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Abstract

Let (5C, G, U) be a continuous representation of the Lie group G by bounded operators g H> U(g)
on the Banach space 2C and let (3C, g, dU) denote the representation of the Lie algebra g obtained by
differentiation. If a\,..., a^ is a Lie algebra basis of g and A, = dU(at) then we examine elliptic
regularity properties of the subelliptic operators

d' d'

H = - J2 CjjAjAj + £]c,A, + c0/

where (c,j) is a real-valued strictly positive-definite matrix and Co, C\, ..., cj> € C. We first introduce
a family of Lipschitz subspaces % Y, y > 0, of SC, which interpolate between the C"-subspaces of the
representation and for which the parameter y is a continuous measure of differentiability. Secondly, we
give a variety of characterizations of the spaces in terms of the semigroup generated by the closure H of
H and the group representation. Thirdly, for sufficiently large values of Re c0 the fractional powers of the
closure of H are defined, and we prove that D(Hr) C 3CY> for y' < 2y/r where r is the rank of the basis.
Further we establish that 2y/r is the optimal regularity value and it is attained for unitary representations
or for the representations obtained by restricting U to SCy. Many other regularity properties are obtained.

1991 Mathematics subject classification (Amer. Math. Soc): 43A65,41A05, 22E45.

1. Introduction

The elliptic regularity theorem states that the domain of a closed second-order elliptic

operator consists of functions which are once differentiable with Holder continuous

derivatives. In many cases the domain is the twice differentiable functions but this

is not true in general. For example, if A is the usual Laplacian on Lp(U.d; dx),

with d > 2, then the domain £>(A) consists of the twice differentiable functions Lp;2

whenever p e (I, oo) but this is not the case if p = 1 or p = oo. Moreover, if
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180 A. F. M. ter Elst and Derek W. Robinson [2]

p € (1, oo) then D(An/2) = Lp.n, the Az-times differentiable functions, and the graph
norm on D(A"/2) is equivalent to the C-norm on Lp-n, for each n e N. Thus the
differential structure on Lp is determined by the Laplacian whenever p € (1, oo).
These results are closely related to singular integration theory [24] and to fundamental
properties of elliptic differential operators and harmonic analysis.

It is natural to examine analogous properties for continuous representations of a
Lie group as a foundation for the development of the techniques of partial differential
equations and harmonic analysis in the general setting. Nelson [15] obtained the
first results in this direction for unitary representations. By differentiation of the
unitary representation one obtains a representation of the corresponding Lie algebra
by skew-self adjoint operators. Then if Alt..., Ad are the infinitesimal generators
corresponding to a vector space basis of the Lie algebra and A = - £f=1 A] the
corresponding Laplacian Nelson demonstrated that for each positive even integer n
the domain D(A"/2) coincides with the common domain of all monomials of order n
in the A,-, that is, the domain of A"/2 is exactly the subspace spanned by the elements
of the representation space which are n -times differentiable. Moreover, the graph
norm on D(A"/2) is equivalent to the C-norm. A straightforward proof of this result
and extensions to more general strongly elliptic operators without the restriction to
even n is described in [22, Chapter I, Section 6]. A similar situation occurs for
strongly elliptic operators associated with the left, or right, regular representation on
a Lie group on the Lp-spaces defined with respect to the left, or right, invariant Haar
measure ([5, 4]). This also happens for particular classes of representations such
as Lipschitz representations ([20, 22]), or principal series representations [7]. Thus
these representations, together with the unitary representations, have greater regularity
properties than could be expected in general.

Our purpose is to continue this analysis of regularity properties of representations
of a Lie group. But in the framework of non-commutative groups a new set of
problems occur involving sublaplacians and more general subelliptic operators. Let
A i , . . . , Ad' denote the representatives of an algebraic basis of the Lie algebra obtained
by differentiation of a continuous Banach space representation of the Lie group. Then
the corresponding sublaplacian is defined by As = — JZf=1 A

2 and the subelliptic
regularity problem consists of comparing D(A"/2) with the common domain of all
monomials of order n in the A, with 1 < / < a", that is, the subspace spanned by the
elements of the representation space which are n -times differentiable in the directions
of the algebraic basis. Our aim is to prove that most of the regularity results obtained
previously for the Laplacian and the vector space basis extend to the sublaplacian and
the algebraic basis. In particular all the results for the unitary representations have
natural extensions. Nevertheless there are significant differences between the elliptic
and the subelliptic theories.

Nelson's results, as derived in [22], are based on some simple features of unitary
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representations and the observation that (ad A) (A,f) is a second-order polynomial in the
Aj. If one tries to extend the same arguments to the subelliptic setting then problems
occur because the corresponding second-order polynomial (adAj)(A,-) involves As

with j > d', that is, the commutation relations introduce derivatives which are not in
the directions of the algebraic basis. Therefore more sophisticated techniques appear
essential to handle the subelliptic regularity problem.

Rothschild and Stein [23] derived regularity results for subelliptic operators acting
on function spaces over a manifold M. In particular, if M is a Lie group then their
results apply to the Lp-spaces over the group, the corresponding Sobolev spaces and
to various related interpolation spaces. These results were derived by combination
of two techniques. The first involves embedding the group into a nilpotent group of
higher dimension. The second consists of adapting the parametrix method to make
estimates on the resolvents of the subelliptic operators. The disadvantage of the
Rothschild-Stein results is that they are restricted to representations of the group by
translations on function spaces and they are local in nature. The only global regularity
results for subelliptic operators seem to be restricted to specific groups such as the
Heisenberg group (see, for example, [1, Chapter I]).

Our aim is to derive global regularity results for arbitrary Banach space represent-
ations and to obtain the subelliptic analogues of Nelson's results for unitary repres-
entations and Lipschitz representations. These results are derived by quite different
methods to those of Rothschild and Stein. We have no recourse to parametrix estim-
ates and we do not use nilpotency arguments. The key ingredients of our proofs are
interpolation theory and bounds on the left derivatives of the semigroup kernel asso-
ciated with the sublaplacian As. The appropriate bounds were derived for stratified
groups by Jerison and Sanchez-Calle [10] and the required result for general groups
follows from Varopoulos' version of the Harnack inequality ([26, 27]).

We adopt the notation of [22] throughout. In particular (3E ,G,U) denotes a
strongly, or weakly*, continuous representation of the Lie group G by bounded oper-
ators gi-> U(g) on the Banach space X'. Then if a, is an element of the Lie algebra
Q of G we define its representative dUia,) to be the infinitesimal generator of the one-
parameter group t i->- £/(exp(fa,)) and we set At = dU(at). Our analysis involves
subelliptic operators of second-order constructed from an algebraic basis au ..., ad>
of g, that is, a family which generates g algebraically, as in [22, Chapter IV]. Typically
the subelliptic operators have the form

ij=\

where C = (c,7) is a real-valued strictly positive-definite matrix and co,Ci e C.
J0rgensen [11] and Robinson [22] have demonstrated that if co,ct € K then the
closure of each such operator generates a continuous holomorphic semigroup S. But
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the first-order terms are a small perturbation, as a corollary of the estimates of [22,
Corollary IV.4.19], and hence the closure of the operator with complex first-order
terms is the generator of a holomorphic semigroup by the perturbation theory of
holomorphic semigroups. As a consequence of our discussion of regularity properties
we will derive a variety of properties of the action of these semigroups.

If ay,..., adf is an algebraic basis of g let 0! denotes its linear span and gn the linear
span of au ..., ad< together with all commutators (ada , , ) . . . (ad a1/t_ ,)(#,,) of the a,
with k e { 2 , . . . , « } . Then g, c fl2 C . . . C Q and the rank ofau...,ad' is defined
to be the smallest integer r such that gr = g, for example, the rank of a vector space
basis is equal to one. Note that the rank r' as defined in [22] satisfies r' = r — 1. Note
also that if 2£'n, n € N, denotes the C-subspace of S£ relative to ax,..., ad> and S£n

the subspace relative to the full vector space basis au ... ,ad>,.. .,ad then

by the definition of r. Moreover, if 3E'n, and 5C'„, are equipped with the C"-norms
|| • ||^, and || • \\n, respectively, as in [22], then the foregoing inclusions are continuous
embeddings.

Our discussion of regularity properties is based on the theory of Lipschitz spaces
which interpolate between the representation space SC and the C-subspaces 3E'n, or
3£n. The structure of these spaces was analyzed for n = 1 and interpolation between
2£ and 3Cx in ([20, 22]) and the general case has been considered by Pesenson
([16, 17, 18]). We demonstrate that the differential structure on the Lipschitz spaces
relative to the algebraic basis a\,.. .,ad> is determined by each of the subelliptic
operators H in the same way that the differential structure on Lp, p e (1, oo) is
determined by the Laplacian. This then allows the deduction of bounds on the
original space X of the form

\\n<C{\\HNx ||

for all x € D(H ) where N is any integer satisfying N > nr/2. The Lp-examples
cited above show that this is the optimal value in general although in special cases
one can have bounds for N = nr/2. We establish that this improvement can indeed
be made for unitary representations.

2. Interpolation spaces

The first key ingredient in our analysis is the family of spaces which interpolate, in
the sense of Peetre, between the C"-subspaces SC'n of the continuous representation
(SE, G, U). In this section we summarize several structural relations satisfied by these
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spaces. Although these results are straightforward to state their derivation requires
a number of alternative equivalent characterizations and considerable roundabout
argument which will be given in the next section. In this respect the Lie group theory
is analogous to the classical theory of interpolation spaces over Kd (see, for example,
[25, Chapters 1 and 2]).

Fix an algebraic basis au ...,ad> of the Lie algebra Q and let 3C'n denote the
corresponding C-subspace of the representation space 2E and || • ||; the C-norm.
Thus X'o = S£', || • ||Q = II • II, and the higher spaces are given inductively by

d'

3C'n = (~){x e D(Ak) : Akx e X'n_x\,

and
11*11;= sup ||Atjc||;_,.

*e{l d'}

Next for /ii, «2 e No, «i < n2 and x G 3£ define the interpolation function /<•]"> "2) :
(0, 00) ->• [0, 00] by setting

K^\t) = infdlJcJi;, +tn^\\xni\\'ni :x=xni +xn2,xni e X'n^ xni G X'ni)

if x e X'ni and K^"-"2)(t) = 00 otherwise. Then for y e (0, n2 - «i) define
|| . ||0..,»2) . x

x _+ [o, 00] by

v"*-(L
l \ UP

dtrx(rYK^ni)(t)

where p e [1, oo) and we adopt the convention oop = oo1/p = 00. Finally the
interpolation space (X'nt, &'n2)y is defined by

It is a Banach space with respect to the norm || • ||^"'"2) and X'ni is a norm dense
subspace (see, for example, [6, §3.2]).

One can also define similar spaces for p = 00 by replacing the norm by

||;c||(«,,«2) = s u p t-YK^"l)(t) (X g X)

re(0,l]

and the principal results of the sequel are also valid in this case but there are some
minor topological distinctions. We will only give complete proofs for values of
p e [1, 00) but will comment on the distinctive features of the p = 00 case. The
p = 00 spaces are of some interest for comparison with the regularity results of
Rothschild and Stein [23] mentioned in the introduction.
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The operators At, i e { 1 , . . . , d'} are defined, by restriction, on the interpolation
spaces and the corresponding C-subspaces are denoted by (Xni, Xn2)y[n and the
C -norms by || • ||^"2>. Explicitly (Xni, Xn2)Y,n is the common domain of all n-th
order monomials Mn in the A\,..., Ad> and

where the supremum is over all monomials of order m < n with the convention
M0 = I.

The first result is one of reduction.

THEOREM2.1. I. Ifk <nandy e (k,n)then(X,X'n)Y = (X'k,X'n)Y_k.
II. Ify e (0, n, A n2) then (X, X'n)Y = (X, X'ni)Y.
III. Ify e (0, n) and k e M then (X, X'n)Y,k = (X, X'n+k)Y+k.
IV. Ify € (0, n) and p e [1, oo) then Xx is dense in (X, X'n)Y.

Statement I indicates that one may restrict attention to the case k = 0. Alternatively,
combination of Statements I and II shows that it suffices to examine y € (0, 1]. For
example, if y e (0, n — k) and y is the smallest integer which is strictly larger than y
and y is the largest integer which is strictly smaller than y, then

Statement III indicates that y is to be interpreted as a fractional derivative.
Statements I, II and III have already been given by Pesenson [17] but without a

complete proof. The arguments we give to establish these identities appear to differ
from the ideas of Pesenson. Our proof of Theorem 2.1 is based upon several alternative
characterizations of the interpolation spaces in terms of the representation U, or
the semigroups S generated by the second-order subelliptic operators, and Lipschitz
conditions governed by the parameter y.

3. Lipschitz spaces

The purpose of this section is threefold. First, we introduce a variety of Lipschitz
spaces associated with the representation of the Lie group. Secondly, we establish
identifications between these spaces and the interpolation spaces introduced in Sec-
tion 2. Thirdly, we use these results to prove the reduction theorem, Theorem 2.1.
Although these proofs appear extremely circuitous the line of argument follows the
classical theory for function spaces over U.d (see [25, Chapters 1 and 2]) and it is
not expected that there should be any direct proofs of the main structural theorems.
Indeed there are considerable additional difficulties introduced in the current context
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which are not encountered in the classical theory. These difficulties arise from the
non-commutative structure of the Lie group, the subellipticity restrictions and the
need to cover weakly* continuous representations.

Let G be a bounded open neighbourhood of the identity e of G and n e N. Then
for each y e (0, n) define \\ • \\"-u : X ^ [0, oo] by

i/p

n(g) (\gr\\(I - £ / ( # , ) ) . . . ( / - U(gn))x\\)p\ ,

where g = (gu ..., gn), \g\ = |gi| ' + . . - + 1^1'and | | ' denotes the canonical modulus
function on G associated with ax,... ,ad< (see [22, Section IV.4c]). Moreover, fxn is
the absolutely continuous measure with respect to the left invariant Haar measure on
G" with density g H» \g\~nD where D' is the local dimension corresponding to the
algebraic basis au ..., ad>. Then the Lipschitz space Xn

y (U) is defined by

•X- y\U ) — \X fc cX- . ll-llly < OO).

It is a Banach space with respect to the norm || • \\"y
iU. Note that as p is fixed throughout

we have suppressed it in the notation. Moreover, since the space is independent of the
choice of 6, up to equivalence of norms, we have also omitted it from the notation.

Next we introduce a uniform version of the Lipschitz spaces. First, for each x e X
and« e No define &>*"' : (0, oo) - • [0, oo) by cof\t) = \\x\\ and

a>(;\t)= sup \\(I-U(gl))...(I-U(gn))x\\

\gj\'<t

for n e N. Secondly, for y € (0, n) define || • | | ^ : 3C -+ [0, oo] by

I I* I I; = (jf*,- c-'-rw)1

Then the space

is a Banach space with respect to the norm || • H"".
Finally, if 5 is a continuous semigroup on SIC we introduce the corresponding

Lipschitz spaces as follows. For n e A f and y e (0, n) define || • ||">s : St - • [0, oo]
by

1'
(jf dtrl(t-y\\(i-s,rx\\)'

Then
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is a Banach space with respect to the norm || • ||"s.
It is useful to note that if p e K and T is the semigroup defined by T, = S,e~pt,

t > 0, then SCn
y'

s = 2C"Y'T and the norms are equivalent. This follows from the
equality

I -T, = (I - St)e-"' + (/ - e-"')I

and the inequalities

(1) ||((/ - S,)/t)kx\\ < s"-k\\((I - S,)/tyx\\ + ce-k\\x\\

for some c > 0, uniform in t e (0, 1], s e (0, 1] and x € £V.

I I"
VP

Furthermore, if S is equibounded, define || • ||">5'°° : X —> [0, oo] by

Then
^ . S . O O _ ^ g £• . ||X||«.S,OO < ^ J

is a Banach space with respect to the norm || • | |"So°. Moreover, ^T"'So0 = 3C"Y
S,

with equivalent norms (see [6, Section 3.4.1]).
If 5 is a holomorphic exponentially decreasing semigroup, there exists another

description of ^""'5oc, due to Peetre. Let H be the generator of S. For y e (0, n)
define || • \\"'H : & - • [0, oo] by

11*11

Then the space

Up
n,H _

: \\x\\n'H < oo}

is a Banach space with respect to the norm || • ||"w.
Finally we note that all the above spaces have p = oo analogues. The Lp-norms

are replaced by the supremum norm.
For every interpolation pair (3^, 2?) and / e (0, 1) let {W, 3T)Y,P-K be the inter-

polation space by the K-method of Peetre (see [6, Definition 3.2.4]). For any operator
T o n i T equip the domain D(T) with the graph norm x i->- ||7\*|| + ||JC||. Note that
D(T) is a Banach space if, and only if, T is a norm closed operator. Moreover, note
that every weakly* closed operator is norm closed.

THEOREM 3.1. Let n > y > 0. Let S be a holomorphic exponentially decreasing
semigroup with generator H. Then

jgrn.S.co = xnH = ( > r > D(H")))y/H,piK.
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and the norms are equivalent. Moreover, if n' e Nandn' > y then Xn
Y's"°° = Xn

y'
s'°°

and the norms are equivalent.
If the semigroup is weakly* continuous let X be the subspace of X on which S

acts strongly continuously and let S be the restriction ofStoX. Then

ay-n,S,oo "2^«.S.°°
•Ay ~ -Ay •

PROOF. First suppose the semigroup is strongly continuous. The first two equalities
are proved in [6, Section 3.5 and Theorem 3.4.2]. The third one follows from [6,
Theorem 3.4.6].

Secondly, suppose the semigroup is weakly* continuous. Let H be the infin-
itesimal generator of the strongly continuous semigroup S. Clearly ||jt||"So° =
ll̂ ljnj.oo for au x e og an(^ similarly for the norms on X"Y'H and X"y' . Moreover,
(X', D(H"))y/n,p.K and {3C', D(H"))Y/niP.K coincide on SC. So it remains to prove
that X**'™, X"Y

H and (X, D(Hn))Y/n,p.,K are subspaces of X.

Let fx e (0,1 A y). We will show that

Xnf c X\H c X.

Using the identity

S,x= / dss-lHSsx
S,x= /

and the Hardy inequality, [6, Lemma 3.4.7], we obtain by induction that

i/p

< ( l - / i ) - I . . . ( n - l - M r 1 ( I dt rl (f-^Wh.

for all x e X. Let M, p > 0 be such that ||S,|| < Me"" for all t > 0. Then
||//"S,|| < M\\HnSx\\e-<>('-l\ So there exists a c > Osuchthat

aoo \ 1/P / /-I \ '/P

^r1(f1-H|//5,x||)p) <c||*|| + ( / dtrl(t"-^\Hnslx\\)p)
) \h )for all J: e X. Hence

ai

^-'(f-iff-Sfjci

rf/r"1 (/—X||//-S,JC||)M <
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for all x e X. So X"y
H c X];".

Now let x e Xl
u
H. Then for all t e (0, 1] one finds

/ '
Jo

ds\\HSsx\\

UP

for some constant c > 0, independent of ? by the Holder inequality, where q e [1, oo]
is such that \/p + \/q = 1. Consequently x e ^ and hence ^ w c X.

Next, the proof of the inclusion

{X, D(H"))YiP,K c STf

in [6, Theorem 3.5.3] works equally well for weakly* continuous semigroups. There-
fore (X, D(Hn))y<p.K c X.

Similarly, the proof of the inclusion

A-1,5,OO f- ia~\,H

in the proof of [6, Theorem 3.5.3] does not use the strong continuity of the semigroup.
It is easy to prove that

for all y' < y. So we may restrict ourselves to the case y < 1 and n > 2. We shall
prove that there exists a / x e (0, 1) such that

Let 5 = 2y/(2n — 1) and ^ = 5/2. By setting £ = tl~s in (1) one obtains bounds

II(/ - St)x|| < r*-1*||(/ - 5r)"x|| + cts\\x\\

uniform in t e (0, 1] and x e X. So

(jf1^/-1 (r"||(/-5,^11)")
UP

a 1 \ UP

This proves the theorem.
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Now the key characterizations of the interpolation spaces are provided by the
following theorem.

THEOREM 3.2. For each n e N and each y e (0,n)

and the norms || • \\f-n), || • \\n
Y

w, \\ • \\n
y
M and || • ||"/2 are equivalent, where S denotes

the continuous holomorphic semigroup generated by the closure of the sublaplacian

d'

REMARK. The sublaplacian seems to play a distinguished role in the character-
ization of the interpolation spaces but this is illusory. The theorem will be used
in Section 5 to deduce that if S denotes the semigroup generated by the second-
order subelliptic operator H described in the introduction then the interpolation space
(&, 3E'n)Y can be identified with the space %~"Yf2-

PROOF. The proof is in four steps. Each step establishes one of the inclusions

and simultaneously establishes continuity of the inclusion. The continuity also follows
easily from the closed graph theorem.

Step 1 (3T, 3C'n)Y c %*f. If x e 3C and x = x0 + xn with x0 e SC and
xn e 9£'n then

for all t € (0, 1]. Since B'r = {g G G : \g\' < r] is compact for each r > 0 there exist
an M > 1 such that \\U(g)\\ < M for all g e B'4. Therefore co^(t) < (1 + M)"||JCO||

for all t 6 (0,1].
Next, following an idea of Pesenson [18], we prove that

(2) cv^(t)<(M + 2)d't sup co^((l

for all / e N, all xx e X\, all t e (0,2] and all e e (0, 1], where M is as above. For
a, € g let A, be the corresponding left invariant vector field on G. So

(3) (Aixlf)(g)= ^-
dt (=0
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for every C°°-function \jr on G. In particular if

where X! e SE\ and / € ^"oo, the space of C°° -elements for the adjoint representation
on the dual, or predual, &', then

(Aif)(h) = (U(h)Aixuf).

Now if cp : [0, 1] -> G is an absolutely continuous path from e to gi with tangential
co-ordinates ^, in the directions At one has

/

id'

dsJ2<Pi(sH(V - U(<p(s)))AiXu f)

But one may choose cp such that

1/2

Jo \ ,=i

Then \<p(s)\' < (1 + e)\g,\' for all s e [0, 1]. Hence

- U(g,))Xl,f)\ < d'(l + e)|ft|'sup | | ( / - U(fp{s))AiXl, f)\ + \(AiXu f)\

Now replacing / by ((/ - U{g\))...(/ — f/(g/_i)))* / and taking the supremum
over / with | | / | | < 1 and \gt\' < t one finds

&/°(0 < d'(\ + e)t sup {aA'' ((1 -

< d'(l + f)(M + 2)? sup a
ie(l rf')

It now follows by iteration of this inequality that

for all r e (0, 1], Consequently

«iB)(0 < (d'(M + 2)y(\\xo\\+tn\\xn\\'n)
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and by taking the infimum over all decompositions x = x0 + xn with xn e 3£'n one
concludes that

for all? e (0, 1]. Therefore

\\x\\n
Y« < (I + (d'(M + 2))n)\\x\\fn)

and {9C', 3f'n)Y is continuously embedded in Xn^m.

Step 2 2Cnf c 3C("\U). The local dimension D' is defined such that there
exists a c > 1 with the property

(4) c~xrD' < \B'r\ <crD'

for all r e (0, 1].
Choosing C = BJ/(2n) it then follows that for x e SC

tr
n(g) {\g\-yUI - U(gl))...(/- U(gn))x\\)p

< f
Iff"

Therefore by splitting the integral into a sum of integrals over the annuli

{g : 2"(;+1) < \g\ < 2-'} n 0"

one has

\ i/p

nig) (\gr\\(I ~ U(gl)) . . . ( / - U{gn))x\\)" )

«<")(2-'))P 2(l+l)nD\c2-<D'y

2 ^ « 2 ) wx (2 ))

(=0

Hence SC1^ is continuously embedded in S£("\U).

Step 3 &{"\U)£ #"y'/2. The semigroup S has a kernel A" with

dgK,(g) = l
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for all t > 0. Therefore, for x e S£

(I - S,fx = I dgl... dgn K,{gx) • • • K,{gn)U - U ( g l ) ) . . . ( / - U(gn))x
Jc

and hence

- styx\\
f
Jc

dgl ...dgn \ K , ( g l ) . . . Kt(gn)\ | | ( / - U(g,)) • • • ( / - U(gn))x\\.

Now we split the multiple integral into two parts. The first which we denote by IY(t)
is the integral over B'r x . . . x B'r for some fixed r e (0, 1] and the second which we
denote by EY(t) is the remainder. Thus EY{t) is less than or equal to the sum of n
terms each of which has n — 1 integrals over G and the n-th integral is over G\B'r.
Noting, however, that one has bounds ||£/(g)|| < Meplsl' for all g e G and suitable
M > 1, p > 0 one finds that

EY{t) < n(2Myr^2\\x\\ ( f dg \K,{g)\e*A I dg \K,(g)\e^'.
\JG / JG\B'r

But it follows from the estimates of [22, Section IV.4], by an argument similar to that
used for the derivation of [22, inequality (IV.4.32)], that one has bounds

(5) [ dg\Kt(g)\eM' Sae01^^
JG

for all t e (0, 1] and all p > 0. Moreover, one has Gaussian bounds

(6) | D ' / 2 * < l ' ' ) 2 /

for all g G G and t e (0, 1] and suitable a,b > 0 by [22, Theorem IV.4.16], and
the discussion, [22, page 331]. Also there exists an M > 1 and co > 0 such that
I B'r | < Mewr for all r > 0. So by splitting the integral into a sum of integrals over the
sets {Nr < \g\' < (N + l)r] one finds

f dg \Kt(g)\eplgl' <

for all m e N and t € (0, 1]. Therefore by choosing m large enough one obtains
estimates
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valid for all f e (0, 1] and each / > 1. Hence

Next we consider the integral Iy(t). The function IY can be expressed in the form
LYfY where fY is the function over G" defined by

fy(g) = \g\~r\\U ~ U(gl))...(/- U(gn))x\\

and for every measurable function / : (B'r)" —»• [0, oo) we define Lyf : (0, 1] —>
[0, oo] by

(LYf)(t) = ry/2 I dg,...dgn\Kt{gl)...Kl(gn)\\gYf{g).

We shall prove that there exists a c > 0 such that

for all measurable / : (B'r)
n -»• [0, oo) and q e {1, oo}. Then one wants to define the

map My : Lq((B'r)"; d/xn) -* L,«0, 1]; dr/r) by

(8) (MYf)(t) = ry/2 I dgl... dgn \Kt(gl)... Kt(gH)\ \g\Yf(g)
J(B'ry

and by (7) we know (8) makes sense if q e {1, oo} and MY is bounded if q e {1, oo}.
Hence by the Riesz-Thorin interpolation theorem, [28, Theorem XII. 1.11], (8) makes
sense if q e [1, oo] and MY is also bounded if q = p. We prove inequality (7) for
q 6 {l.oo}.

Suppose q = 1. Then

f rf/f"1 | (£ . y / ) (0 | < ll/lli sup f dtrx-yl2\Kl(gx)...Kl{gn)\\gY+nD'.
Jo gi gn€G Jo

Now there exists a k e { 1 , . . . ,n) such that \gk\' > \g\/n. Then since K satisfies
Gaussian bounds

\K,(g)\ < arD'/2e-b^')2/l

for all / e (0, 1] and g e G it follows that

f dtrl-y'2\Kl(gl)...Kl(gn)\\g\y+"D' <a"ny+nD' f°° dx
Jo J<,\g\/")2

< a"ny+nD' /
Jo oo.
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Next consider the case q = oo. Then

sup \(LYf){t)\ < Il/Hoo sup t~Yl2 [ dgl...dgn\Kt(gl)...Kl(gn)\\g\r
'€(0,1] (€(0,1] J(B'rY

< H/lUn1^ sup (f dg \K,(g)\) t-y'2 f dg \K,(g)\ (\g\'Y
'€(0,1] \jB'r / JB'r

< ll/llccn'^C^T"1 sup r"2 I dg\K,(g)\(\g\r
(e(o,i] JB;

by inequality (5). But by splitting the integral into a sum of integrals over the sets

{geG:N<\g\'/tl/2<N + l}nB'r

and using the Gaussian bounds on K and the estimates (4) on the volume of the balls
one obtains

dg\K,(g)\(\g\y <ac,
N=0

which is uniformly bounded for t e (0, 1]. So ||Lx/||oo < Cll/lloo for some C > 0
for all positive measurable / .

Step 4 3T"yf2 c (S£, 3C'n\- For each x e SC

(i-d- s,y)x = - V(-i)*(f)sk,x e ar;.
t=i W

Therefore

Consequently

,0).-) <
n / \ / /.I

Now replacing S by the semigroup T where T, = S,e °" one can choose co sufficiently

large that t H-> || T, || decreases exponentially as t —> oo. Hence

Jo

Then since

II^II: <
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one can use the semigroup property to obtain the bounds

> \ I/P
j , — 1 /.(ft—v)/2llT' 11' \P I
Htf it I / J* I I I

a00 / /»OO /»OO \

dt t~l I tin~y)/2 I ds\... I dsn \\(H + coI)nTSl+_+Snx\\/
n\

\ Jt/n Jt/n )aoo / /»oo

d r r 1 1 f < " - ) ' ) / 2 (2 r /n ) ' 1 / d M l . . .
V . / I

I dun\\(H+ coI)nTnu2+...+u2)/nx\\'nu1...utt\ I
v 1 / /

<(2/n)nj d u x . . .

/

CO / /»0

dunU
where u2 = u\ + • • • + u2. The last inequality is by the continuous version of the
Minkowski inequality. At this stage we need a bound for || T,x \\'n.

LEMMA 3.3. There exists a c > 0, depending on n, such that

\\S,xl < ct~"'2\\x\\

for all t e (0, \\andx e 5C.

PROOF. For a, e g let A, be the corresponding left invariant vector field on G
(see (3)). Let K be the kernel of the semigroup S. By Varopoulos' parabolic Harnack
inequality, [27, Theorem V.3.1], there exist a, r > 0 such that for all h e G and
t e ( O , l ] _

(9) sup I ( A , - , . . . ^ * , ) ( * ) < a r B / 2 inf AT*(ft)

for all / ! , . . . , / „ € { ! , . . . , d'} where

(Varopoulos establishes this type of inequality for vector fields on a manifold and then
the value of a depends on the point g in the manifold. But on a Lie group a can be
chosen to be independent of g by translation invariance.) Therefore setting h = g
in (9) one has

(Ail...Ai.K,)ig)\<ar''/2K2t(g)
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for all ( 6 (0,1] and g e G. But in addition one has the estimates

K2l(g) < a'rD'/2e-bttgl>)2/l

valid for all g e G and t e (0, 1] and suitable a', b > 0 by [22, Theorem IV.4.16],
and the discussion on page 331. So one obtains bounds

(10) ! ( £ , . . . AinK,)(g)

valid for all g e G and t e (0, 1] and suitable a, b > 0. Next, for all x e SC and
t € (0, 1]

I |A,-1 . . .A/ .S,JC| |< [ dg\(Ah...AinK,)(g) \\x\\.
JG 'v '

Using the bounds (10), the bounds (4) on the volume of the balls and splitting the
integral into a sum of integrals over the sets

{g &G:N < \g\T1/2 <iV + l}

gives bounds

\\Ai,... A,,s,x\\ <crn/2\\x\\

for a suitable c > 0, uniform in / e (0, 1] and x e 2£.

We now continue Step 4 of the proof of Theorem 3.2.

By the previous lemma there is a c > 0 such that

II T,x \\'n <crnl2\\x ||

for all t e (0, 1] and x e 3f and since T is exponential decreasing we may assume
that these bounds hold for all t e (0, oo) and x e 3C. Consequently

\\{H + coI)nT,x\\'n < c{t/2Tn'2\\{H + ooI)nTll2x\\.

Hence

UP

dunaoo \ l/p /.oo /-

d t t - 1 ( t ( " - r ) / 2 \ \ T l x \ \ ' n ) p ) < c ( 2 / n y l dUl...J p\ UP

dun
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But the integral over the w-variables is finite and || • \\"y/"
+a)l is equivalent to || • H"'̂  by

Theorem 3.1. Hence by combination of these estimates one concludes that

II* C ' < C\\x\\n
y%

for a suitable C > 0 and all x e J£~. Thus 3En^2
 ls continuously embedded in

($T, 3E'n)y The proof of Theorem 3.2 is complete.

Now we are prepared to prove Theorem 2.1. The proof relies on the character-
izations of the interpolation spaces given by Theorem 3.2 and a number of standard
results of interpolation theory.

PROOF OF THEOREM 2.1. First, one immediately obtains Statement II of Theo-
rem 2.1 from Theorem 3.2. This follows because {3C', 5C'n)y = &"yf2. But 3T"yf2 is
independent of the choice of n, up to equivalence of norms by Theorem 3.1. Now we
turn to the proof of Statements I, III and IV of Theorem 2.1.

Secondly, it follows from the argument used to prove [22, Lemma III.3.3] that there
exists an M > 0 such that

\\x\\'k<e-k\\x\\',, + Me-k\\x\\

for all e > 0, k e { 1 , . . . , n — 1} and all x e 3E'n. Hence by choosing e appropriately
one obtains bounds

Therefore 3C'k belongs to the class J(k/n, 3C', 3C'n) by [25, Lemma 1.10.1]. Hence
by the reiteration theorem, [6, Proposition 3.2.19],

(11) (JT, 5C'n\

and the embedding is continuous.
It now follows that

Next let Mi denote an /th order monomial in the operators Au ..., Ad, where Z < k.
Then M/ maps 2C'k continuously into SC and SC'nJfk continuously into X'n. So by
interpolation theory, [6, Theorem 3.2.23], Mi maps (SC'k, 3£'n+k)y continuously into
(3C', &'n)Y. Therefore {3t'k, 3E'n+k)Y is continuously embedded in (J2T, 5P'n)y<k and
from the previous observation one then has the continuous embedding

, Ji, n+k)y+k =̂ (•*• > •*• n)y,k-
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The proof of the converse inclusion is based on the estimate (2). A &-fold iteration
of this inequality gives bounds

< Mktk sup (o%mAl ,((1 + e)t)

for all ( € (0,1] and e e (0, 1]. Hence by taking s = 1 one immediately finds bounds

\\x\\n
y
+

+
kr < Ck (||*|| + sup \\Mkx\\n

Y-»)

where the supremum is over all kth order monomials A\,..., Ad,. But since || • ||"w

is equivalent to || • || j,°'n) by Theorem 3.2 this establishes the continuous embedding

(3f , &n)y;k ^ (X , Xn+k)y+k

and completes the proof of Statement III of Theorem 2.1.
Next, if x e i T ^

(12) \\x\\fn) < C (\\x\\ + sup \\Mkx\\n
y-_

kr)

by the foregoing estimates. But if x e 3£'k one also has

< r * ' ( 0 < M{\Mkxk\+t*-k\MkxJ[n_k : x = xk + xn, xn € X

Consequently

\\'k + tn-k\\xn\\'n:x = xQ + xn, xn g X'n\

and this gives bounds

(13)

Since || • \\n
y~_k

k
ai is equivalent to || • \\ly*k~

k) a combination of (12) and (13) gives estimates

(13) \\Mkx\\?L7k) <

for all x e 3£'k. So we have established the continuous embedding

^ k * n ' Y ~ k — ^ ' n ' y ' '

But (11) establishes the converse inclusion and hence we have now deduced State-
ment I of Theorem 2.1.

Finally, Statement IV can be deduced from Statement II. To this end let 5 denote
the semigroup generated by the closure of the sublaplacian

d'
2

https://doi.org/10.1017/S1446788700037514 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037514


[21] Subelliptic operators on Lie groups 199

then it follows from [22, Corollary IV.4.17], that S,SC c SC'^ Therefore S,3C'n c
3C'n for each n. Consequently, S,(SC, 3C'n)Y Q (3C, 3C'n)Y- Next by continuity one
has bounds

l|5,|| <Me°"

for suitable M > 1 and oo > 0. Therefore it follows from the identification

ay1 \ <a^«,5
*• nh ~ **• y/2

that 5 restricted to (#", ^"^) y satisfies similar bounds. Now we argue that this
restriction is strongly continuous, with respect to || • || f-n). But because of the semigroup
property and the foregoing boundedness property it suffices to establish continuity at
the origin on a dense subset of (SC, 3C'n)Y-

Next remark that if p < oo then SC'n is norm-dense in (SC, SC'n)Y by general
interpolation theory. Hence SC'ni is norm-dense in (SC, SC'n)Y for all nx > n by
Statement II of the Theorem. Then for x e 3E'n+2 one has

\\Stx - x\\f-n) < / ds\\SsHx\\fn)

Jo
<ct\\Hx\\fn)

<Ct\\Hx\\'n

for all x e 3C'nJr2, all t e (0, 1], and suitable C, c > 0. Therefore S is strongly
continuous on the norm-dense subspace 3C'n+2 of (SC, 3C'n)Y and consequently it is
strongly continuous on (SC, 3C'n)Y.

Finally, since StSC c SC oo it follows that SC^ is norm-dense in (SC, 3C'n)Y and
the proof of Theorem 2.1 is complete.

It should be noted that the last statement of the theorem, the density of SC^, is not
always valid if p = oo. In addition the restriction of the semigroup S to the interpola-
tion space is not always continuous for the limiting value of p . Counterexamples are
easily constructed. For example, if we start with the left regular representation L on
SC = LooCR) and / G (SC, SC2)i is as in [24, Example V.4.3.1], then the restriction
of L to (SC, SC2)\ is not continuous at / by [6, Proposition 3.4.13]. The fact that L
is not strongly continuous is not important, by the next corollary.

COROLLARY 3.4. Let (SC, G, U) be a weakly* continuous representation, SC the
subspace on which U acts strongly continuously and U the restriction ofUtoSC. If
n > y > 0 then

- or* \ tier or' \
' n ' Y v ' n ' Y

and the norms are equivalent, where (SC, SCn)Y is the Lipschitz space with respect to
the strongly continuous representation (SC ,G,U).
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PROOF. Let S be the holomorohic semigroup generated by the weak*-weak*-closure
H of the sublaplacian. Since & is the norm closure of 3^^, and 5, maps 3E into
•^oo ^ D(H), it follows that SE is the subspace of 9£ on which 5 acts strongly
continuously. Let 5 be the restriction of S to 3t. Let S be the strongly continuous
semigroup generated by the strong closure of the Laplacian in the representation
(&,G,U). Then the infinitesimal generator of S is an extension of the infinitesimal
generator of S, so St — S, for all t > 0. Then by Theorems 3.1 and 3.2

( ay ay1 \ a*-n,S op-n.S ,'qf- "m-' \
V-C- , **• n)y — «*• y / 2 — " ° y/2 — V1^ ' **• n'Y

and the norms are equivalent.

If a\,..., ad> is not a full vector space basis of g then the subspaces 3E'n need not be
invariant under the representation U (see Example 7.4 below). Also the interpolation
spaces are not {/-invariant in general. Since, however,

and ^Tn is {/-invariant, it follows that

; c

Nevertheless if 5 is the continuous semigroup generated by the closure of a second-
order subelliptic operator H constructed from the representatives A\,..., Ad> then
S does leave the interpolation spaces invariant by the argument used above for the
semigroup generated by the sublaplacian. Moreover, if p e [1, oo) the action of
each of the S is continuous. In Theorem 5.1 we shall prove that S is a holomorphic
semigroup on each of the Lipschitz spaces.

4. Regularity properties

The Lipschitz spaces can be exploited to yield regularity properties of the sublapla-
cian used in Theorem 3.2. These then provide perturbation estimates which allow
one to extend the results of Section 3, and the regularity properties, to second-order
subelliptic operators of the type discussed in the introduction. These extensions will
be described in detail in the subsequent sections.

First we establish regularity on the Lipschitz spaces.

THEOREM 4.1. Let
d'

H = -
1=1

where co is chosen large enough that the semigroup generated by the closure H of H
is uniformly bounded.
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I. Ifn > y > a > 0 then

(X, X'n)y = {xe D(7T/2) : ~T?'\ e {X, T'n)y_a}

and the norms x H> \\x\\fn) andx H» WiF^xWf^ + \\x\\f^ are equivalent.
II. Ifn > y > 0 and k € N

(•ST. X'n)Yik = {xe D(Hk'2) : 77*/2x 6 (X,

and the norms xv+ \\x\\f.f andx \-> ||77*/2x||^n) + H J C H ^ are equivalent.

In the proof of this theorem we need the following lemma.

LEMMA 4.2. Let S be a bounded holomorphic semigroup with generator H. For
a e (0, 1) let P" be the semigroup generated by H". Ifn > max(y, y/(2a)) then

oyn.S qy-n,P"

a/Ki f/ie norms \\ • ||"s and || • ||")^) are equivalent.

PROOF. We may assume that 5 is exponentially decreasing.
Then 3£n

y
s = (St', D(H"))y/riiP.K by Theorem 3.1 and the norms are equivalent.

Similarly XH
y-£ = (X, D{(Ha)n))Yl(na),p.K with equivalent norms. Clearly D{Hna)

is an intermediate space of X and D(H"). But by [22, Lemmas II.2.5 and II.3.3]
there exists an M > 0 such that

\\Hnax\\ < enii-a)\\Hnx\\+Ms-"a\\x\\

for all £ > 0 and x e D(H"). (The restriction s < 1 in [22, Lemma II.2.5] can be
removed if H is invertible and this is the case since 5 is exponentially decreasing.)
Therefore by choosing £ appropriately one obtains bounds

for all x e D(Hn). So D{Hna) belongs to the class J(a, X, D(H")) by [25,
Lemma 1.10.1].

For x € X and t > 0 let

^ ( 0 = inf{||x0||+r||//' 'xJ| :x=xo + xn, x0 e X andxn e D(H")}.

By [22, Lemma II.3.3] and the holomorphy of S it follows that there exists a c > 0
such that
(14) | | / / 1 ( 1 )
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for all t 6 (0, 1] and x e SC. But since 5 is exponentially decreasing, we may
assume that (14) is valid for all t > 0. Now let x e D(H"a) and t > 0. Since S is a
holomorphic semigroup,

l\.x\l) ^ I I V ' Ot*ln) A || T^ f | | i i yl yl *Jf I ) / - * l l *

We consider the two terms separately. First, one has

,l/n

| | (/ - S,./.)BJC|| < I dsx... / dsn \\H'-aSSl... Hl-aSsH
nax\\- S , . / » ) " x | | < / d s i . . . I

Jo Jo

<c» f dSl...f
Jo Jo

= c"a-"ta\\Hnax\\.

Secondly,

t\\Hnv-(i-slV.y)x\\ <

Let k e [I,... ,n}. Then by a similar reasoning to the above

•t»>/.Jc|| < rc"(Jtr I /7n)-" ( 1-o ) | |^"a* | | = c"(n/A:)"(1-a)r||7/'ia^l|.

So D(H"a) belongs to the class K(a, 5C', D(H")). Then by the reiteration theorem
([6, Theorem 3.2.20]) it follows that (iT, D(Hn))y/n,p[K = {3?, D(H"a))Ynna),p.x
and the norms are equivalent.

PROOF OF THEOREM 4.1. Let k e N and fi e (0, 2) be such that a = kfi and let
q e N with q > y/fi. Further let P be the semigroup generated by H . Then by
Lemma 4.2 and [6, Theorem 3.4.6] one obtains

«r'\ ay-n,S oy<l<p

° nh ~ "c y ~ YlP

= {xe Diff"2) : 7T/2x e

Also the norms are equivalent. This proves Statement I.
Statement II follows immediately from Statement I and Theorem 2.1.III.

Next we derive some additional regularity properties for the interpolation spaces,
comparisons between the Lipschitz spaces, and regularity of the underlying repres-
entation (X, G, U). Note that the statements of the following proposition indicate
that || • || ^0"> behaves as a C-norm and H as a fractional derivative of order a.
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Until now we have omitted all reference to p in the notation of the Lipschitz space
'nt, 3?'ni)Y. but for the next two propositions the value of p is important. Therefore

we denote the Lipschitz space by (X'ni, X'ni)(Y,p) and its norm by || • II["'p"2'-
Next we introduce the concept of a Banach space of order y, where y > 0. The

space X is the only space of order 0. If 0 < y < n then the spaces of order y are the
Lipschitz spaces {X', X'n)(Y,P) with p e [1, oo] and the spaces D(H ) with

H = -

where co is sufficiently large that the semigroup generated by the closure H of H is
uniformly bounded. Moreover, if y e N then the C"-subspace 2£'y is also defined to
be of order y.

PROPOSITION 4.3. Let
d'

H = - V A) + col
1=1

where co is chosen large enough that the semigroup generated by the closure H of H
is uniformly bounded.

!• If 0 < Y\ < Y2 < y3 and Wj is a Banach space of order y, with norm || • ||y.
then there exists a c > 0 such that

(15) ||*||w< e»-n\\x\\n +c£-^-^\\x\\yi

for all 1 6 ^ ) and e > 0.
II. If p = oo and n > y > 0 then there exists ac > 0 such that

for all x e D{HV'2).

PROOF. We only prove the case yx ^ 0; the case yx = 0 can be proved similarly.
First we prove (15) for the Lipschitz spaces. By Theorem 2.1 we may assume that
there are n > y3 and pu p2, p3 e [1, oo] such that ^ , = (X, X'n)(n,P:)- Then by the
reiteration theorem, [6, Theorem 3.2.20 and Corollary 3.2.17],

where the inclusion is by [6, Corollary 3.2.13]. So by [25, Lemma 1.10.1 (a)] there
exists a c > 0 such that

i-n)
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for all x e ^ 3 . Hence by the Holder inequality

llvll < r Y1' s(Y3-n)/(y3-Yi)\\x\\ . (Y3 ~ Yl) s-(yi-y,)/(y3-Yi)\iy 11

(K3 - Ki) (/3 - Y\)

for all <5 > 0. Inequality (15) follows for the Lipschitz spaces by choosing e to be an
appropriate multiple of Sxl(n~Yi).

The general case, and also part II of the proposition, follows from the inequalities

d6)

(17) \\x\\'m < c2\\x\\fm%

(18)

(19)

for constants cu ..., c4 > 0 and all x e 3T'm, x e (&, 3£'n\mA), x e D{HY'2) and
x e {%, 3£'n)(YA), respectively, where m < n and y < n.

By an /rc-fold iteration of inequality (2) we obtain

cof(t) < Mtm sup oi(n
A-m\ x(2t)

i / m e f l d'} ' ' " • ' "

for all x e 3£'m and / e (0, 1]. Using the inequality

for some c > 0, uniform in j e X and f e (0, 1] we then find that

co^(t)<cMtm\\x\\'m

for all x G S£'m and f e (0, 1]. So

and (16) is proved.
In a similar way to the proof of [22, Lemma III.3.3] it follows that there exists a

c > 0 such that
\M\'m<en-m\\x\\'n+cE-m\\x\\

for all x € ^"^ and s > 0. Minimizing over e gives bounds
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and so again by [25, Lemma 1.10.1 (a)] it follows that

Now inequality (17) follows from the closed graph theorem.
By [25, Theorem 1.15.2(d)]

7 7 " , I ; K C D(77y/2) c "

But by Theorems 3.1 and 3.2

Then inequalities (18) and (19) follow by the closed graph theorem and the proposition
is proved.

The next proposition shows that the semigroup 5 has the behaviour expected for a
semigroup generated by a second-order operator.

PROPOSITION 4.4. Let
d'

H = -

where co is chosen large enough that the semigroup S generated by the closure H of
H is uniformly bounded. IfO<yi < y2 and ty', is a Banach space of order yt with
norm || • ||y. then there exists a c > 0 such that

for all x e &xandt e (0, 1].

PROOF. AS outlined in the proof of Proposition 4.3 we only need to consider the
case Y\ > 0 and Lipschitz spaces. Furthermore, we may assume that the semigroup
is exponentially decreasing.

First, i f « > y + ( 5 > y > 0 and p e [1, oo] then by Theorems 4.1.1 and 3.2 there
exists a Ci > 0 such that

IWIfy+S.p) — Cl I I " XW(y/2,p)

for all x e 3£'<». Since 5 is a holomorphic semigroup there also exists a c2 > 0 such
that
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for all? e (0, 1] and x G 3C. So

i|H,S < , -J /2 | i i|(0,«)
ll(y/2,/>) — C3l \\x\\(y,p)

for all f e (0, 1] and x e yp
Secondly, if 0 < y < n and p e [ l , oo] then there exists an M > 0 such that

ll
\\(Y,p)

for all x e {3C, &'n)(Y,P) and J e (0, 1]. This follows again from the identification
t or ar' \ av-n,S
y^ , ^c n)(Y,p) — <*• ( y /2 ,p)-

Finally, if 0 < yx < y2 < n — 1 and pi , p2 G [1, oo] then by Proposition 4.3 there
exists a Cj > 0 such that

for all x € ( # \ ^ ) ( W + i , P l ) and£ > 0. So

for all x 6 (&, &'n)(yuPi) and t e (0, 1]. The proposition follows by setting e = s/1.

5. Subelliptic operators

In this section we prove that all the results derived in the previous sections for the
sublaplacian are stable under the addition of a complex first-order perturbation.

We now consider operators of the form

d' d'

H = - ^2 CjjAjAj + ] P dAi + col
l ,y = l 1 = 1

where C = (c,;) is a real-valued strictly positive-definite matrix and c0, cu ..., cd> e
C. Since C can be diagonalized by a real-valued non-singular matrix it follows that
by a change of algebraic basis one may assume that c,; = <5,7. Therefore one can
effectively restrict attention to operators H = Ho + Hi where

is the sublaplacian and
d'

Hx =
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Now it can be deduced from the estimates of [22, Corollary IV.4.19] that Hx is a
small perturbation of Ho and that the closure of H generates a continuous semigroup.
Alternatively, it follows from Statement I of Proposition 4.3 that the closure generates
a continuous holomorphic semigroup. The proof is as follows.

First, Statement I of the proposition implies the existence of a c > 0 such that

(20) ||//,;<: || <e ||770x ||+CS-1 M

for all x € D(H0) and E e (0, 1]. Secondly, Ho generates a continuous holomorphic
semigroup 5(0). Now if the representation is strongly continuous S(0) is also strongly
continuous and it follows immediately from the perturbation theory of holomorphic
semigroups and (20) that the closure of H generates a strongly continuous holomorphic
semigroup 5 with the same holomorphy sector as 5(0). If, however, the representation
is weakly* continuous the proof is somewhat more circuitous. Then (20) gives

Consequently, the continuity bounds ||S,(0)|| < Me0", the holomorphy bounds
< Mt~le°", the choice e — t1/2 and the semigroup property lead to bounds

(21) ll#iS,(0)H < M'r1/2effl'r

for all t > 0. Therefore the weak*-weak*-closure H of H generates a weakly*
continuous semigroup 5 by 'time-dependent' perturbation theory (see, for example,
[3, Theorem 3.1.33]). Moreover, S is related to 5(0) by the perturbation series

c _ V^ c(«)
•*' — / A

n>0

where the terms of the series are defined inductively by the relation

The perturbation series is norm-convergent for small values of t, because of the
estimates (21). It then remains to deduce that 5 is holomorphic. But this can be
established by a duality argument.

Let & denote the dual of 3E and &'n the C-subspaces analogous to S£'n but
associated with the strongly continuous dual representation U* of G on &'. If Hf

denotes the formal adjoint of H, that is, the restriction of the adjoint H* to &'2, then
H^ is a second-order subelliptic operator affiliated with the dual representation of
the form W = Ho + H[ where Ho is again the sublaplacian and H[ is a first-order
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operator. Now Statement I of Proposition 4.3 applied to the dual representation gives
bounds

for all / 6 D(H0) and e € (0, 1], Hence the foregoing argument applied to //+ es-
tablishes that the closure of the operator generates a strongly continuous holomorphic
semigroup T on &'. Then T* is a weakly* continuous holomorphic semigroup on &
with generator (//f)* and the same holomorphy sector as T. But (//*)* extends H
which is itself a generator. Since a semigroup generator cannot have a strict generator
extension it follows that (//+)* = H and S = T. Thus 5 is a holomorphic semigroup.

Next we turn to the extension of the results of the previous sections with the operator
H replacing the sublaplacian and the semigroup S replacing the semigroup generated
by the sublaplacian. It might seem that this extension to the perturbed semigroup must
involve complex perturbation calculations but these can be circumvented by use of
interpolation theory. Let n e N and y e (0, n). Then by Theorem 3.1 one deduces
that

5Cnf = ( & , D(H"0))Y/n,p.iK

and

Therefore if D(Hn
0) = D(H") then

^
y/2 ~ "^ y/2

• n'Y

and the corresponding norms are equivalent. This is the general tactic for the proof
of the subsequent theorem but it is necessary to exercise some care in appealing to
interpolation theory for weakly* continuous semigroups because the theory is usually
formulated for strongly continuous groups.

THEOREM 5.1. Let

d' d'

^2 J2Ai + col

where C = (c,y) is a real-valued strictly positive-definite matrix and co,C\,..., c# e
£. Further let S be the continuous holomorphic semigroup generated by the closure
H of H. Then one has the following.

I. Ifn> y > 0 then (&, 2£'n)Y = 3C"Yf2 and the norms \\ • \\fn) and \\ • \\n
y%

are equivalent.
II. S, maps SE into S^^for all t > 0.
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III. The conclusions of Theorem 4.1 are valid with the operator H replacing
the sublaplacian.

IV. The inequalities of Propositions 4.3 and 4.4 are valid if in addition we define
y/2

the spaces D(H ) to be Banach spaces of order yifS is uniformly bounded.
V. If p e [1, oo) and n > y > 0 then the restriction of S to {3E, 3E'n)Y is a

strongly continuous holomorphic semigroup.

PROOF. First we prove that 5, maps 3^^, into 3£ x . Let X be the subspace on
which U acts strongly continuous and let U be the restriction of U to X. Let
n G N and let £/„ denote the restriction of U to the Banach space 3£„ of C -vectors
with respect to the full vector space basis au •. •, ad>,..., ad. Now one can repeat
the^perturbation arguments given above with the strongly continuous representation
(St'„, G,Un) replacing the representation (3T,G,U). Therefore if

ij=\

is the operator in SCn with domain (S£n)'2 then the closure K of K in ££„ generates
a holomorphic semigroup T on S£'„. But if x G SC'„ one has

S,x -T,x= f ds S,-S(K - ~R)Tsx = 0.
Jo

It follows that T, c 5, for all t > 0. Hence

<z¥<z

and therefore

c <&- r

n = l

Secondly, assume that the representation, and hence the semigroup S, is strongly
continuous. Since 5, leaves ^ ^ invariant we can apply [19, Corollary 1.3] and it
follows that ^"oo is dense in £>(//") for all n e N. Next, by the discussion at the
beginning of the section, we may assume that H has the form H = H0 + Hi where Ho

is the sublaplacian and Hx is a first-order operator. If 5(0) is the semigroup generated
by Ho and n e N then there exists an operator P of order In — 1 in the operators
Au ..., Ad> such that

H"x = HQX + Px

for all x e S^OQ. By Proposition 4.3.1 one has bounds

\\Px\\ < cUW^ < \\Hn
ox\\/2 + c2\\x\\
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valid for all x e X^. Consequently

\\Hn
ox\\ < \\H"x\\ + HP*|| < \\7Tx\\ + \\T7"Qx\\/2 + c2\\x\\

and

for all x € ^"oo- Now since X^ is dense in D(H ) and D(H0) is complete it follows
that D(H ) is continuously embedded in D{HQ). By a similar, but easier, argument
the opposite inclusion is also valid. Therefore

(22) D(H"0) = D(H")

and the norms x i-> ||//ox|| + ||x|| andx i-> \\H x\\ + \\x\\ are equivalent. Statement I
now follows by the argument based on interpolation theory given before the statement
of the theorem.

Next suppose that the representation, and hence the semigroup 5, is weakly*
continuous. It follows from the perturbation series for S and the estimate (21) that

and

for a suitable c > 0 and all small t > 0. Therefore the strong continuity subspaces of
S and 5(0) coincide. But the strong continuity subspace for 5(0) is 3E by the proof of
Corollary 3.4. Further let S and 5(0) denote the strongly continuous restrictions of the
semigroups S and 5(0) to 3C. By Theorem 3.2 and Corollary 3.4

, ^O n)y = (^C , ^C n)y = .>O yl2 •

By Theorem 3.1 also 3Cn
y
s<S) = jf"'5 . Therefore Statement I follows once we

-—•«,? '—n,Sm

establish that X ' = 2£ ' . But this is a problem in the strongly continuous case
and which has already been solved. Hence the proof of Statement I is complete in the
weakly* continuous case.

If the representation is strongly continuous then Statement II follows from the
holomorphy of 5 and equality (22) because

n=l n = l

= f] D(Hn
0) =

Alternatively, if the representation is weakly* continuous S,/2 X c X for all t > 0
by holomorphy. Then, however,

Of i>C CI 0//2«>C' ^ Ojn*^ ~z ^ oo — **-* oo
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for all r > 0 where we have used the previous result for the strongly continuous
representation (& ,G,U).

The proofs of Statements III and IV are precisely the same as the proofs for Ho and
5(0), but now use Statement I instead of Theorem 3.2. The type of continuity plays no
significant role.

Finally, the proof that for p < oo the restriction of S to the Lipschitz space
{3C, 3E'n)y is a strongly continuous semigroup is the same as the proof given for 5<0)

just prior to Corollary 3.4. Then by Statements III and IV one obtains bounds

\\HStx\\fn) < c\\S,x\\f.f < Ct~l \\x\f>
valid for all t € (0, 1] and x e 2E. Therefore 5 is a holomorphic semigroup on

, 1>C n ) y .

The semigroups generated by subelliptic operators with real coefficients have in-
tegral kernels which satisfy Gaussian bounds (see [22, Chapter IV]). The same is true
in the current context of operators with complex first-order coefficients. This can be
established by a simple variation of the proofs for operators with real coefficients.
Specifically one can repeat the reasoning of [22, Chapter IV, Sections 2 and 4]. One
estimates various properties of the semigroup S associated with the subelliptic oper-
ator H and left translations on the function spaces LP(G ; dg) and LP{G ; dg), where
dg and dg denote left and right invariant Haar measure respectively. It is important for
these calculations that S, X c 2£^ but this has already been established. The crucial
features of the calculations are quadratic form estimates and for this it is important
that on L2(G ; dg) one has

1/2

S |c,(.I
\ 1=1

First one deduces that S, is bounded as an operator from LX{G ; dg) to LM, for each
t > 0. But then by the Dunford-Pettis theorem 5 is determined by an integral
kernel K. Secondly, one derives a set of Gaussian bounds on K, and its derivatives
with respect to t, of the form

\d?K,(g)\ < anr"-D'/2eMe-Hl8l'f/'

for all g € G, t > 0, and n e Mo. If G is unimodular, or polynomial, these bounds
can be improved exactly as in the case of real coefficients. Moreover, the analyticity
of K jointly in t and g follows by the reasoning for real coefficients. But for complex
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coefficients the kernel is not positive and hence one cannot hope to obtain lower
bounds. Finally we note that one can also obtain bounds on the left derivatives of K
in the directions at,..., ad> by the methods used for real coefficients. These bounds
take the form

\AiK,(g)\ < arV2-D'/2eo»

for all g e G, t > 0, and i e { 1 , . . . , d'}.

6. The domain of HN

The Lipschitz spaces can be used to obtain estimates for the domain of the closure
of the operator

d' d'

(23) H = -

and its powers. In general the estimates that we obtain in this section are optimal
but in particular cases they can be improved. This will be demonstrated for unitary
representations in the next section.

If a0, a i,... ,ad> is an algebraic basis of the Lie algebra g,

and the representation is strongly continuous, then J0rgensen, [11, Theorem 2.1 and
Corollary 2.1], proved that for all n e N there exists an N e N such that D(77 ) c 3En

and

for all x € D(H ) and a suitable c > 0. In his proof the existence of the N follows
from the closed graph theorem and it is not clear how it depends on n. Alternatively,
if ax,..., ad< is a full vector space basis for g then it follows from [22, Theorem II.5.5]
that

D(HN) c (3C, X1N-)2N^ c Xw_x

for all e € (0, 1) and the inclusions are continuous. In this section we give inclusions
of this kind for operators of the form (23). The inclusions are valid for both kinds of
continuity, strong or weak*.

First we compare the Lipschitz spaces which interpolate between the representation
space 2C and the subelliptic C-subspaces 3£'n with the Lipschitz spaces which
interpolate between X and the full C-subspaces 3£n. Since we are dealing with two
kinds of Lipschitz spaces in this section, (^«, , &ni)y and {3E'n , 5C'n ) y , we denote
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the norm on (3T'ni, 3C'ni)Y by || • \\{y>>2) and the norm on (#"„,, 2£ ni)Y by || • \\{"uni).
Also we denote the space

* = 0 l , , . . . , l t € ( l d')

by (Wni, 3£'n2)Y\n and we use (i£"ni, ^ n 2 ) y ; n to denote the space

*=0 i **G(1 d)

The basic comparison result is given by the following lemma.

LEMMA 6.1. If r denotes the rank of the algebraic basis a\,..., a^ and n > yr > 0
then

\iAs , oC- n)yr _ (,«>£• i ^ n)y _ \*^ i ^ n)y

and the embeddings are continuous.

PROOF. By Theorem 2.1 we have the following equalities.

, .X n)yr = ' ^ » «^ nr'Yr == v*^ > "-̂  nr)y/n,p;K

But ^"^r c ^TB c ^T^ and the inclusions are continuous. So by interpolation theory,
[6, Theorem 3.2.23], it follows that

, &n)y/n,p;K

and the inclusions are continuous.

REMARK. Another proof of this lemma can be obtained from the characterization
(3C, 3C'^Y = 3^n

Y
0}, and a similar equality for the Lipschitz space {3C', 3£n)Y, by

using the inequalities
< \g\'< c2\g\i/r

valid for all g e G with \g\' < 1 (see [14, Proposition 1.1]).

The embeddings of the lemma allow one to translate regularity properties with
respect to the algebraic basis into regularity properties with respect to the full basis.
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THEOREM 6.2. Let

d' d'

H = - ^ CijAjAj + ^2 CiAi + c0

where C = (c,;) is a real-valued strictly positive-definite matrix and c0, C\,..., cd> €
C. Let r be the rank of the algebraic basis a\,..., ad>.

I. Ifn,NeH satisfy n < 2N/r then D(HN) C 3C'„. Moreover, if the
semigroup generated by the closure H of H is uniformly bounded and a > 0
then

D(FF) c (srk, &k+1)y = {%, xx\,k

where k is the largest integer strictly smaller than 2a/r and y e (0, 2a/r — k).
Both sets of embeddings are continuous.

II. Suppose the semigroup generated by the closure H of H is uniformly
bounded. If p = oo and a > 0 then

Dili") c (#- t , &k+2)y = (&, Xi)Y.k

where k is the largest integer strictly smaller than 2a/r and y = 2a/r — k.
The embeddings are again continuous.

III. Suppose the semigroup generated by the closure H of H is uniformly
bounded. If y > 0, a > 0, n > y + 2a/r and x e DiTt) then It'x e
(•52T, S£n)Y implies x e (i£\ •̂ "«)y+2a/r- Moreover, there exists a c > 0,
depending onn,y and a, such that

for all x e D(Ha).

PROOF. For Statement I we only need to prove the second part because the first part
follows from Theorem 2.1.1.

Let e e (0, 2a). Then by Theorem 5.1.IV it follows that there exists a c > 0 such
that

for all x e D(rT). In particular Dill") c (^T, X'm)^-e. Now the second part of
Statement I follows from the previous lemma and Theorem 2.1.

If p = oo it follows from Theorem 5.1.IV that

H ) Q (& Xn)(y+k)r ^
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for n > y + k and the desired inclusion is established. This proves Statement II.
Finally we prove Statement III. First note that Statement II shows that the op-

erator (/ + H)~a is a bounded operator from X into (X, Xn)2a/r where the
Lipschitz space is with respect to p = oo. Secondly, let N e N, N > y. If
(X,G,U) denotes the strongly continuous component of the representation jind
(XN, G, UN) the representation obtained by restricting U to the Cw-subspace X'N,
then by replacing (X,G, U) by {X N,G, UN) in the previous argument one de-
duces that (/ + H)~a is a bounded operator from X N into (XN, XN+n)2a/r where
the Lipschitz space is stilly with_̂  respect to p — oo and we have assumed that
n > N + 2a/r. But (3TN, 3rN+n)2a,r = (&N, XN+n)lalr by Corollary 3.4.
Moreover (S^N, S^N+n)2a/r = {&, &n)N+2a/r by Theorem 2.1. Therefore

and

are bounded operators. So by interpolation, [6, Theorem 3.2.23], and another applic-
ation of Corollary 3.4 one deduces that

, !% n)NIn+7xxHnr),oo\K.
yjN p.K

is a bounded operator for all p e [1, oo]. Thirdly, by the reiteration theorem, [6,
Theorem 3.2.20], together with [6, Corollary 3.2.17]

&n)N/n+2a/(,nr),oo;K.)y/N p.K = (X, $> n)y/n+2a/(nr),p;K

and the norms are equivalent. So

(/ + H) " :

is bounded for all p e [1, oo]. In particular, there exists a c > 0 such that for all
x e (ST, Kn)Y _

\\{l + H)-ax\\f:l/r<c\\x\\f\

Therefore,

for all x € D((I + 77)") such that (/ + ~H)ax e {X, Xn)Y. Fourthly, by [22,
Lemma II.3.2], there exists a bounded operator B on X such that

(/ + 77)" x = TFx + Bx
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for all x e D(H ) = D((I + //)"). By the above reasoning B is also bounded on
X N and then by interpolation it is bounded on (S£, Xn)Y. Thus if x e D(H ) =
D((I + 77)") one has (/ + 77)ff;t e (X, Xn)Y if, and only if, TFx € (X, Xn)Y and

for some c' > 0, independent of x. This proves Statement III.

Application of Theorem 2.1 with a full vector space basis of gives the identifica-
tions

(Xk, Xk+\)y = (X, Xk+l)y+k = (X, > "̂l)y;t

where the derivatives are in all possible directions. Therefore the second part of the first
statement of the theorem can be reformulated as a general differentiability statement.
Each x e D(H ) is a k-times differentiable element and the &-fold derivatives are in
the Lipschitz space (X, X \)Y. In this form the theorem is an extension of the usual
elliptic regularity theorem for elliptic differential operators. This analogy indicates
that the statement of the theorem is probably optimal unless one makes more specific
assumptions on the form of the representation or the differential operator. This is
confirmed by the example at the end of the next section.

The conclusions of Theorem 6.2 can be directly compared to the regularity results
of Rothschild and Stein [23] if these latter are restricted to the Lie group setting.
Rothschild and Stein deal with subelliptic operators acting on various function spaces
over a manifold M. In particular if M = G then their results apply to the Lp-spaces
LP(G ; dg), constructed with respect to left-invariant Haar measure dg, and to various
related interpolation spaces. The corresponding subelliptic operators are constructed
from the representation of G by left, or right, translations on these spaces. The-
orem 16 of [23] encapsulates the nature of their regularity results. It has four parts the
second and third of which are directly comparable with the above theorem. Part (b)
of [23, Theorem 16] implies that (A/ + / / ) " ' is bounded as an operator from the in-
terpolation space (Loo, LcoiJy/n.oo;*: to the interpolation space (L^ , Loo;n)(),+2/r)/n,oo;A-
for all large X, where L^, , denotes the C-subspace of Lx with respect to left
translations. Theorem 6.2 establishes, however, that (A./ + / / ) " ' is bounded as an
operator from (L^, L00;n)x/n,p;A: to (Lx, Loo.n)(Y+Vr)in,p.K for all p e [1, oo], that
is, it extends the Rothschild-Stein result to a broader class of spaces. Similarly [23,
Theorem 16 Part (c)] states that (A./ + H)~l is bounded as an operator from L ^ to
(Loo, £oo;n)2/(nr),oo;ir but Theorem 6.2 establishes that it is in fact bounded from Lp to
(Lp, Lp.n)2/(nr),oo;K for all p e [1, oo]. Further comparison with the Rothschild-Stein
results is given at the end of the next section.
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7. Unitary representations

Although the regularity statements of Theorem 6.2 are in general optimal they can
be improved in special cases. Next we demonstrate that this is indeed true for unitary
representations and we establish among other things the subelliptic equivalent of the
results of Nelson referred to in the introduction. The proof again utilizes the Lipschitz
spaces. In the Hilbert space context these spaces have a particularly simple form for
the special value p = 2 and this will be exploited throughout the section.

We begin with the appropriate characterization of the Lipschitz spaces.

LEMMA 7.1. Let H be a positive self-adjoint operator on a Hilbert space 3C and
S the self-adjoint semigroup generated by H.

If n e N, y e (0, n) and p = 2 then %~"y
s = D(HY). Moreover, the norms

x i-)- ||JC||^X andx h+ \\HYx\\ + \\x\\ are equivalent.

PROOF. We may assume that 3£ = L2{&, 38, \x) for some measure space {&, 38, \x)
and that H is the operator of multiplication by a positive measurable function h on
<&. Then for all / e L2{<&, 98, fi) one has

QTdrr1(r>'||(/-s,)I7ll)2)
1/2

(j

1/2

o \ 1/2 / p \ 1/2

dt r 1 (ry(l - e-f) / d!i{y) \h(yYf(y)\2

= M\\H*f\\,

where

M = (f dt r1 (ry (1 - e~')n)2\ .

Therefore 3C"Y
S = St:"/-00 = D(Hy) and the norms are equivalent.

The p = 2 Lipschitz norms are also equivalent with the norms x H>- || (/ + H)y/2x ||
and in this form there is an obvious analogy with the fractional Sobolev norms
usually defined for functions over Rd and with H the Laplacian. For example,
let SIC = L2(G; dg) and let H = — J2i=i tf be the Laplacian associated with a
vector-space basis a\,... ,ad of g and the corresponding generators A\,..., Ad of
left translations L, that is, the operator A, is the generator of the one-parameter group
defined by (L(exp(-?a,))/)(g) = /(exp(fa,)g). Thenthe spaces D(Hy/2), equipped
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with the norms

1/2

are the direct generalization of the Sobolev spaces L2.y normally defined for G = W1.
This observation is particularly useful for illustrating the subsequent regularity results.

There are again two types of result. The first relates the action of H with the spaces
3£'n and the second involves the spaces 2£n.

THEOREM 7.2. Let {3£, G, U) be a unitary representation and let

where C = (c(J) is a real-valued strictly positive-definite matrix and c0, C\,..., Q< e
C. Then the following are valid.

I. H is closed.

II. ^"oo is dense in 3£'n for all n e N.

Next let S be the holomorphic semigroup generated by H.

III. There exist 9 > 0 and w > 0 such that S is holomorphic in [z € C :

|argz| <6>}a«d||Sz|| <ew^forallz g C with | argz| < 6.
Finally suppose Re c0 is so large that S is a bounded semigroup.

IV. If n € N then &'n = D(Hn/2) and the norms x (-+ H*^ and x \-»
\\Hn/2x\\ + \\x\\ are equivalent.

V. Ifn>2y>0andp = 2 then D(Hy) = ( # \ X'n)2Y and the norms
x H> \\Hyx\\ + \\x\\ andx^ ||x||f;n) are equivalent.

PROOF. We may assume that c,; = <5,7 and that the semigroup is uniformly bounded.
Let HQ = — Yl1=i A2 + I. Since Ho is symmetric and the closure HQ generates a
semigroup 5(0) the closure must be self-adjoint. Furthermore

(Hox,x) = \\x\

for all x G 3£'2 and hence Ho is strictly positive. In addition, ||JC||', < \\H0 x\\ for all
x e SE'2. Then by Lemma 7.1 and Theorems 2.1 and 3.2 there exist cu ..., c5 > 0
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such that for all x e 3£'3

max

/2 + c, ^

<c2\\xC2) + c2 max
ke{l,...,d'}

< 2c2\\x\\ff < ci\\x\\2°'3) <

where the Lipschitz norms correspond to the value p = 2. Since S^^, is dense
in D(H0) and 3F'2 is complete, it follows that D(H0) c X'2. But by definition
3C'2 = D(H0) c D(77O). Therefore D ^ o ) = 3C\ and //0 = Ho. In particular, 7/0
is self-adjoint.

Define h: X\ -+ C by

1=1

Then h is a closed quadratic form and by the second representation theorem for quad-
ratic forms (see [13, Theorem VI.2.23]) there exists a positive self-adjoint operator K
such that D(K1/2) = 3£\ and h(x) = \\Kl/2x\\2 for all x e X\. But one straightfor-
wardly verifies that K extends Ho and since both operators are self-adjoint it follows
that K = Ho. Consequently

for all x e 3E\. Therefore D(//0
1/2) = SC\ and the norms are equivalent.

Now let n e N. Then by Theorems 2.1.Ill and 3.2, and Lemma 7.1

/TV' ^ ^ \ mrt

n+i | | i k l * 1
ke[0 n)

{x e D(Ah ... Aik) : A,-, ... Aikx e {X, X'^}

and the norms are equivalent. Again we have used the Lipschitz spaces with p — 2.
This proves Statements I and IV for the operator Ho and Statement II is proved.

Equation (22) establishes D(H") = D(//o") = SC'^ for all n e N. In particular,
D(H) = 3£'2 = D{H) and H is closed. This proves Statement I. Fix n e N. Then

https://doi.org/10.1017/S1446788700037514 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037514


220 A. F. M. ter Elst and Derek W. Robinson [42]

there exists an operator P of order 2n — 1 in the operators A \ , . . . , Ad> such that
H"x = H£x + Px for all x e SC'^. Hence

Re(//"x, x) > Re(//0"x, x) + Re(Px, x) > Re(//0"x, x) - |Re(/>x, x)\.

Now P is a linear combination of monomials Mk of order k < 2n — 1 in the operators
A\,..., A^. Write Mk = MrMs with Mr and Ms monomials of the order r < n and
s < n - 1. Then

for all x e T̂̂ n • So there exists cx > 0 such that

for all x e JT^. For all e > 0 we have

Moreover, arguing as in the proof of [22, Lemma III.3.3], there exists a c2 > 0 such
that

\\xl_l<S\\x\\'n+c2S
l-''\\x\\

for all iS e (0, 1], Therefore setting 8 = s one obtains

(24)

for all x e 3£'2n. Hence for alU > 0 and x e ^"^

, x) > Re(//0"x, x) + A||x||2 - \(Px, x)|

(25) > (p2 - 3c,e/2) (||x||;)2 + (A - Clc2
2£-2"+2/2)||x||2,

where /? > 0 is such that

By choosing e small it follows that

x) > 0

for all x e 3£'2n and A. > 0. Now Ho and hence H are generators of holomorphic
semigroups with holomorphy angle n/2. So by [21, Lemma 4.1], //0" and //" are also
generators of semigroups. Thus H" + A/ is a closed maximal accretive operator as is
//0". But D(Hn) = D(HQ) by (22) and the norms on the two spaces are equivalent.
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Then by the corollary following [12, Theorem 1] £>((//" + kl)y/n) = D(H£) for all
y e [0, n] and the norms are equivalent. Therefore

D(Hy) = D«Hny/n) = D((H" g

In particular, for it e { 1 , . . . , 2n] D(Hk/2) = D(H*12) = 5C'k and the norms are
equivalent by Statement IV for the operator Ho. Moreover, if m > 2y we have

by Lemma 7.1. This proves Statements IV and V.
Finally the proof of Statement III is essentially the same as the proof of [2, Corol-

lary 4.1]. The only difference is that the C-norm || • ||B is replaced by the subelliptic
equivalent || • \\'n. This replacement does not affect the validity of the argument.

The second regularity result relating to the C-subspaces 56'„ is a direct corollary
of previous results.

COROLLARY 7.3. Adopt the assumptions of Theorem 7.2 and suppose Re cQ is large
enough that S is a bounded semigroup. If n > 2y > 0 and p e [2, oo] then
D{HY) c (#" , SZ~n)2y/r and the embedding is continuous, that is, there is a c > 0
such that

for all x 6 D(Hy).

The statement for p = oo follows from Theorem 6.2 and for p = 2 from The-
orem 7.2. The result for 2 < p < oo then follows from the Holder inequality.

The last statement of Theorem 6.2 is of course applicable to unitary representations
and this gives more detail on the action of H relative to the Lipschitz spaces.

If « i , . . . , ad> is an algebraic basis with rank r = 2 and H a corresponding subelliptic
operator it follows from the corollary that 3E2 ^ D{H) c j£", and in the next example
we demonstrate that this is optimal in the sense that D(H) is not contained in any of
the spaces that interpolate between 3C\ and SC2. We also use the example to illustrate
that 3£\ is not invariant under the representation.

EXAMPLE 7.4. Let G be the Heisenberg group A(R). S o G = R x K x T with
multiplication given by

(aub2, zO o (a2, b2, z2) = (ai + a2, bx + b
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Next let
00

X =

where Wn = L2(R ; dx). Then for each (a, b, z) e G and / = ( / J n e ^ € 3C define
U(a, b, z)f e3Tby

(U(a, b, z)f)n{x) = zneibnxfn{a + x).

It follows that (X, G, U) is a strongly continuous unitary representation. Leta!,a2, #3
be the standard basis in the Lie algebra Q of G. Then [au a2] = a3 and au a2 is an
algebraic basis with rank r = 2.

If P and g are the self-adjoint operators in L2(K; dx) such that

(P/)(JC) = / / ' (*).

CG/)0O = «

for all / e CC°°(K) and x e K then

)n = -iPfn,

(A2f)n = inQfH,

(A3f)n = infn,

where At = dU(aj). Next consider the subelliptic operator H = — A\ — A\ and
remark that

P2 + n2Q2)fn

for all / G D{H). Let V'o be the Oth Hermite function on L2(K ; djf) and for n e N
define <pn e L2(K ; dx) by setting

Then \\<pn\\ = 1 and
(P2 + n2Q2)<pn =n<pn

for all n € N. Next let (K)neM e /2(N) and consider / = (/n)ne^ 6 3C where
/„ = Xn<pn. It follows from the above that / € D(H) if, and only if,

ikn\
2 < oo.

Next let A = -A* - A2 - A2 = H - A2 denote the full Laplacian. Then
Aî n = n(n + l)^)n. Now if S denotes the semigroup generated by A one has
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,, ST2)Y = o r , &2h+y = ^{£,0/2 for y € (0, I) and hence f e
if, and only if,

< oo.

Moreover, if e e (0, y) and kn = n-^
+2e)/2 then / e D(H). But if fa 6 (0,1/2) and

n0 is an integer such that nlt0 > 1 then

/ ^r1(r(1+")||(/-5,)/||2) > / rfrr1 r ^ T d - r " 2 ' ) 2 " " ^ 2 "

/•I

/

n>n0

r(Y~e)p/2

'0

p/2

for a suitable cy p > 0 independent of n0 and f0. But one can choose n0, t0 such that
the right hand side is arbitrarily large. Therefore / ^ {.X\, X2)Y- Consequently
D{H) 2 ( ^ i , ^r2)y for any choice of y e (0,1) and p e [1, oo].

Finally / e X\ if, and only if,

n\2 < OO.

n=l

But if t > 0 and g = exp(fai) then (U(g)f)n(x) = fn(x +1) and

(A2U(g)f)n(x) = i#ue/f,(jc + 0 = inxknn
1/4f0(n

i/2(x + t)).

Moreover

(•OO »00

/ dx l/nx^n^VoCn172^ + 0)l2 = / dx \n1/2(x - n1/2t)XnM
J—00 J-00

Now j2i/f0 = 2"1/2^i where i/̂  denotes the second Hermite function which is ortho-
gonal to fo- Therefore \\Qto - «1/2^oll2 = 1/2 + \ni/2t\2. Hence U(g)f e D(A2)
if, and only if,

n=l

Thus by appropriate choice of XUX2,... one can arrange that / 6 3E\ but U(g)f
S£\. Consequently X\ is not [/-invariant.
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One obvious application of the above results is to the representation of G by left
translations L on L2 — L2(G ; dg). The left invarianceoftheHaar measure rfg ensures
that (L2, G, L) is a unitary representation. The p = 2 Lipschitz spaces L2.y then
correspond to the usual fractional Sobolev spaces. A second less obvious application is
to left translations L on L2 = L2(G ; dg) the square-integrable functions with respect
to right invariant Haar measure. The representation (L2, G, L) is not unitary unless G
is unimodular. Nevertheless the representation g t-> L(g) = A(g)1/2L(g)A(g)~1/2,
where A is the modular function, is unitary and this can be exploited to extend the
embeddings et cetera of Theorem 7.2 and Corollary 7.3 to (Lj, G, L).

The important point is that the generator of / (->• L(e~"") is A1/2i4,A~1/2 =
At - (Pi/2)I where # = (A, A)(e). Therefore the C-subspaces and the subelliptic
C"-subspaces of (L2, G, L) and (L2, G, L) coincide. Consequently the various inter-
polation and Lipschitz spaces associated with the two representations also coincide,
up to equivalence of norms. Moreover, there is an invertible map from the subelliptic
operators H associated with (L2, G, L) to the operators H associated with (Lj, G, L)
given by H — A1/2//A~1/2. Hence the statements of Theorem 7.2 and Corollary 7.3
can be first deduced for (Lj, G, L) and then translated into identical statements for
{L2,G,L).

Finally we note that the results of this section can be compared with Statements
(a) and (d) of Theorem 16 of Rothschild and Stein. If the latter results are special-
ized to the representation (L2, G, L), or (L2, G, L), then they give a local version
of Statements IV and V of Theorem 7.2 and the statement of Corollary 7.3. The
Rothschild-Stein theorem is, however, stronger insofar as it extends to the repres-
entation of G by left translations on the spaces Lp(G;dg), and Lp(G;dg), for
p € (1, oo). It is to be expected that our results also extend to this broader setting but
this would probably require an amalgamation of our techniques with the parametrix
methods used by Rothschild and Stein or the methods of singular integration theory.

8. Miscellany

We conclude this paper with some remarks on strongly elliptic operators of general
order and on analytic vectors for subelliptic operators.

It follows from [22, Theorem 1.5.1] that every strongly elliptic operator generates a
holomorphic semigroup and these can be used to characterize the interpolation spaces
(^T, 3£n)Y. This was established for y e (0, 1} in [22] but the general result follows
by the arguments of Section 3.

THEOREM 8.1. Let H be an wth order strongly elliptic operator.
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I. Letn>y> 0. Then (3T, 3C n)Y = S£n
yjm and the norms || • \\f-n) and

II' II yfm are equivalent, where S denotes the semigroup generated by the closure
ofH.

II. The Lipschitz space (3£, 3En)Y is invariant under the representation U
and the restriction UY of U to *&'y = (S£, 3?n)Y is a strongly continuous
representation if p e [1, oo). Moreover, if HY is the associated operator in
the representation (Wy, G,UY), then

for all n e N and all large co > 0, with equivalent norms.
III. Letnx > yx > 0, n2 > y2 > 0 and p e [1, oo). Let || • |||^;^} be the norm

on the iterated Lipschitz space ((<£"', 3C n^)yx, (&, 3E ni)YV,n2)n. Then

and the norms \\ • \\^n^ and \\ • \\(
Y;l^"2) are equivalent.

PROOF. The proof of Statement I is a modification of the proof of Theorem 3.2.
Steps 1 and 2 are independent of H, hence still valid. For the proof of Step 3 we may
assume that there is no constant term in H. By [22, Theorem III.2.1] the semigroup
5 has a kernel K and

[ dgK,(g) = l
Jc

since there is no constant term. Instead of the bounds (5) we have bounds

L dg \Kt(g)\eplgl <

valid uniformly for all t e (0, 1] and all p > 0, by [22, Corollary III.4.6], and instead
of the Gaussian bounds (6) we have bounds

\K,(g)\ < ar-"/"c-*(i*r/o'«-1'

valid for all t e (0, 1] and g e G and suitable a, b > 0 by [22, Theorem III.4.1].
Finally, the bounds of Lemma 3.3 used in Step 4 must be replaced by the bounds

|| SxL < < * - / " ||JC ||

valid for all t G (0, 1] and x e 3£, for a suitable c > 0. These bounds follow by [22,
Theorem II.2.2]. This proves Statement L__ ^

By Corollary 3.4 (3£, 2£n*)Y — (&, 3tn)Y where St is the subspace on which U
acts strongly continuous. So we may restrict ourselves to the case that (3£', G, U)
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is a strongly continuous representation. For the case n = 1 the statement is proved
in [22, Section II.4] and the proof for the general case is similar. The second part of
Statement II can be proved by a simple modification of the proof of Theorem 4.1 .II.

The proof of Statement III follows from the reiteration theorem and interpolation
theorem (see [6, Theorems 3.2.20 and 3.2.23]). In Peetre's notation we have the
following equalities.

= ((^C , ^C n,+n2))/1/(n1+n2),p;Ki (•*• > "* n,+n2)()'i+'i2)/('i|+n

= (.xT, 2t nl+n2)(yi+Y2)/(n,+n2),p;K

= (.X , JL ni+n2)y]+n.

Moreover, the norms are equivalent.

Finally we consider analytic and Gevrey vectors for subelliptic operators.
Theorem 7.2.II established that the C" -vectors for the directions of the algebraic

basis are determined by the subelliptic operator H, that is, 5C'n = D{H" ) for
all n e N if the representation is unitary and H generates a bounded semigroup.
Moreover, for any representation U the space of C°°-vectors for U is equal to the space
of C°°-vectors for H. Therefore one might hope that in some sense the subelliptic
operator also determines the analytic and Gevrey vectors for U. To this end, let
3£'w{U) be the space of all x e ^ x such that there exist c, t > 0, depending on x,
such that ||JC||̂  < ctnn\ for all n € No and define 3£W{U) analogously. If A is the full
Laplacian then
(26) XJJU) = 3ra{&x'2)

where ^T(U(A1/2) denotes the space of analytic vectors for A1/2 (see [20, Theorem 7.1]
and for the more general case of m-th order strongly elliptic operators see [22, The-
orem III.3.1]). The proof of ((26)) is based on the inequality

(27) H*ll2<c(||A*|| +11*11)

valid for all x € S^^ and the notion of analytic domination (see [9, Theorem 1.3]). The
identification (26) was first established for unitary representations (see [8, Theorem 2]).
Subsequently, using the fact that (27) is valid for all Lipschitz representations, the
identification (26) was obtained for any representation.

Now let H be a subelliptic operator as in Theorem 7.2 and assume that the semigroup
generated by H is uniformly bounded. Then for unitary representations one has

for all x e %'«, so one might hope that in this situation one also has

3£a(H ). But this is not the situation as the next example demonstrates.
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EXAMPLE8.2. LetG = St/(2)andchooseabasistfi,a2,a3ofgsuchthat[ai,a2] =
a3, [a2, a^\ = ax and [a3, a\] = a2. Further define

L+ = a\ — ia2, L_ — a\ + ia2

in the complex enveloping algebra of g. Then it is well known that for every / e
{0, \, 1,...} there exists a unique irreducible unitary representation nt of G in a
Hilbert space Jf i of dimension 2/ + 1. Moreover, there exists an orthonormal basis
£;,_/, e/,_/+1,... eu for Jf?i such that

dn,(L+)e,,m = y/l{l + 1) - m{m

dTti{LJ)eim = y/(/ + 1) — m{m —

for all m e {- / , . . . , /} . Now let

/ € ( 0 , , . . . )

and

Then (/ is a unitary representation of G in Jf. Next let A, = dU(cij) and introduce
the sublaplacian H = — A\ — A\. It follows that

and hence if

x =

one has

nx\\2 = ye-
2NN4n < (4n)\ye-

N = c(4n\2n)\2 < c24«(\\Hnx\\2 = ye-
2NN4n < (4n)\ye-

N = c(4n\2n)\2 < c24«(2«)!

for all n 6 No where c = e/(e - 1). So \\H"x\\ < Vc22"(2«)! and x 6 #
We next argue that ^ ^ ^T^(tZ). Suppose that x e 3P'a(U). Then there exist

c, r > 0 such that ]|JC||̂  < ct"n\ for all n e No. Then by an elementary counting
argument

\\H2NdU(L.)Nx\\ < cSNt5N(5N)l < ct5N2l5NN\5
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for all N e N. But

\\H2NdU(L.fx\\ > e-N\\H2NdU(L_)NeNi,NA\

and
dU(L_) eN2,Ni = XN eNitNi^N

withA.^ 6 R, XN > 1. Moreover, HeNi,Ni_N = 2N3eNi,N2_N. So \\HwdU{L_)Nx\\
> r"JV6JV > e-NNl6. But <rwAM6 > cf5/v215A'N!5 for large N and so by contradic-
tion one concludes that x g &

The phenomenon exhibited by this example is of interest because all elliptic and
subelliptic regularity properties of unitary representations are directly comparable at
the C -level. Nevertheless the example illustrates the difference for analytic proper-
ties.
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