus itself, nor of combinatory algebras, but rather it is an artifact of

the way free variables are interpreted in a model. Under the usual interpretation,

free variables are interpreted as elements of a lambda algebra A. Thus, an equa-

tion M = N between terms is said to be satisfied if it holds whenever the free

variables of M and N are replaced by elements of A. We call this the local inter-

pretation. We suggest a different interpretation, called the absolute interpretation,

under which free variables are interpreted as indeterminates. Let A[x1 . . . xn] be the

lambda algebra obtained from A by freely adjoining elements x1 . . . xn. Under the

absolute interpretation, an equation M = N is said to be satisfied if it holds in

A[x1 . . . xn].

The fundamental observation of this paper is that the two interpretations do

not coincide, and that the absolute interpretation satisfies all rules of the lambda

calculus, including the notorious ξ-rule. It follows that the absolute interpretation

is sound and complete with respect to arbitrary lambda theories. Further, we show

that the categories of lambda theories and of lambda algebras are equivalent. This,

to some extent, justifies the slogan “the lambda calculus is algebraic”.

To researchers who specialize in the lambda calculus, the results of this paper are

probably well-known, or at least they can be easily derived from ‘folklore’ results.

However, to researchers outside this immediate field, these results are not as well-

known as they might deserve, and they usually appear only implicitly, if at all, in the

published literature. There is still widespread confusion about models of the untyped

lambda calculus, particularly about the issues of the ξ-rule, lambda algebras, lambda

models, and extensionality. Thus, the main purpose of this paper is to bring these

results together in one place, and to present them in a self-contained and accessible

way. Where we present background material, Barendregt’s monograph usually serves

as the standard reference (Barendregt, 1984).

The paper is organized as follows. In section 1, we summarize the basic theory of

combinatory logic and the lambda calculus. In section 2, we introduce the notion

of indeterminates and the absolute interpretation of lambda terms. In section 3 we

consider the βη-case, and in section 4 we explore analogies with cartesian closed

categories.

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

The lambda calculus is algebraic 551

Table 1. The axioms and rules of the lambda calculus.

(α) M =α N ⇒M = N

(β) (λx.M)N = M[N/x]

(refl) M = M

(symm) M = N ⇒ N = M

(trans) M = N, N = P ⇒M = P

(cong) M = M ′, N = N ′ ⇒MN = M ′N ′
(ξ) M = N ⇒ λx.M = λx.N

1 Combinatory models of the lambda calculus

1.1 The lambda calculus and combinatory logic

Definition

Fix a countable set V of variables. Let C be a set of constants. The sets of lambda

terms M,N, . . . and of combinatory terms A,B, . . . are given by the following abstract

syntax:

M,N ::= x c MN λx.M

A,B ::= x c AB K S

Here, x ranges over variables and c ranges over constants. The set of lambda terms

thus defined is denoted ΛC , and the set of combinatory terms is CC .

We follow the usual syntactic conventions for lambda terms and combinatory

terms (Barendregt, 1984). In particular, application associates to the left and the

body of an abstraction extends as far to the right as possible. Thus, we write MNP

for (MN)P , and λx.MN for λx.(MN).

Free and bound variables are defined as usual, and we write M =α N if M and N

are equal up to renaming of bound variables. Note that a combinatory term never

has bound variables; of course it may have free ones. We write M[N/x] for the

capture-avoiding substitution of N for x in M. A term with no free variables is

called closed. We write Λ0
C and C0

C for the sets of closed lambda terms and closed

combinatory terms, respectively.

Definition

The axioms and rules for deriving equations between lambda terms are shown in

Table 1. If T is a set of equations, we write T ` M = N if M = N is derivable

from T by using these rules. A lambda theory is a set of closed equations that is

closed under derivability. The unique smallest lambda theory is denoted λβ, and is

called the pure lambda theory. We write M =β N if λβ `M = N.

Similarly, the axioms and rules of combinatory logic are shown in Table 2.

Entailment and theories are defined in the same way as for the lambda calculus.

The minimal theory of combinatory logic is denoted CL, and we write A =CL B if

CL ` A = B.

Note that combinatory logic is an algebraic theory in the sense of universal

algebra: it is given by an algebraic signature and equations, together with the

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

552 P. Selinger

Table 2. The axioms and rules of combinatory logic.

(k) KAB = A

(s) SABC = AC(BC)

(refl) A = A

(symm) A = B ⇒ B = A

(trans) A = B, B = C ⇒ A = C

(cong) A = A′, B = B′ ⇒ AB = A′B′
(subst) A = A′ ⇒ A[B/x] = A′[B/x]

standard rules of equational reasoning. On the other hand, the lambda calculus is

not a priori algebraic in this sense, because of the λ-binder and its corresponding

ξ-rule. However, we will show in section 2 that the lambda calculus is equivalent to

an algebraic theory in a suitable sense.

Also note that we did not state the equivalent of the rule (subst) for the lambda

calculus. There was no need to do so, since (subst) is derivable from (β), (ξ), (cong),

and (refl).

In this section and the next one, we consider only the lambda-β-calculus; the

η-rule will not be considered until section 3.

1.2 Combinatory algebras

Definition

An applicative structure (A, ·) is a set A together with a binary operation ‘ · ’. A

combinatory algebra (A, ·, k, s) is an applicative structure with distinguished elements

k, s satisfying

kxy = x and sxyz = xz(yz), for all x, y, z ∈ A.

A homomorphism of combinatory algebras is f : A→ B such that fk = k, fs = s and

f(x · y) = fx · fy, for all x, y ∈ A.

Example

LetT be a set of equations between lambda terms. The open term algebra ΛC/T has

as its elements the T-equivalence classes of lambda terms, i.e. two terms M,N are

considered equal if T ` M = N. The operations are defined by M ·N = MN, k =

λxy.x, and s = λxyz.xz(yz). The closed term algebra Λ0
C/T is defined analogously.

A more trivial example is given by the open and closed term algebras of combi-

natory logic: here one can take k = K and s = S.

Combinatory algebras form an algebraic variety, i.e. they allow the usual algebraic

constructions of subalgebras, quotient algebras, free algebras and polynomial alge-

bras A[z]. For instance, A[z] is standardly constructed as the closed term algebra

Λ0
A∪{z}/T, where T is the set of equations a · b = c which hold in A, for a, b, c ∈ A.

The elements of A[z] are often called polynomials (in one variable) over A.

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

The lambda calculus is algebraic 553

Definition [Local interpretation of combinatory terms]

The terms of combinatory logic can be naturally interpreted in a combinatory

algebra. Recall that CA is the set of combinatory terms with one constant symbol

for each element of A. The local interpretation [[A]]ρ of such a term is defined with

respect to a valuation of variables ρ : V→ A:

[[x]]ρ = ρx, [[c]]ρ = c, [[K]]ρ = k, [[S]]ρ = s, [[AB]]ρ = [[A]]ρ · [[B]]ρ.

We call this the local interpretation to distinguish it from the absolute interpre-

tation discussed later. For terms A,B ∈ CA, we say that the equation A = B holds

locally in A, notation A |=loc A = B, if for all valuations ρ in A, [[A]]ρ = [[B]]ρ. If

T is a set of equations, we write A |=loc T if every equation in T holds locally in

A. The following soundness and completeness theorem holds for general reasons of

universal algebra:

Proposition 1 [Soundness and completeness for combinatory logic]

Let T be a set of equations between combinatory terms. For constant-free combi-

natory terms A and B,

T ` A = B iff

A |=loc A = B for all combinatory algebras A such that A |=loc T. q

1.3 The derived lambda abstractor

The significance of the two combinators K and S of combinatory logic lies in the

fact that they can be used to simulate lambda abstraction. Define I = SKK. Notice

that Ix =CL x, for all x. For a combinatory term A and a variable x, define the term

λ∗x.A inductively:

λ∗x.x = I

λ∗x.B = KB if x 6∈ FV(B),

λ∗x.BC = S(λ∗x.B)(λ∗x.C) otherwise.

Note by induction that (λ∗x.A)x =CL A holds for any term A. Also, FV(λ∗x.A) =

FV(A)\{x}. The operation λ∗ is called the derived lambda abstractor of combinatory

logic. It is important to remark here that, in general, the operator λ∗ is well-defined

only on terms, and not on equivalence classes of terms. For this reason, the λ∗
operator does not, in general, yield an operator λ∗ : A[x] → A, for a combinatory

algebra A. We will see in section 2.2 that we do get such an operator when A is a

lambda algebra.

A consequence of the derived lambda abstractor is combinatory completeness:

For every combinatory term A with variables in x1, . . . , xn, there exists a closed term

f such that A =CL fx1 · · · xn. This is achieved by letting f = λ∗x1 . . . xn.A.

1.4 Interpretation of lambda terms

Using the derived lambda abstractor λ∗ of combinatory logic, we can define trans-

lations cl : ΛC → CC and λ : CC → ΛC from lambda terms to combinatory terms,

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

554 P. Selinger

and vice versa:

xcl = x

ccl = c

(MN)cl = MclNcl

(λx.M)cl = λ∗x.Mcl

xλ = x

cλ = c

(AB)λ = AλBλ
Kλ = λxy.x

Sλ = λxyz.xz(yz)

Notice that again, these translations are defined on terms, rather than equivalence

classes of terms. For example, (λz.(λx.x)z)cl = S(KI)I and (λz.z)cl = I are not

equivalent in combinatory logic. Thus, M =β N does not imply Mcl =CL Ncl . The

following lemma summarizes the properties that do hold. Note that the last part of

the lemma follows from the first two parts.

Lemma 1 For any lambda term M, we have Mcl ,λ =β M. For combinatory terms

A,B, if A =CL B then Aλ =β Bλ. For lambda terms M,N, if Mcl =CL Ncl , then

M =β N.

We can now interpret lambda terms in any combinatory algebra, by first trans-

lating them into combinatory logic via cl :

Definition [Local interpretation of lambda terms]

Let A be a combinatory algebra. For lambda terms M,N ∈ ΛA and a valuation

ρ : V→ A, define
[[M]]ρ = [[Mcl]]ρ,

A |=loc M = N iff A |=loc Mcl = Ncl .

We define Th(A) to be the set of all closed equationsM = N such that A |=loc M = N.

Here, by a closed equation we mean, of course, an equation between closed terms.

This interpretation is not sound for the lambda calculus, since there are derivable

equations, such as λz.(λx.x)z = λz.z, that do not hold in all combinatory algebras.

In particular, Th(A) need not be a lambda theory!

This leads one to consider the class of lambda algebras, which are precisely those

combinatory algebras in which the equations of the λβ-calculus are satisfied.

1.5 Lambda algebras

Definition [See Barendregt, 1984]

A combinatory algebra A is called a lambda algebra if for all combinatory terms

A,B ∈ CA,

Aλ =β Bλ ⇒ A |=loc A = B.

A homomorphism of lambda algebras is a homomorphism of combinatory algebras.

Note that a lambda algebra is a particular kind of combinatory algebra. This is

not to be confused with the concept of a ‘syntactical lambda algebra’ of Hindley &

Longo (1980); see also Barendregt (1984, p. 101).

Example 1

Let T be a set of equations between lambda terms. The open term algebra ΛC/T

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

The lambda calculus is algebraic 555

and the closed term algebra Λ0
C/T are lambda algebras. In the open terms algebra,

ΛC/T |=loc A = B iff T ` Aλ = Bλ.

Proposition 2

The class of lambda algebras can be defined, relative to the class of combinatory

algebras, by a set of closed, constant-free equations. In particular, lambda algebras

form an algebraic variety.

Proof

By definition, A is a lambda algebra if and only if it satisfies all equations A = B

where A,B ∈ CA and Aλ =β Bλ. To prove the claim, notice that we can first remove

the constant symbols from A and B by replacing them with fresh variables. We can

then eliminate the free variables by applying the derived lambda abstractor. The

resulting equations are still valid, and they imply the original ones. q

It is less obvious that the set of equations can be taken to be finite.

Proposition 3 [Curry]

The class of lambda algebras is axiomatized by the equations of combinatory logic

and the following five closed equations due to Curry:

1. k = s(s(ks)(s(kk)k))(k(skk))

2. s = s(s(ks)(s(k(s(ks)))(s(k(s(kk)))s)))(k(k(skk)))

3. s(kk) = s(s(ks)(s(kk)(s(ks)k)))(kk)

4. s(ks)(s(kk)) = s(kk)(s(s(ks)(s(kk)(skk)))(k(skk)))

5. s(k(s(ks)))(s(ks)(s(ks))) = s(s(ks)(s(kk)(s(ks)(s(k(s(ks)))s))))(ks)

Proof

See Barendregt (1984, Theorem 5.2.5). q

The Curry axioms are compact, but not particularly intuitive. We will give another

finite axiomatization of lambda algebras in section 2.4.

Remark [Failure of the ξ-rule]

By definition, the local interpretation of the lambda calculus in a lambda algebra

validates all the equations of the pure lambda calculus. However, this interpretation

does not necessarily respect equational consequences. In particular, the local inter-

pretation does not in general satisfy the ξ-rule from Table 1: there exist terms M,N

and a lambda algebra A such that A |=loc M = N but A 6|=loc λx.M = λx.N.

One such example, due to Plotkin, arises when A is the closed term algebra of

the lambda-βη-calculus. By an ingenious construction, Plotkin showed that there

exist closed terms M and N such that MP =βη NP for all closed terms P (thus

A |=loc Mx = Nx), but Mx 6=βη Nx (thus A 6|=loc λx.Mx = λx.Nx). The details of

Plotkin’s construction are out of the scope of this tutorial; the interested reader may

look them up in Plotkin (1974) or Barendregt (1984, Theorem 20.1.1).

The failure of the ξ-rule implies that the local interpretation is not sound with

respect to equational consequences. For this reason, we only get a soundness and

completeness theorem for the pure lambda calculus, i.e. the theory λβ. Note that it

is soundness, and not completeness, which is problematic in the general case. We

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

556 P. Selinger

prove a better soundness and completeness theorem in section 2.3 with respect to a

different interpretation of lambda terms.

Theorem 1 [Soundness and completeness for the pure lambda calculus]

For constant-free lambda terms M,N,

λβ `M = N iff A |=loc M = N for all lambda algebras A.

Proof

‘⇒’: by definition of lambda algebras.

‘⇐’: by Example 1 and Lemma 1, the open term algebra Λ/λβ of the lambda beta

calculus is a lambda algebra in which M = N iff M =β N. q

2 Lambda algebras and indeterminates

2.1 A characterization of A[z] for lambda algebras

Recall that A[z] is the combinatory algebra obtained from A by freely adjoining

an indeterminate z (in the variety of combinatory algebras). We gave a concrete

description of A[z] in section 1.2. More abstractly, A[z] is characterized by the

following universal property: A ⊆ A[z], and whenever f : A→ B is a homomorphism

of combinatory algebras, and i ∈ B is an element, then there exists a unique

homomorphism h : A[z]→ B which extends f and maps z to i.

If A is a lambda algebra then so is A[z]. More generally, if A is a lambda

algebra and f : A → B is a homomorphism of combinatory algebras, then B is a

lambda algebra. This is because lambda algebras are defined by closed equations

(Proposition 2), and closed equations are always preserved by homomorphisms.

For lambda algebras, A[z] has an interesting explicit description. The following

construction is similar to constructions given by Krivine (1993) and, in the case of

Curry algebras, by Freyd (1989). Let A = (A, ·, k, s) be a lambda algebra, and define

B = (B, •, K, S), where

B = {a ∈ A | a = 1a}, where 1 = s(ki) and i = skk,

a • b = sab,

K = kk,

S = ks.

Note that ab denotes application in A, and a • b denotes application in B. Also note

that 1ab =CL ab, and 1λ =β λxy.xy. The construction is motivated by considering the

elements of A[z] as given by functions with one additional argument. Application

is defined by threading through the extra element, and the constants throw it away:

(a • b)z = (az)(bz),

Kz = k,

Sz = s.

Proposition 4

1. B is a well-defined combinatory algebra.

2. The map ι : A→ B with ι(a) = ka is a well-defined homomorphism.

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

The lambda calculus is algebraic 557

3. For every homomorphism f : A → C and every z ∈ C, there is a unique

homomorphism g : B → C such that f = g ◦ ι and g(i) = z. Consequently,

B ∼= A[z].

For the proof of Proposition 4, we need a lemma:

Lemma 2

The following hold in any lambda algebra, for elements a, b, c:

(a) 1k = k,

(b) 1s = s,

(c) 1(ka) = ka,

(d) 1(sa) = sa,

(e) 1(sab) = sab,

(f) s(s(kk)a)b = 1a,

(g) s(s(s(ks)a)b)c = s(sac)(sbc),

(h) k(ab) = s(ka)(kb),

(i) s(ka)i = 1a.

Proof

One easily checks that (1k)λ =β kλ, and similarly for the other equations. q

Proof of Proposition 4

1. It follows by Lemma 2(a)–(e) that all of k, s, K , S , a • b, i and 1 are elements

of B, for any a, b ∈ B. In particular, the operations on B are well-defined.

Moreover, Lemma 2(f) and (g) imply that for all a, b, c ∈ B,

K • a • b = s(s(kk)a)b = 1a = a,

S • a • b • c = s(s(s(ks)a)b)c = s(sac)(sbc) = a • c • (b • c).
2. Using Lemma 2(h), we have ι(ab) = k(ab) = s(ka)(kb) = ι(a)•ι(b). Also, clearly

ιk = K and ιs = S .

3. Define g(a) = f(a) · z, and check that this has the desired properties. For

uniqueness, take any homomorphism h : B → C such that f = h ◦ ι and

h(i) = z. Then for all a ∈ B,

h(a) = h(1a) = h(s(ka)i) by Lemma 2(i)

= h((ka) • i) = h(ka) · h(i) = h(ιa) · h(i) = f(a) · z = g(a). q

Corollary 1

Let A be a lambda algebra, and let a, b ∈ A. Then az = bz holds in A[z] if and only

if 1a = 1b holds in A.

Proof

‘⇒’: by definition of A[z], there is a unique map h : A[z] → B extending ι and

sending z to i. Using Lemma 2(i) twice, we get

1a = s(ka)i = (ka) • i = h(az) = h(bz) = (kb) • i = s(kb)i = 1b.

‘⇐’: If 1a = 1b holds in A, then also in A[z], thus az = 1az = 1bz = bz in A[z].

q

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

558 P. Selinger

2.2 Absolute interpretation

Let M(x̄) be a lambda term with free variables among x1, . . . , xn = x̄. The local

interpretation [[M]]ρ, defined in section 1.2, depends upon a valuation ρ : V → A.

Since, in fact, it depends only on the values of ρ at x1, . . . , xn, the local interpretation

can be viewed as a function [[M]]x̄loc : An → A, sending an n-tuple ā ∈ An to [[M]](x̄:=ā).

In these terms, an equation M = N holds locally in A if M and N define the same

function An → A.

We will now consider a different interpretation of terms, where variables are

interpreted as indeterminates, rather than as elements. Specifically, we interpret a

term M(x̄) as an element in A[x̄], i.e. as a polynomial, rather than a function. We

call this the absolute interpretation of M. The absolute interpretation distinguishes

more terms than the local one, since, in general, two different polynomials may

define the same function.

Definition [Absolute interpretation]

The absolute interpretation [[A]]x̄abs of a combinatory term A ∈ CA with variables

among x̄ = x1, . . . , xn is an element of A[x̄], defined as follows:

[[xi]]
x̄
abs = xi, [[c]]x̄abs = c, [[K]]x̄abs = k, [[S]]x̄abs = s, [[AB]]x̄abs = [[A]]x̄abs · [[B]]x̄abs.

Notice that this is the same as the local interpretation [[A]]δ under the valuation

δ : {x̄} → A[x̄] that maps each variable xi to itself. An equation A = B between

combinatory terms A,B ∈ CA is said to hold absolutely in A, written as

A |=abs A = B,

if [[A]]x̄abs = [[B]]x̄abs, where FV (A,B) ⊆ x̄. Notice that, since the canonical homo-

morphism A[x̄] → A[ȳ] is one-to-one for x̄ ⊆ ȳ, this notion is invariant under the

addition of dummy variables to x̄. For lambda terms M,N ∈ ΛA, we define

[[M]]x̄abs = [[Mcl]]
x̄
abs,

A |=abs M = N iff A |=abs Mcl = Ncl .

Note that for closed terms, the absolute and the local interpretations coincide. In

particular, Th(A), which was defined to be a set of closed equations, is the same for

the local and the absolute interpretations. However, the two interpretations yield

different equations between open terms.

The terminology ‘an equation holds absolutely’ is motivated by the following

lemma. The idea is that a property is ‘absolute’ if it is preserved under homomor-

phisms.

Lemma 3

Let A be a combinatory algebra, and let A,B ∈ CA be terms with FV(A,B) ⊆ x̄.

The following are equivalent:

1. A |=abs A = B,

2. A[x̄] |=loc A = B,

3. For all homomorphisms f : A→ B, B |=loc A = B.

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

The lambda calculus is algebraic 559

Here, B |=loc A = B is meant in the obvious sense, namely by interpreting constants

as their images under f.

Proof

1.⇒ 3. Consider f : A → B and some valuation ρ : V → B. Define g : A[x̄] → B

to be the unique map extending f such that g(xi) = ρ(xi) for all i. Then [[A]]ρ =

g[[A]]δ = g[[B]]δ = [[B]]ρ, which proves B |=loc A = B. 3.⇒ 2.⇒ 1.: Trivial. q

Corollary 2

Absolute validity implies local validity, i.e. A |=abs A = B implies A |=loc A = B.

Proof

Lemma 3(3) with f the identity function. q

Lemma 4

In any lambda algebra, 1(λ∗x.A) = λ∗x.A.

Proof

By definition of λ∗ and Lemma 2(c) and (e). q

The next lemma shows that the ξ-rule, which failed for the local interpretation, is

valid for the absolute interpretation.

Lemma 5

Let A be a lambda algebra. Let A,B ∈ CA be combinatory terms. Then

A |=abs A = B ⇐⇒ A |=abs λ
∗x.A = λ∗x.B

Proof

Suppose the variables of A and B are among x, y1, . . . , yn.

‘⇒’: Suppose A[x, ȳ] |=loc A = B. Then A[x, ȳ] |=loc (λ∗x.A)x = A = B = (λ∗x.B)x,

hence by Corollary 1, A[ȳ] |=loc 1(λ∗x.A) = 1(λ∗x.B). The claim follows by Lemma 4.

‘⇐’: Suppose A[x, ȳ] |=loc λ∗x.A = λ∗x.B. Then A[x, ȳ] |=loc A = (λ∗x.A)x =

(λ∗x.B)x = B. q

It follows from this lemma that the derived lambda abstractor λ∗x is a well-

defined operator λ∗x : A[x] → A if A is a lambda algebra. When A[x] is explicitly

constructed as (B, •, K, S) as in section 2.1, then λ∗x : B→ A turns out to be the map

that sends every element a to itself. Using this λ∗ operator, the absolute interpretation

of a lambda term can be defined directly, i.e. without relying on a translation into

combinatory logic:

[[c]]x̄abs = c, [[xi]]
x̄
abs = xi, [[MN]]x̄abs = [[M]]x̄abs · [[N]]x̄abs, [[λx.M]]x̄abs = λ∗x.[[M]]x,x̄abs.

2.3 Soundness and completeness of the absolute interpretation

Proposition 5 [Soundness]

The set of equations that hold absolutely in a lambda algebra A is closed under

the axioms and rules of the lambda calculus. As a consequence, Th(A) is a lambda

theory for any lambda algebra A.

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

560 P. Selinger

Proof

Consider each axiom and rule of the lambda calculus from Table 1. (α) and (β) hold

in any combinatory algebra, the latter being a simple consequence of the syntactic

fact that (λ∗x.A)B =CL A[B/x], for combinatory terms A and B. The rules (refl),

(symm), (trans) or (cong) are trivially satisfied. Finally, the rule (ξ) is satisfied by

Lemma 5. q

Theorem 2 [Soundness and completeness for lambda theories]

Let T be a set of equations between lambda terms. For constant-free lambda terms

M and N,

T `M = N iff

A |=abs M = N for all lambda algebras A such that A |=abs T.
Proof

‘⇒’: By Proposition 5.

‘⇐’: The open term algebra Λ/T associated with T is a lambda algebra satisfying

M = N iff T `M = N. q

2.4 An alternative axiomatization of lambda algebras

The proofs of Corollary 1, Lemmas 4 and 5 and Proposition 5 do not use the

definition of a lambda algebra directly; they only assume that the nine properties

of Lemma 2 hold in A and A[ȳ]. In fact, these nine properties already axiomatize

the class of lambda algebras.

Lemma 6

Suppose a combinatory algebra A absolutely satisfies the nine properties of Lemma 2.

Then for all combinatory terms, A |=abs Aλ,cl = A.

Proof

This is an easy induction; the only interesting cases are the base cases A = k and

A = s. We first note that for any a, 1a = s(ka)i = λ∗x.ax, by property (i) and the

definition of λ∗. For A = k, we have kλ,cl = λ∗x.λ∗y.x = λ∗x.kx = 1k = k by (a).

For A = s, we have sλ,cl = λ∗xyz.xz(yz) = λ∗xyz.sxyz = λ∗xy.1(sxy) = λ∗xy.sxy =

λ∗x.1(sx) = λ∗x.sx = 1s = s; here, we have used (b), (d), (e), and Lemma 5. q

Theorem 3

Let A be a combinatory algebra. Then A is a lambda algebra if and only if it

absolutely satisfies the nine properties of Lemma 2.

Proof

The left-to-right implication is essentially Lemma 2; note that, since the equations

hold in all lambda algebras, they therefore hold absolutely. For the converse, if A

absolutely satisfies the nine properties, then the proofs of Corollary 1, Lemmas 4

and 5 and Proposition 5 apply to A. To show that A is a lambda algebra, assume

Aλ =β Bλ. By Proposition 5, A |=abs Aλ = Bλ, hence, by definition, A |=abs Aλ,cl =

Bλ,cl . By Lemma 6, A |=abs A = B. q

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

The lambda calculus is algebraic 561

On their face, the axioms of Lemma 2 appear to be more succinct and more elegant

than the Curry axioms of Proposition 3. However, note that our axioms contain free

variables, and we require the axioms to hold absolutely. One can eliminate the free

variables by applying the derived lambda abstractor to each axiom, but this blows

up their size enormously. Thus, we do not beat Curry at his own game, which is to

find the most succinct set of closed axioms for lambda algebras.

It is worth remarking that the axioms presented in Lemma 2 are not independent;

notably, (c) follows from (h), because 1(ka) = s(ki)(ka) = k(ia) = ka. Still, we

included (c) in the list for aesthetic reasons. The author does not know whether the

remaining axioms are independent.

2.5 Lambda theories and lambda algebras form equivalent categories

In this section, we define the category of lambda theories, and we show that it is

equivalent to the category of lambda algebras.

Definition

The category LT of lambda theories is defined as follows: An object is a pair

〈C,T〉, where C is a set of constants andT a lambda theory in the language Λ0
C . A

translation from C to C ′ is a function ϕ : C → Λ0
C ′ . Any such ϕ extends canonically

to a function ϕ̃ : Λ0
C → Λ0

C ′ , defined by ϕ̃M(c1, . . . , cn) = M(ϕc1, . . . , ϕcn), where

c1, . . . , cn are the constants that appear in M. A morphism from 〈C,T〉 to 〈C ′,T′〉 is

named by a translation from C to C ′ such thatT `M = N impliesT′ ` ϕ̃M = ϕ̃N

for all M,N ∈ Λ0
C . ϕ and ψ name the same morphism if T′ ` ϕ̃M = ψ̃M for all

M ∈ Λ0
C . Composition is defined by ϕ ◦ ψ := ϕ̃ ◦ ψ.

Theorem 4

The category LT of lambda theories is equivalent to the category LA of lambda

algebras.

Proof

We define a pair of functors F : LT → LA and G : LA → LT. F maps a lambda

theory 〈C,T〉 to its closed term algebra Λ0
C/T, which is always a lambda algebra. F

maps a morphism ϕ : 〈C,T〉 → 〈C ′,T′〉 to the homomorphism f : Λ0
C/T→ Λ0

C ′/T′
induced by ϕ̃ : Λ0

C → Λ0
C ′ . G maps a lambda algebra A to 〈A,Th(A)〉; note that

Th(A) is a lambda theory by Proposition 5. G maps a homomorphism f : A→ B to

the translation ϕ : A→ Λ0
B with ϕa = fa.

Next, we describe a natural isomorphism η : idLA → F ◦ G. For every lambda

algebra A, define ηA : A → F ◦ G(A) = Λ0
A/Th(A) by ηA(a) = a. This is clearly a

homomorphism, and it is natural in A. To see that it is an isomorphism, notice that

for every M ∈ Λ0
A there is a unique a ∈ A with Th(A) `M = a, namely, a = [[M]].

To show the desired equivalence of categories, it now suffices to show that F is

full and faithful. F is one-to-one on hom-sets by definition of morphisms in LT. F

is also full: if f : Λ0
C/T → Λ0

C ′/T′ is any homomorphism, then f maps a closed

lambda term M(c1, . . . , cn) to M(fc1, . . . , fcn), where c1, . . . , cn are the constants that

appear in M. This is because M is equivalent to an applicative term made up from

c1, . . . , cn and the combinators k and s, which are preserved by f. It follows that

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

562 P. Selinger

f = Fϕ, where ϕ : C → Λ0
C ′ is defined by choosing a representative ϕ(c) of f(c), for

every c ∈ C . q

2.6 Lambda models

The notion of lambda model arises, as in Barendregt (1984), if one wishes to prove

Proposition 5 with respect to the equations that hold locally. To do this, one needs

the ‘local’ equivalent of Lemma 5:

A |=loc A = B ⇒ A |=loc λ
∗x.A = λ∗x.B.

This property is called weak extensionality. As we have remarked in section 1.5,

it does not hold in general. Hence one defines a lambda model to be a weakly

extensional lambda algebra.

From our point of view, the lambda models are those lambda algebras which are

intrinsically local: in a lambda model, an equation holds absolutely if and only if it

holds locally. Or in other words: in a lambda model, every polynomial is determined

by its behavior as a function. This property might also be called ‘well-pointedness’,

by analogy with category-theoretic language (see section 4). It characterizes the class

of lambda models, as shown in the following proposition. The equivalence of 1. and

2. is due to Meyer and Scott.

Proposition 6

The following are equivalent for a lambda algebra A:

1. A is weakly extensional.

2. A satisfies the so-called Meyer-Scott axiom: for all a, b ∈ A,

∀x ∈ A.ax = bx

1a = 1b
, where 1 = S(KI).

3. A is ‘well-pointed’, i.e. every equation that holds locally in A already holds

absolutely.

Proof

1.⇒ 3. Let A be weakly extensional and A |=loc A = B. Let x̄ be the list of free

variables of A and B. By weak extensionality, A |=loc λ
∗x̄.A = λ∗x̄.B. This is a closed

equation, hence A |=abs λ
∗x̄.A = λ∗x̄.B, and finally A |=abs A = B by Lemma 5.

3.⇒ 2. Suppose for all x ∈ A, ax = bx. Then A |=abs ax = bx by 3., i.e., ax = bx ∈
A[x]. Hence 1a = 1b by Corollary 1.

2.⇒ 1. To show weak extensionality, suppose A |=loc A = B. Then A |=loc (λ∗x.A)x =

(λ∗x.B)x, hence by 2., A |=loc 1(λ∗x.A) = 1(λ∗x.B), hence by Lemma 4, A |=loc

λ∗x.A = λ∗x.B. q

Lambda models are less natural than lambda algebras, because they do not form

an algebraic variety. Traditionally, they were used for getting by with the local

interpretation in proving soundness and completeness theorems (e.g. see Barendregt,

1984, Theorem 5.2.18). In light of Theorem 2, it is more natural to work with the

absolute interpretation. Thus, lambda models are not really needed for interpreting

the lambda calculus; they are only interesting as ‘well-pointed’ lambda algebras.

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

The lambda calculus is algebraic 563

3 The lambda-βη calculus

Definition

The lambda-βη calculus is the lambda calculus with the additional axiom

(η) λx.Mx = M, where x 6∈ FV(M).

We write M =βη N if M = N follows from the axioms in Table 1 and (η). If a

lambda theory T is closed under (η) then it is called a lambda-βη theory.

3.1 Curry algebras

Definition

A Curry algebra is a lambda algebra with 1 = I (Lambek, 1980).

Note that Curry algebras form an equational variety.

Proposition 7 A lambda algebra A is a Curry algebra if and only if Th(A) is a

lambda-βη theory.

Proof

If x 6∈ FV(M), then λx.Mx =β (λxy.xy)M = 1λM. Hence in any Curry algebra,

λx.Mx = 1M = M. Conversely, if Th(A) is a lambda-βη theory, then A |= 1 =

λxy.xy = λx.x = I. q

Thus, Curry algebras are to the lambda-βη calculus what lambda algebras are to

the lambda-β calculus.

3.2 Extensional models

An applicative structure is extensional if for all a, b ∈ A,

∀x ∈ A.ax = bx

a = b
.

Extensional combinatory algebras are Curry algebras, and hence models of the

lambda-βη-calculus. Extensionality is an intuitive property. However, extensional

models do not form an algebraic variety: e.g., the open term algebra of the lambda-

βη calculus is extensional, but the subalgebra of closed terms is not (cf. the Remark

in section 1.5 and Plotkin (1974)). In fact, a Curry algebra is extensional iff it is a

lambda model, since extensionality is equivalent to the Meyer-Scott axiom in this

case.

4 Analogies with cartesian closed categories

Cartesian-closed categories (ccc’s) are to the simply-typed lambda calculus what

lambda algebras are to the untyped lambda calculus. However, the ξ-rule does not

pose any particular problem for interpretations in a ccc. Lambda-abstraction is

always a well-defined operation. Why is it that the troublesome ξ-rule is not an

issue for the ccc interpretation?

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

564 P. Selinger

The reason is that the standard interpretation of indeterminates in a ccc cor-

responds to the absolute, and not the local, interpretation in lambda algebras.

A morphism Un → U in the category-theoretic interpretation corresponds more

closely to an element of A[x1, . . . , xn] than to a function An → A in the algebraic

interpretation.

4.1 Ccc models and simply typed lambda calculus

Consider a simply-typed lambda calculus over a fixed set of basic types. In a

cartesian closed category C, a simply-typed term x : σ �M : τ is interpreted as a

morphism f : A → B, where A and B are the interpretations of the types σ and τ,

respectively. If |A| = (1, A) denotes the set of morphisms h : 1→ A, then f : A→ B

gives rise to a function f̂ : |A| → |B| in a natural way. Using our terminology, we

will say that an equation M = N holds locally if the corresponding morphisms f, g

satisfy f̂ = ĝ, i.e. if for all points h : 1→ A, f ◦ h = g ◦ h. It holds absolutely simply

if f = g.

In the context of cartesian closed categories, the absolute interpretation is the

standard one, whereas the local interpretation is a bit contrived. As in the combina-

tory case, the local interpretation is not sound; again it is the ξ-rule that is violated.

Lambda models are analogous to well-pointed ccc’s, i.e. those ccc’s in which f̂ = ĝ

implies f = g. It is precisely the well-pointed ccc’s in which the local and absolute

interpretations coincide. However, the class of well-pointed ccc’s, just like the class

of lambda models, is not algebraic.

The treatment of indeterminates in cartesian closed categories corresponds very

closely to our treatment of indeterminates in combinatory algebras. An exponential

object BA can indeed be regarded as a kind of polynomial object B[x], where x is

of type A. More precisely, a morphism D → BA can be identified with a morphism

D → B in the category C[x : A] obtained from C by adding an indeterminate arrow

x : 1→ A. For a detailed account of such indeterminate morphisms, see Lambek &

Scott (1986).

4.2 Reflexive ccc models

One way of making precise the relationship between lambda algebras and cartesian

closed categories is by constructing the former from the latter. This idea is not new;

it goes back to Lambek (1980). See also the discussion of C-monoids in Lambek &

Scott (1986).

Let U be a reflexive object in a cartesian closed category, i.e., U is equipped

with morphisms e : UU → U and p : U → UU such that p ◦ e = idUU . An untyped

lambda term M with free variables x1, . . . , xn is interpreted in the standard way as a

morphism Un → U. Define A = (1, U) and a · b = p∗ ◦ 〈a, b〉, where p∗ : U ×U → U

is obtained by uncurrying p.

We say that the object U is locally well-pointed if f 6= g : U → U implies that

f ◦ x 6= g ◦ x for some x : 1→ U.

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

The lambda calculus is algebraic 565

Proposition 8

1. A = (A, ·) is a lambda algebra.

2. A is a lambda model iff U is locally well-pointed.

3. A is a Curry algebra iff e ◦ p = idU .

4. A[x] ∼= (1, UU) ∼= (U,U).

5. A[x1, . . . , xn] ∼= (Un,U).

6. A |=loc M = N iff M,N define the same map (1, U)n → (1, U).

7. A |=abs M = N iff M,N define the same element in (Un,U).

Proof

1. One proves by an easy induction on combinatory terms A that

[[A]]ρ = 1
〈ρx1, . . . , ρxn〉−−−−−−−−−−→ Un

[[Aλ]]x1 ,... ,xn−−−−−−−→ U,

where [[A]]ρ is the interpretation in A, and [[Aλ]]x1 ,... ,xn is the usual categorical interpre-

tation of Aλ. The result then follows by soundness of the categorical interpretation.

2–7. These are straightforward calculations. For 4., use the fact from section 2.1

that the elements of A[x] can be identified with those a ∈ A such that 1a = a. On

the other hand, arrows 1 → UU can be identified with those a : 1 → U such that

e ◦ p ◦ a = a, which is equivalent to 1a = a in A. Moreover, the correspondence

respects the natural lambda algebra structure on (U,U). 5. is similar. q

5 Summary

Algebra is about polynomials and indeterminates as much as it is about signatures

and equations. Thus, when looking for algebraic models of a language with variables,

it seems natural to interpret the variables as indeterminates, rather than as elements.

In this tutorial, we have examined the issues surrounding the interpretation of

free variables in the context of the untyped lambda calculus. We found that the

two interpretations do not coincide. Moreover, the interpretation of variables as

indeterminates is superior in the sense that it validates the ξ-rule without the

need for additional non-algebraic requirements on the model. We conclude that the

lambda calculus is algebraic, in the sense that its canonical class of models is the

class of lambda algebras.

While we have concentrated on models of the untyped lambda calculus, similar

considerations apply to the algebraic modeling of any language with variables and

binders. In particular, the same ideas also apply to typed languages. A well-known

example is the interpretation of the simply-typed lambda calculus in cartesian-closed

categories. In the categorical setting, too, variables are most naturally interpreted

as indeterminates. This phenomenon was first described by Lambek and is now

considered a standard construction in category theory. However, as we have seen,

these ideas are not unique to category theory, or to typed languages, but they apply

to algebraic settings in general.

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

566 P. Selinger

Acknowledgements

I would like to thank the three anonymous referees for their valuable suggestions.

References

Barendregt, H. P. (1984) The Lambda Calculus, its Syntax and Semantics. 2nd edn. North-

Holland.

Freyd, P. J. (1989) Combinators. Proceedings of Categories in Computer Science and Logic,

pp. 63–68. Contemporary Mathematics 92. American Mathematical Society.

Hindley, J. R. and Longo, G. (1980) Lambda calculus models and extensionality. Zeitschrift

für Mathematische Logik und Grundlagen der Mathematik, 26, 289–310.

Koymans, C. P. J. (1982) Models of the lambda calculus. Information & Control, 52, 306–332.

Krivine, J.-L. (1993) Lambda-calculus, Types and Models. Masson.

Lambek, J. (1980) From λ-calculus to cartesian closed categories. In: Seldin, J. P. and Hindley,

J. R. (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism.

Academic Press, pp. 375–402.

Lambek, J. and Scott, P. J. (1986) An Introduction to Higher Order Categorical Logic. Cam-

bridge Studies in Advanced Mathematics 7. Cambridge University Press.

Meyer, A. R. (1982) What is a model of the lambda calculus? Information & Control, 52,

87–122.

Plotkin, G. D. (1974) The λ-calculus is ω-incomplete. J. Symbolic Logic, 39, 313–317.

Seldin, J. P. and Hindley, J. R. (eds). (1980) To H. B. Curry: Essays on Combinatory Logic,

Lambda Calculus and Formalism. Academic Press.

https://doi.org/10.1017/S0956796801004294 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004294

