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Introduction

A group G is called a c-group if each of its subnormal subgroups is
characteristic in G. It is the object of this note to give a characterization
of finite solvable c-groups.

All groups considered are assumed finite. Let L(G) denote the first
term of the lower nilpotent series of G, G’ the commutator subgroup of G,
and Z(G) the center of G. Then we wish to prove the following theorems:

THEOREM 1. Let G be a solvable group whose 2-Sylow subgroups are
abelian. Then G is a c-group if and only if the following hold:

1. G = G'K, where G' n K = (1) and G' is a cyclic Hall subgroup of G;

2. G'Z(G) ts cyclic;

3. G/G’ s cyclic.

THEOREM 2. Let G be a solvable group whose 2-Sylow subgroups are non-
abelian and which possesses no non-trivial abelian direct factor. Then G is a
c-group if and only if the following hold:

1. The 2-Sylow subgroups of G are generalized quaternion;

2. G has exactly one element u of order 2;

3.G = L(G) K where L(G) n K = (1) and L(G) is a cyclic Hall-sub-
group of G;

4. G[{u) is a cgroup.

PRELIMINARIES. It should be remarked that if G is a solvable c-group
then G is supersolvable. This follows from the fact that the chief factors of
G are abelian.

A group G is called an A-group if each of its Sylow subgroups is abelian.
If G is a solvable A-group then [5] G' n Z(G) = (1) and G'Z(G) is the
Fitting subgroup of G.

Finally, a group G is called a Z-group if each of its subnormal subgroups
is normal in G. A theorem of Gaschutz [3] states that if G is a solvable
t-group, then L(G) is a Hall-subgroup of G of odd order.

Before proceeding to the proofs of Theorems 1 and 2, we prove the
following
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LeEMMA 1. Let G be a nilpotent group. Then G is a c-group if and only if
G 1s cyclic.

ProoF. If G is cyclic then it is clear that G is a ¢-group. Suppose G is
a c-group. Since G is nilpotent, every subgroup of G is subnormal in G.
Hence every subgroup of G is characteristic in G. It follows that G is abelian
or Hamiltonian. If G is Hamiltonian then ¢ = A X BX(,, where 4 is
abelian of odd order, B is an elementary abelian 2-group, and Q, = <a, &)
with a®" = bt = 1,ab = ba',a?™ " = #2, and # = 3. The map 6 : Q,—~Q,
given by

defines an automorphism of Q, which can be lifted to G. Thus (&) # <{ab)
and (b)? = (ab) and we have a contradiction. It follows that G is abelian.
Let G, be a p-Sylow subgroup of G, say

G, = (@) X{Z) X ** * XLZp),

with s > 1. We can assume without loss that z, is of maximal order in G,,.
Then the map ¢ : G, — G, given by

6 _
T = 1%,
2 =z, 1 =2,

is an automorphism of G, which can be lifted to G. But (x;) # {z;23)
and {(z,)? = {z,%,) and we have a contradiction. So G, is cyclic, and hence,
so is G.

PRrOOF OF THEOREM 1. First suppose G is a c-group, say |G|=p71p3? -+ - po*
is the canonical factorization of |G| such that p; < py < - - - < p,. Since
G is supersolvable, it has a normal series

() G=Hy>H,>--->H,_,>H, = (1),

where |H, ,: H, = p5 for ¢ =1, .-, r. Thus if 2| |G|, then G[H, is iso-
morphic to a 2-Sylow subgroup of G. Since G is a ¢-group and H,_; is a
nilpotent normal subgroup of G of odd order, H, , is abelian. Simi-
larly, H, ,/H, is abelian for ¢ = 2,---,7r—2. So G is an A-group. Thus
G'nZ(G)= (1) and G'Z(G) is the Fitting subgroup of G. Hereafter, let
Z=12(G) and L = L(G).

Since G is supersolvable, G’ is nilpotent and hence, abelian. Since
G/L is nilpotent, it must be abelian, thus G’ = L. So [3] G’ is a Hall-
subgroup of G and G = G'K with G’ n K = (1). Since G’ is abelian, the
automorphisms of G must induce power automorphisms on G’. We claim
that G’ is cyclic. Let 0 € Aut (G’) and let ge G, say g = a - b where a e G’
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and b e K. Define 6 : G — G by g# = a%. Then 0 is an automorphism of G.
Hence G’ is cyclic.

We now show that Z is cyclic. Since Zn G = (1), Z < K. Let p
be any prime divisor of |Z| and let K, be the p-Sylow subgroup of K, say

K, = )X thgp X+ v 0 XUy

with £ > 1. Let & be an element of Z of order p. Assume b ¢ {«,;> and
define « : K, -> K, by

uy = bu,

u,f = U, i > 1’

then « can be extended to an automorphism & of G which induces the
identity on G’. Say G’ = (c). Then H, = {c, u,» and H, = {c, bu,) are
normal in G and H, # H,. But H% = H, so we have a contradiction. Thus
K, is cyclic. In particular, Z is cyclic. Since G’ is a Hall-subgroup of G and
G' nZ = (1), G'Z is cyclic.

Since G’Z is the Fitting subgroup of G, G/Z has a trivial center. Hence
K|Z acts faithfully on G'Z/Z, a cyclic group of odd order. Thus K/Z is
cyclic. Hence, it follows that G/G’ is cyclic.

Conversely, suppose conditions 1—3 hold and let H be a subnormal
subgroup of G. We can assume H £ G'Z and ¢’ £ H. Consider H/H n G';
H|H n G’ is subnormal in G/H n G’ and hence in HG'{H n G'. Thus there
is a chain of subgroups

H‘=HGI>H"_1>"'>H2>H1=H)

such that
H/HnG' JH,JHNG for i=1,---,5—1.
Since
(|(Hy:H|, | H:HnG'|)=1, HHHn G

is characteristic in Hy/H n G'. So H/H n G’ 4 Hy/H ~ G'. Proceeding in
this fashion we get that H/H n G’ is characteristic in HG'[H n G’'. Since
HG’ is characteristic in G, it follows that H is characteristic in G. So G is

a c-group.

PROOF OF THEOREM 2. Assume G is a c¢-group and let L = L(G),
Z = Z(G). Then L is a Hall-subgroup of G of odd order. Hence, L is abelian
and G = L - K with L n K = (1). As in the proof of Theorem 1, we have
that L is cyclic. G/L is non-abelian since the 2-Sylow subgroups of G are
non-abelian. Hence, L is a proper subgroup of G'. Let S be a 2-Sylow sub-
group of G, then S = BX(, where B is an elementary abelian 2-group
and @, is generalized quaternion of order 2”. So §/S n G’ ~ SG’/G' and
therefore S n G’ £ (1). So if Q, = {a, > with b* = 1, then b2 € G’. Thus
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b2e G’ n Z since <(b*) 4 G. Now G/L - (6% is nilpotent and all of its Sylow
subgroups are abelian, so G’ = L - (§%).

G/b%) is an A-group so Z(G[{B*)) n G'[<b%> = (1). Hence,
G' n Z = (%), Let Z,[<b?) = Z(G[<b®)). Then G’'Z,[<b?) is the Fitting
subgroup of G/(b%). Since 4% € Z, G'Z, is the Fitting subgroup of G. Since
G'Z,|]Z, ~ L, we have that G/G’Z, is cyclic. Since Z, is a nilpotent normal
subgroup of G, Z, = A; X B, XQ,, where A, is an abelian group of odd order,
B, is an elementary abelian 2-group and Q,, is generalized quaternion of
order 2™, So B; =< Z and 4, = Z. Hence, it follows that B, is an abelian
direct factor of G. So B, = (1) and Z; = 4,XQ,,. Moreover, since K/Z,
is cyclic, its 2-Sylow subgroups are cyclic. Now Q,, is a proper subgroup
of @,, for otherwise ¢, would be a direct factor of G and G would not be
a c-group. Thus the 2-Sylow subgroups of G have form Q,. So G has exactly
one element of order 2.

Using methods similar to those used in the proof of Theorem 1, one
gets that 4, is cyclic and hence that Z,/(4%) is cyclic. In the process we also
find that if p is a prime divisor of |4,|, then the p-Sylow subgroup of K
is cyclic. Thus the Sylow subgroups of G/G’ are cyclic and hence G/G’
is cyclic. Thus, G/<b?) is a ¢c-group.

Conversely, suppose conditions 1—4 hold and let H be a subnormal
subgroup of G. Let 0 € Aut (G). Then since G/{u) is a c-group, H{u)/{u)
is characteristic in G/{%). Now either 2| |H| and hence, » € H, or 2{|H|.
If wue H then H? = H. If 21 |H|, let y e H and suppose y° = y,%*. Here
s=0or1andy, e H If y° = y,u, then |y’| = 2|y,| and we have a contra-
diction. So ¥° € H and H? = H. So G is a c-group.

CoRrROLLARY 1. If G is a solvable c-group and G has an abelian direct
factor, then this factor is a Hall-subgroup of G.

Proor. Let A be an abelian direct factor of G, say G = A X B. Thus
A must be cyclic by Lemma 1. We can assume that B has the form given
in Theorem 1 or 2 and that B has no abelian direct factor. Then we still
have G = LK with Kn L = (1) and L a cyclic Hall-subgroup of G.
Suppose p is a prime divisor of (|4], |B|). Let K, be the p-Sylow subgroup
of K. If p is odd then K, is abelian, say

K, = {2 ) X{xgp X+ o+ X<,

Let a be the element of A of order 5. Since p| (|4}, |B|), ¢t > 1, say a € {(z,).
Then the map 6 : K, — K, given by

0
z; = ar,

P .
z; =%, 7> 1,

is an automorphism of K, which can be lifted to § € Aut (G). Then, if
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L = ), H; = ¢, z,) and H, = {c, #;a) are normal subgroups of G and
H§ = H,. Hence, we have a contradiction. A similar technique can be
applied if p = 2.
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