THE TERM AND STOCHASTIC RANKS OF A MATRIX
A. L. DULMAGE axp N. S. MENDELSOHN

1. Introduction. The term rank p of a matrix is the order of the largest
minor which has a non-zero term in the expansion of its determinant. In a
recent paper (1), the authors made the following conjecture. If S is the sum
of all the entries in a square matrix of non-negative real numbers and if M
is the maximum row or column sum, then the term rank p of the matrix is
greater than or equal to the least integer which is greater than or equal to
S/M. A generalization of this conjecture is proved in § 2.

The term doubly stochastic has been used to describe a matrix of non-
negative entries in which the row and column sums are all equal to one. In
this paper, by a doubly stochastic matrix, the authors mean a matrix of
non-negative entries in which the row and column sums are all equal to the
same real number 7. If an #» X » matrix A is embedded by the addition to
A of r rows and columns in an (z 4+ r) X (#n + 7) matrix B with row and
column sums equal to T, we say that Bisan (r, T) doubly stochastic (abbreviated
as (r, T) d.s.) extension of A. In (1), the authors made use of a d.s. extension
of a matrix A to obtain an estimate of the term rank of 4. In this paper, the
authors describe all such extensions and give a necessary and sufficient con-
dition that a matrix B be a vertex matrix of the convex set of all (r, T) d.s.
extensions of A.

For a square matrix of non-negative entries, the concept of stockastic rank
is introduced. Some results concerning this rank are obtained and the con-
nection between it and term rank is noted.

In the final section, the problem of finding all d.s. extensions of a matrix 4
is formulated as a linear programming problem.

2. A lower bound for term rank. Let I and J be arbitrary sets and
let f(z,4),4 € I,j € J, be a real-valued non-negative function on I X J which
is not identically zero. The concept of term rank can be extended to such a
function f(z, j) as follows. A finite set of pairs (31, j1), (%2, 72), ..., (4, jr) is
disjoint if i, = i, only if p = ¢ and if j, = j, only if p = ¢. A function f(z, )
has term rank p if, and only if, there exists a disjoint set of pairs (71, j1),
(22, j2), - - ., (45, jo) such that f(4,,7,) > 0 for r =1,2,...,p but for any
disjoint set consisting of p + 1 pairs, f(¢,j) = 0 for at least one pair of the
set. If no such maximal disjoint set exists, the term rank is infinite.

Let o be the collection of finite subsets of I and 7 the collection of finite
subsets of J. In this setting, we have the following theorem.
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TureoreMm 1. If f(1, ) satisfies the conditions

@) R, = sup[ > fG, j)] is finite for all 1 € I
Ber jeB

and

(ii) C,= sup[ > f(, j)] is finite for allj € J
Aeo 1€A

then either the term rank p of the function f(1,j) is infinite or

S = sup[ >, 2 fG, ﬁ] and M = sup[R;, C|]
Aco i€eA JeB iel
Ber jeJ

are finite and p is greater than or equal to the least integer which is greater than
or equal to S/M.

Proof. Let K be the graph of which the edges are the pairs (, j) for which
f(,7) > 0. The vertex sets of this (bipartite) graph K are I and J. If p is
finite, the exterior dimension (see (3)) of K is equal to p. If [P, Q] is a minimal
exterior pair for K and if U, V is any pair of finite subsets of I and J, then,
since f(4,7) = 0 for i € P and j € Q, we have

;}Zf(w)—z Zf(w)

eUNP jeV|
+1e;n15 ]%Qf(z’]) + eg'l:P ]ez_f(i’j>
ZUJZV: 1G5 + Z Zf(w)
< Z; R:+ jzg C,

which is finite and independent of U and V.
Now

S=sup > Zf(i,j)<;)Ri+ﬂzg C,

Uer 1eU jeV
Ver

so that S is finite. Further

2 fG, J)]

JeV

R, = sup[

Veo

<sup[ > Z f@, J):I

iU  jeV
Ver

for all 7. Similarly C; < S for all j. Thus,
M = sup[R;, C;] < S sothat M is finite.
iel
jeJ

Now, let ¢ be the unique integer such that ¢t — 1 < S/M t. We must
show p > ¢ If p < ¢ then, since p is integral, we have p < ¢ — 1. If [P, Q] is
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a minimal exterior pair for K and »(P) denotes the number of elements in P
then p = »(P) + »(Q) (3, Theorem 2). It follows that
pM = (v(P) + »(Q))M > EP R, + Z% C;> S
i€ je
Thus S/M < p <t — 1, a contradiction.

If the sets I and J in Theorem 1 are finite sets of orders # and m, p becomes
the term rank of an # X m matrix a,; in which a;; = (3, j), M becomes the
maximum row or column sum and S is the sum of all the entries in the matrix.
If, in addition, # = m, Theorem 1 reduces to the conjecture in (1) referred
to in the Introduction.

3. The stochastic rank of a matrix. Let 4 be an # X n matrix with
non-negative entries a;;. If M is the maximum row or column sum in 4,
then, for every T > M, and for every integer r > n, there exists a matrix B
which is an (», T') d.s. extension of 4. In fact, if

n

R, = Z [127]

j=1
and
Cj= Zl 127
for ¢,j = 1,2,...,n, the matrix B = (b;;) may be defined as follows
bij=ay for i < n, j < n,
bij = Qomt1—j 2npi-1, forn+1<i<2n n+1<j<2n.
bi;, =0 for i <n,m+1<j<2n provided 7 + j &= 2n + 1,
=T — Ry fore+j=2n+1, 1< n,
by =0 for w +1 <1< 2n, j <n provided 7+ j # 2n + 1,
=T —-Cy fore+j=2n+1, j<mn,
by =0 for2n+1<i<n+r,or2n+1<j< n+ r provided 75%5
=T for2n+1<1=j<n+r

The question naturally arises, for whatr <% —land T > Misan (r, T)
d.s. extension of 4 possible? In Theorem 2, we have a complete answer to
this question. Its proof will make use of the following lemma.

LeEMMA 1. Let B be an m X m doubly stochastic matrix with row and column
sums equal to T. Let A be a u X v submatrix of B and let B be partitioned into
submatrices A, A1, A2, Ay as in Figure 1. If S 1s the sum of all the elements
wm A and Sy 1s the sum of all the elements in A,, then

S—So=(wu+v—mT.

Proof. Let S; and S; be the sums of the elements in 4; and Aj; respectively.
We have
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S+Sl=uT
S+Sa T
S+S514+S.+S; mT,

from which the result follows.

THEOREM 2. Let A = (a;y) be an n X n matrix of non-negative real numbers
and let M be the maximum row or column sum and S the sum of all the entries.
If r < n — 1, the necessary and sufficient condition that there exist a matrix B
which is an (v, T) d.s. extension of A is that M < T < S/(n — 7).

Proof. If B is an (r, T') d.s. extension of 4, we apply Lemma 1 to B. We
have S — S; = (n — #)T. Since 0 < .Sy, it follows that
S—=25 < S .
n—r n—7

Clearly, T'=S/(n — r) if, and only if, Se = 0 and 7" = M if and only if
Se =S — (m — r)M. To show the possibility of such extreme d.s. extensions

we construct the appropriate matrices. We first construct a matrix C = (ciy)
which is an (r,S/(n — r)) d.s. extension of A. Let

MKT =

Cij = Qij for 1 < n, j < n,
nfr—Ri fore<n,n+1<j<n+r,

Ciy ="

TR
c”=~——;-———— forn+1<i<ﬂ+f,j<ny
Ciy = fornt+1<i<n+r,n+1<<j<n+r.
We next construct a matrix D = (d;;) which is an (r, M) d.s. extension of

A. Let

di; = ayy fori1 < n,j < n,
d“_M:R1 fori<mn+1<j<n+r,
du=M:Q forn +1<i<n+rj<mn,

w
d,,=§:—ﬂ—€—2@—t—_7) forn+1<i<n+randn+1<j<n+r.

Forany T, M < T < S/(n — r), let p be the unique real number 0 < p <1
defined by pS/(n —7r) + (1 — p)M = T. The matrix B = pC + (1 — p)D
is an (r, T) d.s. extension of A.

We now define stochastic rank. An n X n matrix A with non-negative
entries has stochastic rank ¢ if 4 can be embedded in a d.s. matrix B formed
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from A by the addition of # — ¢ rows and columns and if 4 cannot be em-
bedded in a d.s. matrix B by the addition of fewer than # — ¢ rows and
columns. By Theorem 2, the least » for which 4 can be embedded in an
(m + r) X (n 4+ r)d.s. matrix B is the minimum 7 for which M/S < 1/(n — 7).
This minimum 7 is n — [S/M]. It follows that ¢ = [S/M].

An n X n sub-permutation matrix of rank r is an » X n matrix consisting
of r ones, no two of which are in the same row or column, and #2 — r zeros.
The convex hull of the sub-permutation matrices P;(” of rank r consists of
all matrices A expressible in the form 4 = > \P,(” where > ;A = 1 and
Ax > O for all k. The convex polyhedral cone generated by the sub-permutation
matrices P;™ of rank r consists of all matrices 4 expressible in the form
A = Y uPr” where u; > 0 for all k. In (2), the authors showed that the
necessary and sufficient condition that a matrix 4 of non-negative entries
is in the convex hull of sub-permutation matrices of rank #» — r is that
S=mn—rand M < 1. A simple restatement of this theorem is that the
necessary and sufficient condition that a matrix of non-negative entries is in
the convex polyhedral cone generated by the sub-permutation matrices of
rank # — 7 is that M/S < 1/(n — r). Hence, the maximum rank »n —r
satisfying this inequality is [S/M] and this is equal to the stochastic rank o
of A. Thus, we have the following corollary to Theorem 2.

COROLLARY. The stochastic rank of an n X n matrix A of non-negative entries
15 o if, and only if, A is in the convex polyhedral cone of the n X m sub-permutation
matrices of rank o but is not in the convex polyhedral cone of the n X n sub-
permutation matrices of rank o 4+ 1.

4. Vertices of a set of doubly stochastic extensions. If we consider
each (r, T) d.s. extension of a matrix 4 as a point in a space of dimension
(n 4+ )2, it is apparent the set « of all such matrices is convex. An extreme
or vertex matrix for the convex set o is an (r, T) d.s. extension of 4 which
is not expressible in the form pC + (1 — $)D in which C and D belong to
@, C¥Dand 0 < p < 1.

We may define the bipartite graph K, of an # X m matrix 4 of non-
negative entries to be the graph in which the vertex sets are the set of indices
of the n rows and m columns and the edges are the places of the matrix in
which the entries are positive. A graph is disjoint if no two of its edges have
a vertex in common. A graph K, is a subgraph of K, if every edge of K, is
an edge of K,.

A cycle in a bipartite graph K is a finite subgraph K! with the following
properties. Let I and J be the vertex sets. If (¢4, j1) is any edge of K! then
there exists exactly one vertex 42 € I, 45 # 41, such that (is, j1) is an edge
of K!, and there exists exactly one vertex j» € J, js # j1, such that (4, js)
is an edge of K1, and there exists exactly one vertex i3 € I, i3 3 1., such that
(23, j2) is an edge of K!, etc. If after 2k — 1 such steps, & > 2, we find that
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(41, 71), (32, 71), (42, 42)y« -+, (2o Ji), (21, Jx) are distinct and are exactly the
edges of K, then K!is a cycle. It follows that for a cycle K! in the bipartite
graph of a matrix, there exists no row or column which contains exactly one
edge of the cycle.
In (1) the core of an R and C marking of an incidence matrix consists of
the union of a number of cycles no two of which have an edge in common.
In Theorem 3 we require the following lemma.

LEMMA 2. For a bipartite graph K, a necessary and sufficient condition that
there exist a subgraph of K which is a cycle is that there exist o finite subgraph
of K in which no vertex of either vertex set is edge connected to exactly one vertex
of the other vertex set.

Proof. The necessity is immediate.

To establish the sufficiency, we show that any finite subgraph K! of K in
which no vertex of either vertex set is edge connected to exactly one vertex
of the other, contains a subgraph which is a cycle of K. Let the vertex sets
of K be I and J. If (21,71) is an edge of K', 41 € I and j; € J, there exists
13 # 11, such that (4s, j1) is an edge of K!. Similarly, there exists j» # j; such
that (4s, j2) is an edge of K!. Continuing this process, since K! is a finite
graph, it follows that in the sequence (1, j1), (22, j1), (42, j2, ) ..., there must
exist a first edge E, in which either the ¢ is identical with the 4 of a previous
edge or the j is identical with the j of some previous edge. In either case, let
this previous edge be Eo. The sequence of edges beginning with £, and ending
with E; is a cycle.

——r—
u A A,
B= >m
A, A,

FIGURE 1

Now, consider any. (r, T) d.s. extension B of a matrix 4 of non-negative
elements and let B be partitioned into submatrices 4, 41, A5, and 43 as in
Figure 1. Let

KA]v KA'zy KA;;
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be the bipartite graphs of 4, 4,, and 4; and let Lp be the union of
KAU KAzy KAay

so that K is the union of K, and Lg. We are now in a position to state the
main theorem of this section.

THEOREM 3. Let o be the convex set of all (r, T') d.s. extensions of a matrix A.
A necessary and sufficient condition that a matrix B € o be a vertex matrix of
the convex set o 1s that no subgraph of Ly is a cycle.

Proof. 1f a subgraph Lz of Ly is a cycle, let the edges of the cycle be
(il,jl), (inj1>1 (i2rj2), ceey (ikvjk)r (ilrjk)-

Let ¢ = % min b,, taken over all edges (¢, 7) of Lp!. Now, if C = (¢;)) is
defined by

cij = by if (4,7) is not an edge of Lg!,
cij=biy+ e if (4,7) is (41, 71), (32, j2)y - . ., Or (da, Ji),
Cij=biy — ¢ if (4,7) is (42, 71), (43, 7o), . . ., (31, Jw),
and if D = (d;;) is defined by
diy = by if (,7) is not an edge of Lp!
=by,; — ¢ , if (4,7) is (41, 1), (42, j2), - . ., Or (4, Ji)
=by+te if (2,7) is (i, 1), (43, 42), . . ., (41, i),

clearly C and D belong to a. Since B = $C + 1D, B is not a vertex matrix
of the set a.

We now show that if B and C are (r, T) d.s. extensions of 4 such that
B Cand K = K, then Lg (= L¢) has a subgraph Lg! which is a cycle.
Indeed, let Lg* be the subgraph consisting of the edges (7, j) at which 0 < ,;,
0 < ¢4y and ¢y # by Since b;; = ¢4y for all (3,7) in K4, Lg* is a subgraph
of Ly and since B # C, Lp* has at least one edge. Since the matrices B and
C are doubly stochastic with row and column sums equal to T, they cannot
differ at exactly one place in a row or column. By Lemma 2, Ly (in fact
Lg*) contains a subgraph L' which is a cycle.

Next, suppose that B € a is not a vertex, so that B is expressible in the
form B = pC + (1 — p)D where 0 < p <1, C# D and C and D belong
to a. Now L and L are subgraphs of Lg, but we cannotsay Ly = Lp = Ly,
for we might have ¢;; =0, b;; # 0, and d;; # 0. However, if ¢ p, 0 < ¢ <1,
then E = ¢C + (1 — ¢)D belongs to @, B # E and Kz = Kz Hence Ly

contains a subgraph Lpz' which is a cycle. This completes the proof of
Theorem 3.

COROLLARY. Let a be the convex set of all (r, T') d.s. extensions of a matrix A.
A necessary and sufficient condition that a matrix B € a be a vertex matrix of the
convex set , is that there exist no matrix C € a such that B % Cand Kz = K.
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LemMma 3. If P is an r X r mairix of non-negative elements with at least two
non-zero elements in every row then the bipartite graph K p contains a subgraph
K p! which is a cycle.

Proof. Delete from P all the columns containing no non-zero elements and
let the deleted » X s matrix (s < 7) be Q. If there are at least two non-zero
elements in every column of Q then the required cycle exists by Lemma 2. If
a column contains exactly one non-zero element ¢,;, delete the ith row and
jth column of Q and denote the deleted matrix by Q.. Continue this process.
If we find Q, such that every column of Q, contains 2 non-zero elements, the
cycle exists by Lemma 2. If no such Q; exists for¢t =1,2,...,s — 3, then,
Qs—2isan (r — s + 2) X 2 matrix with two columns and with two non-zero
elements in every row. Since r — s+ 2 > 2 the graph of Q, . contains a

cycle.
Let B be an (r, T") d.s. extension of 4. Let the rows and columns of B be
rearranged as in Figure 1. If in the sth row of B (+ = 1,2, ..., n) there is at

most one j > #n such that the element &;; > 0 then the 7th row of 4 is simply
extended. Similarly, if in the jth column of B there is at most one 7 > 7 such
that &;; > 0, then the jth column of 4 is simply extended.

THEOREM 4. If B s a vertex of the convex set a of all (r, T) d.s. extensions of
A, then at least n — r + 1 of the rows and at least n — r + 1 of the columns
of A are simply extended.

Proof. Suppose that r rows of B are not simply extended. In each of these
rows we have at least two elements

by >0 and by >0, §1> m, G2 > m, g1 # o

Thus the # X r matrix 4; (see Figure 1) contains an 7 X 7 submatrix 4; in
every row of which there are two non-zero elements.
Hence, by Lemma 3, the graph of

K,

contains a subgraph which is a cycle and, by Theorem 3, B is not a vertex of a.
The proof when 7 columns of A are not simply extended is similar.

5. The connection between term rank and stochastic rank. Since p
is greater than or equal to p the least integer which is greater than or equal
to S/M and since ¢ = [S/M], we have the following result. If S/M is an
integer, p > ¢, and if S/M is not an integer, p > o + 1.

For an # X n doubly stochastic matrix, p = ¢ = 7, and for a sub-permu-
tation matrix of rank 7, p = ¢ = r. However, there are #n X # matrices for
which p — ¢ =#n — 1. In fact, the matrix 4 = (a;;) in which ay; = 7,
Qg = Q33 = ... =0y, =1, a;; =0 for 75 j is such a matrix. We have
S/M =2 —1/n. Thus ¢ =1 and p = n.
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For a matrix of zeros and ones, Ryser (4;5) has considered the transformation
which replaces a minor

G 9w G )

The effect of this transformation is that the term rank varies between limits
which Ryser finds. It is interesting to note that the stochastic rank of a
matrix of zeros and ones is invariant under Ryser’s transformation.

If M <S/(n —r), then, since p > ¢ > n — r there exist integers ¢ such
that p > ¢ > n — r. We have the following theorem.

THEOREM 5. Let A be an n X n malrix of non-negative elements. If
M<S/(n—r)and M < T < S/(n —r) and if K 4" is any disjoint subgraph
of K4 consisting of t edges (p >t > n — r) then there exisis an (r, T) d.s.
extension B of A with the property that the graph Kp contains a disjoint
subgraph Kg' consisting of n + v edges such that the edges common to Kpg'
and K 4 are exactly those of K 4.

Proof. If we select any p such that 0 < p < 1, then since M < S/(n — ),
the matrix B = pC + (1 — p)D of Theorem 2 is an (r, T) d.s. extension of
A in which every element of 4;, 4., and 4; (Figure 1) is positive. Thus all
the places of 44, 44, and 4; are edges of K. Rearrange the rows and columns
of B so that K ! consists of the places (1, 1) (2,2) (3,3) ... (¢ ¢). Now con-
sider the disjoint graph L which has as its edges the places (7, j) of B defined
by i+j=n-+¢t+7r+ 1. Since t >n —r, we have ¢+ j > 2n + 1 and
hence every edge in L is a place in 4y, 4,, and A3 and L is a subgraph of K.
The number of edges in L is n + r — ¢. For an edge (7,7) of L we cannot
have 7 < ¢, for this would imply j > # 4+ r + 1 and similarly we cannot
have j < t. Thus the edges of L and K 4! have no vertices in common. Clearly,
the graph Kjp' defined as the union of L and K,! is the required disjoint
subgraph of Kp.

Let K be a bipartite graph whose edges are a set of places in an 7 X n
array and let A be a matrix formed by putting positive entries in the places
of K and zeros elsewhere. For a given graph K, the term rank p of all such
matrices 4 is the same and is equal to the exterior dimension (3) of the
graph. Thus, term rank is really a graphical concept. On the other hand, for
a given graph K, the stochastic rank ¢ of such matrices 4 will vary between
1 and an attainable maximum which we denote by o¢x. We now show that
ox < p < og + 1. The inequality on the left is a consequence of Theorems
1 and 2. To establish the inequality on the right, consider the matrix 4 formed
by placing 1 in each of the p places of a maximal disjoint subgraph of K and
e in the other places of K. If a is the maximum number of places of K in any
row or column of the # X » array and if 4 is the number of places in K, then

S _p+ (b= p

M 1+ (a— 1)’
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If ¢ = 1, then b = pand ox = p. In other cases, e can be chosen small enough
that ¢ = [S/M] > p— 1. Hence, cx >0 >p—1 or p<Lox+1. The
inequality ox < p < ox + 1 is best possible in the sense that there exist
graphs K for which ox = p and others for which p = ¢x + 1. The graph K
consisting of the places on a main diagonal in an # X # array is a graph in
which ox = p. The graph K consisting of 3 of the 4 places in a 2 X 2 array
is such that p = 2. But any matrix 4 with non-zero elements in the places
of K and a zero in the fourth place of the array lies in the convex polyhedral
cone of sub-permutation matrices of rank 1 and does not lie in the convex
polyhedral cone of sub-permutation matrices of rank 2. Hence ox = 1. Con-
sider a graph K for which the maximum o is attained in a matrix 4 in which
S/m is non integral. Wehave p < ox + land p > ox + 1sothatp = ox + 1.
The result just proved may be reformulated as the following theorem.

TuEOREM 6. Let K be a bipartite graph whose edges are the places in ann X n
array. Let o be the set of all matrices A with positive eniries in the places of K
and zeros elsewhere. Let o be the maximum stochastic rank attainable by a matrix
of the set a. Then every matrix A of a has the same term rank p. Furthermore,
if S4 and M4 represent the entry sum and maximal row or column sum of A

respectively then
Cw <_Si_)
PSRN

Also if this supremum is aittained by some matrix A, then p = ok, otherwise
p=og+ 1.

6. Linear programming formulation. Some of the theorems con-
cerning (r, T') d.s. extensions of an # X z matrix 4 may be reformulated as
problems in the language of linear programming. In these reformulations
the restrictions on 4 to non-negative entries may be relaxed somewhat. The
only requirement is that A4 satisfy the condition S » (r — )M > 0. Two
such formulations follow.

PrOBLEM 1. Let 4 be an n X n matrix having S > (n — r)M > 0, and let

T be any number. Find a set of numbers x;; (4 =1,2,...,n+r;j=1,2,...,

n + 7; at least one of 1 and j is greater than n), subject to the following conditions.

1) xi; > 0 for all ¢, j.
n ntr

(2) Zaij+ZXij=T fori=1,2,...,n.
j=1 j=n+1
n+r

3) ZX11=T fori=n+1,n+2,...,n+r.
=1
n ntr

(4) 2 ay+ 2 xuy=T forj=1,2,...,n.
=1 i=n+1
ntr

(5) > xuy=T forj=n-+1,n+2...,n+r
i=1
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Theorem 2 states that the inequalities have solutions if and only if
M <L T < S/(n—r) and exhibits some of these solutions. If now each set
of values of x; satisfying (1), (2), ..., (5) is considered as a point in a space
of (n 4+ r)? — n? dimensions, the set of all such points is convex and Theorem 3
gives a graphical characterization of the vertices of this set.

PROBLEM 2. Let A be an n X n matrix having S > (n — r)M > 0. Find a

set of numbers xi; 0=1,2,...,n4+r; j=1,2,...,n+r; at least one

of 1 and j is greater than n), subject to the following conditions:

(1) xi; >0 for all 4, j.
n nt+r n+r

) Z au+Z Xij = Z Xntr, fort=1,2,...,n.
=1 J=n+1 =1
n+r n+r

3) 21 xu=ZI Xn+r, j forc=n+1,n+2,...,n4+7r— 1
7= =
n n+r ntr

(4) Zl a; + Z_qu = 2—1 Xintr forj=1,2,...,n.
n+r n+r

(5) 2 X = 2 Xewtr forj=n+1,n+2...,n+r—1

The sum

ntr

Z Xintr
=1

is to be maximized or minimized.

In this formulation our theories state that feasible solutions always exist
for both the maximum and minimum problems. They also exhibit solutions at
which the maximum and minimum are attained and state that the maximum
value is S/(n — r) and the minimum value is M. Our graphical theorems
characterize the sets of all maximal and minimal solutions.
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