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Abstract. By making use of the MHD self-induction equation in general relativity (GR), re-
cently derived by Clarkson and Marklund (2005), it is shown that when Friedmann universe
possesses a spatial section whose Riemannian curvature is negative, the magnetic energy bounds
computed by Nuñez (2002) also bounds the growth rate of the magnetic field given by the strain
matrix of dynamo flow. Since in GR-MHD dynamo equation, the Ricci tensor couples with the
universe magnetic field, only through diffusion, and most ages are highly conductive the interest
is more theoretical here, and only very specific plasma astrophysical problems can be address
such as in laboratory plasmas. Magnetic fields and the negative curvature of some isotropic cos-
mologies, contribute to enhence the amplification of the magnetic field. Ricci curvature energy is
shown to add to strain matrix of the flow, to enhance dynamo action in the universe. Magnetic
fluctuations of the Clarkson-Marklund equations for a constant magnetic field seed in highly
conductive flat universes, leads to a magnetic contrast of δB

B
≈ 2, which is well within observa-

tional limits from extragalactic radiosources of δB
B

≈ 1.7. In the magnetic helicity fluctuations
the magnetic contrast shows that the dynamo effects can be driven by these fluctuations.

1. Introduction
Since the early work by Gamow and Teller (1939), where they discovered an interesting

relation between the Riemannian spatial hypersurfaces of negative curvature and the
expansion of the open universe, this led naturally one to argue if that there is a similar
relationship between there is a similar relation between the curvature and the expansion.
In this paper, one shows that even when curvature vanishes, there is a constraint between
the expansion and magnetic helicity. When the curvature of the spatial section is negative,
a relationship is obtained between expansion, and Ricci curvature. Actually is easy to
shown from dynamo equation that the expansion possesses a lower bound by the Ricci
curvature. More recently, dynamo effects in cosmology have been adressed recently by
Kleides et al.(2007), by using a anisotropic cosmological model in ideal highly conductive
plasmas. In the realm of isotropic cosmology Brandenburg et al.(1998) have considered
that decay of magnetic field can be slowed when turbulence is switch on. In this paper the
isotropic case is further investigated in the case of hydromagnetic dynamo by making use
of a recently derived , GR-MHD dynamo equation of Marklund and Clarkson (2005). This
case is examined by using the approach developed by Nuñez (1995) in Sobolev spaces.
Another example is that of a magnetic field helicity in cosmlogy. the paper is organized
as follows: In section II the magnetic helicity model is addressed while in section III, the
magnetic energy inequalities and the contribution of the Ricci term integral are given.
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Section IV addresses the issue of magnetic perturbations on extra radiogalactic sources.
Conclusions are presented in section V.

2. Maqnetic helicity in non-ideal plasma cosmology
Three dimensional dynamos in Riemannian space can be given by the self-induction

equation (Arnold et al., 1981).

∂B

∂t
= −{v,B} + div(v)B + η∆B (2.1)

where η is the plasma resistivity and ∆ := ∇2 is the Laplacian operator, where {v,B} =
−curl(v×B). In Chicone et al.(1999) the Riemannian manifold was confined to incom-
pressible dynamo flows, where the second term on the RHS of expression (3.2) vanishes,
and along with the divergence-free condition of the magnetic field

divB = 0 (2.2)

they form a solenoidal vector field in Riemannian manifold. On the other MHD-GR
dynamo equation in pseudo-Riemannian spacetime given by its 3-spatial section

Ḃ−∇×[v×B]−η∆B = −η

[
2
3
θB − Ric.B

]
−

(
1 +

2
3
ηθ

)
2
3
θB−η∇×(a×B)+ηΘ (2.3)

where Ric represents Ricci tensor and θ is the expansion of the Friedmann universe. In
this case shear and global vorticity vanish. As is easily noted from this equation, the
Ricci curvature has no effect in dynamo action in most highly conductive cosmological
models, since then the diffusion constant cefficient η vanishes. The symbol Θ is given by

Θ = −2
3
θ̇B − 2

3
θ̇Ḃ − a×[∇× B − µ0j + a × B] (2.4)

By Fourier analyzing the above equation by the expression

B = B 0 exp[γt − ikx] (2.5)

yields

divB = ik · B = 0 (2.6)

for the solenoidal equation and

k × (v × B) = 0 (2.7)

a × (a × B) ≈ 0 (2.8)

where in the last equation one had assumed that the acceleration of the universe a is
low. Magnetic helicity is given by the constraint

∇×B = λB (2.9)

and it is used in the above computations yields

Ḃ−∇×[v×B]+ηλ2B = −η

[
2
3
θB − Ric.B

]
−

(
1 +

2
3
ηθ

)
2
3
θB−η∇×(a×B)+ηΘ (2.10)

In the flat Friedmann universe, where the spatial section of the spacetime is zero, r
Ric = 0, this equation reduces to the one

1
2
Ḃ2 = η[λ2 +

4
9
θ2 − 2

3
θ̇]B2 − 2

3
θB2 (2.11)
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where the convective term ∇×[v × B vanishes since by Fourier transformation

k×[v × B] = i[(k.B)v − (k.v)B] (2.12)

since both velocity and magnetic fields are solenoidal. Then, considering that the mag-
netic field decays as B ≈ s−2 , one obtains the self-induction equation as

θ̇1 −
9
4
θ1 = 0 (2.13)

where the old expansion is related to the new as

θ = θ1 −
2
3
λ2 (2.14)

Therefore solution of equation (2.13) is

θ = θ0sinh

[
3
2
t

]
+

2
3
λ2 (2.15)

which shows that magnetic helicity enhances the expansion of the universe, when mag-
netic field decay. Now let us briefly examine and put some bounds on the growth of the
magnetic field, when the Riemannian spatial curvature of the spatial section is nega-
tive as in 3D case of fast dynamos in Riemannian compact manifolds by Chicone and
Latushkin (1999). In this case the FRW metric is open and the self-induction equation is

Ḃ

B
= η[−λ2 +

2
3
θ̇ − Ric − 4

9
θ2 ] − 2

3
θ � 0 (2.16)

the equal sign corresponds to marginal dynamos. Since Ric � 0, in the case of Riemannian
negative curvature,the Ric term contributes to enhance the dynamo effect as in Kleidis
et al result, but basic difference is that here the plasma is non-ideal and the spacetime
isotropic since one imagines, that here dynamo is kinematic and not hydromagnetic as
in the next section. In the case of negative Riemann spatial or Gaussian Ricci curvature,
and the constraint of slow expansion, θ << 1 and θ̇ << 1 yields

Ric <
3
2
ηθ (2.17)

which yields an explicitly constraint between expansion the diffusion and the Ricci scalar.

3. Bounds on hydromagnetic dynamo growth rate cosmology
In this section one shall consider the bounds on the magnetic energy of the hydro-

magnetic dynamos in spatially curved cosmlogical isotropic models. One shall demon-
strate from the above GR-MHD relativistic plasma dynamo equations for finite magnetic
Reynolds numbers Rm = η−1 , the Ricci scalar volume integral is fundamental for these
bounds. Let us consider the magnetic energy time evolution as

1
2

∂
∫

B2dV

∂t
=

∫
(B.∇)v.BdV − η

∫
|∇B|2dV − η

∫
Ric.B.BdV (3.1)

Since under the plasma resistivity, the only new term compared to non-GR plasmas is
the one with Ricci tensor, then to investigate the magnetic energy bounds, it is enough
to investigate this bound contribution as

−η

∫
Ric.B.BdV = −η

∫
RijB

iBjdV = −6η

∫
K

a2 δijB
iBjdV = +6η

∫
1
a2 B2dV � 0

(3.2)
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where K is the Gaussian negative curvature of the negatively curved Riemannian spatial
section like in Gamow-Teller universe. Thus since this contribution is positive, when
the universe shrinks or collapses the curvature term will greatly enhance dynamo action
and the bounds for the growth rate. Since, as shown by Nuñez (2002) in his study of
the dissipation of kinetic energy in the hydromagnetic dynamo, the following inequality
applies

|
∫

B.∇v.BdV | � 1
2
||(∇v)t + ∇v||∞)

∫
B2dV (3.3)

Inserting the new Ricci curvature energy into this expression yields

γ �
(

1
2
||(∇v)t + ∇v||∞+ <

6η

a2 >

)
(3.4)

where to obtain this term, one had to assume that the gradients of the magnetic field
would be highly suppressed by the overall magnetic energy at all. The brackets on the
RHS of the inequality means a mean of averaged value over the volume of a small portion
of the universe. Thus in general the Ricci curvature adds to strain matrix to enhance
dynamo action in the presence of diffusion. This seems to agree with Kleides et al result
in the case of diffusive isotropic cosmolgical models.

4. Magnetic fluctuations and dynamo effects in GR extragalactic
radiosources

As pointed out by Ruzmaikin et al.(1981), there is a gap between the observational
value of the contrast obtained by the joint catalogue of polarization properties of extra
galactic radiosources δB

B ≈ 1.7 and the one estimated by Ruzmaikin et al.(1981) as
δB
B ≈ 103. In this section an estimate more realistic and well within observational values
is given by the contrast δB

B ≈ 2. These computations are performed in the magnetic
helicity-free case. To start let us use the magnetic field perturbation given by

B = B0 + δB (4.1)

where δB is the magnetic fluctuation and B0 is here the constant magnetic field that may
seed the galactic dynamo. Substitution of this fluctuation into the above expression for
the magnetic energy density, in the case of a highly conducting (η = 0) universe yields

δB

B
= 1 + exp

[
−2

3

∫
δθdt

]
(4.2)

where one has addopted a constant initial expansion of the universe, to simplify compu-
tations. For a very small universe fluctuation in expansion and for a finite time interval,
this result reduces to

δB

B
= 2 − 2

3

∫
δθdt] ≈ 2 (4.3)

as one wishes to prove. Let us now consider the case where the magnetic helicity fluctu-
ations are present. In this case computations leads to

δB

B
=

1√
2 + 1

3 δθη
δλ (4.4)

which reduces to
δB

B
=

1√
2η

δλ (4.5)
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This last expression can be used to place a limit on magnetic helicity from the magnetic
contrast and magnetic Reynolds numbers.

5. Conclusions
Gravitational magnetic fluctuations in terms of universe expansin fluctuations can be

obtained from GR-MHD dynamo equation. Physical applications lead us to find contrasts
to the magnetic fields or magnetic field fluctuations that are well within experimental
values for the extra galactic radio sources. Bounds for hydromagnetic energy based on
these gr dynamo equation are also found.
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