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A number of interesting Diophantine equations are of the

form f{(n) =£(a) f(b). Thus the case {(a) = aa has been studied
by C. Ko [2] and W.H. Mills [3] and a class of non-trivial
solutions has been found, though whether these give all the
solutions is still unsettled. The case f{n) =n! has been
mentioned by W. Sierpinski. Here the situation is that besides
the trivial solutions m! =m! 1! and (m'-1)! m! =(m!)! and
the special solution 10! =7! 6! no other solutions are known,
nor are they known not to exist. In the present note we show
that the equation in the title has no solutions. A sketch of a
somewhat different proof that this equation has at most a finite
number of solutions was recently communicated to the author by
P. Erdos. The details and completion of that proof have been
supplied by Miss M. Faulkner in part of a Master! s thesis at
the University of Alberta. The present proof is designed to
avoid lemmas based on non-elementary methods and also reduces
the amount of numerical work involved.

Our main tool will be the following

LEMMA 1. The product of r consecutive numbers, each
greater than r , contains a prime factor 2%1‘ . This is a
slight refinement of a theorem of Sylvester and Schur in which
the —1—31' is replaced by r . The simplest proof of the
Sylvester-Schur theorem is due to P. Erdos [1] and rather
obvious minor variations in his proof yield our lemma. We
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hope, in a subsequent note in this series, to prove lemma 1

11 7
with the — r replaced by T By virtue of the example

10
7 . .
6.7.8.9.10 the constant 5 would be best possible, if we are
not to exclude small r. However, one must modify Erdgs’

7
proof considerably to obtain the 3 result.

2a

2b
1 > .
a)(b) with a_b We

2n
We now suppose that ( n) =(

first note that 2a > n , for otherwise the primes between n
and 2n would divide the left hand side but not the right hand
side of our equation. Now let n =a+r and let

(1 T = (2;‘) ;%2 - (2art)(zate) ... (2a+2.2r)
((a+1)(a+2) ... (a+<x))

Observe that by our lemma, T must contain, in its numerator,
r

22
a prime factor p >1—0- r. If T 1is to be an integer, this prime
r
p cannot divide the denominator of T , for if p/(a+i) then
r

p/(2a+2i) and (since p > 2r) no other element of the numerator.
Hence p would divide the denominator more often than the
numerator. Clearly Tr < 4% , but now we know that

22 . .. 2b
2b >—i~6 r , for otherwise p could not divide (b ). We will

show that for r > 15 this implies T > 4 .
r

2b 4b
By induction over b it is easy to show that ( b ) > N

and since

EX
b>£r we have T = (Zb) > 4b >410
10 ave . T Y% T Vb 11

2810 "

For r > 15 this last inequality contradicts T < 4" .
r
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For r <15 the result can be established by a variety of
special considerations. We might note that if we had the lemma

7 11
with B replacing 10 the above argument would give the

theorem directly for all r > 1.

2 2
It might be assumed from the above that ( By ( a) is
n a
never an integer. This is false. In fact
2
22 2n
is divisible by ( ) for every n .
2n n
¢ )-1
n
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