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Abstract

This paper draws connections between the double shuffle equations and structure of associators;
Hain and Matsumoto’s universal mixed elliptic motives; and the Rankin–Selberg method for
modular forms for SL2(Z). We write down explicit formulae for zeta elements σ2n−1 (generators
of the Tannaka Lie algebra of the category of mixed Tate motives over Z) in depths up to four,
give applications to the Broadhurst–Kreimer conjecture, and solve the double shuffle equations for
multiple zeta values in depths two and three.
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1. Introduction

1.1. Motivation. A consequence of Belyi’s theorem [2] is that the absolute
Galois group of Q acts faithfully on the profinite completion of the fundamental
group of P1\{0, 1,∞}, or in other words, the homomorphism

Gal(Q/Q) −→ Aut(π̂1(P1\{0, 1,∞},→10)) (1.1)

is injective. In his ‘Esquisse d’un programme’ ([22], 3
4 − 4

5 ), Grothendieck
suggests that this should give a way to ‘parametrize’ elements of Gal(Q/Q) by
suitable elements of the profinite group on two generators.
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Transposing this question to the prounipotent setting leads to a more attainable
goal. The unipotent de Rham analogue of (1.1) is the statement that

GdR
MT (Z) −→ Aut(π dR

1 (P
1\{0, 1,∞},→10)) (1.2)

is injective [4], where GdR
MT (Z) is the de Rham motivic Galois group of the

category of mixed Tate motives over Z. Its graded Lie algebra is noncanonically
generated by elements σ3, σ5, . . . in every odd degree −3,−5, . . .. Furthermore,
the de Rham fundamental groupoid of P1\{0, 1,∞}, and its group of inertia-
preserving automorphisms, can be realized as formal power series in two
noncommuting variables x0, x1. This gives a concrete version of Grothendieck’s
programme:

PROBLEM 1. Describe explicitly the images of elements σ2n+1 in Q〈〈x0, x1〉〉.

A priori, the elements σ2n+1 are not canonical, since they are only well defined
up to addition of commutators. For example, in degree −11, there is a two-
dimensional space of possible generators µσ11 + λ[σ3, [σ5, σ3]], where µ, λ ∈ Q,
with respect to some choices of σ2n+1. Strangely enough, the proof [4] of the
injectivity of (1.2) actually provides a canonical choice of generators σ h

2n+1, but it
seems very difficult to describe these explicitly, and their coefficients involve large
prime factors. The proof in [4] also provides a canonical element τ h ∈ Q〈〈x0,

x1〉〉 in even degrees, which is a motivic version of a rational associator. The
important problem of constructing an explicit rational associator was suggested
by Drinfeld [13] in 1990 and is still open. The elements σ h

2n+1, τ
h are related to

the choice of the Hoffman–Lyndon basis for motivic multiple zeta values.
A better reformulation of problem 1 is therefore

PROBLEM 2. Give a canonical choice, and explicit construction of, elements
σ2n+1 in Q〈〈x0, x1〉〉 and a motivic rational associator τ in Q〈〈x0, x1〉〉.

In this paper, we attempt to solve problem 2 using the depth filtration, which
corresponds to the degree in the letter x1. The heads of the elements σ2n+1

(respectively τ ) in depths 1 and 2 (respectively depth 1) are canonical, but
their tails are not. Using three different techniques (via double shuffle equations,
the unipotent fundamental group of the punctured Tate curve, and the relative
completion of SL2(Z)) we show, surprisingly, that there is an explicit way to
write down canonical elements σ c

2n+1 (respectively τ c) to the next order, namely
depth 3 (respectively depth 2). Their coefficients involve products of Bernoulli
numbers, which can be thought of as a higher-depth version of Euler’s formula
expressing even zeta values as multiples of powers of π . This raises the possibility
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that problem 2, which at first sight seems hopeless, may in fact have an explicit
solution to all depths. Such a solution would give an algorithm to write any
motivic multiple zeta value in terms of a basis, and in addition, would give an
explicit representation of the motivic Galois group of MT (Z).

The general theme of this paper is that certain constructions relating to the
motivic fundamental group of the projective line minus 3 points, which are
inherently ambiguous, can be explicitly determined by passing to genus one.

The main result can be viewed on the following three different levels.

1.2. The fundamental group of P1\{0, 1,∞}. The de Rham fundamental
group

1Π1 = π dR
1 (P

1\{0, 1,∞},→11)

of P1\{0, 1,∞} with tangential base point the unit tangent vector at 1, is a
prounipotent affine group scheme over Q. Its graded Lie algebra is the free Lie
algebra L(x0, x1) on two generators x0, x1 dual to loops around 0 and 1. Since 1Π1

is the de Rham realization of a pro-object in the category of mixed Tate motives
over Z, it admits an action of the Tannakian fundamental group GdR

MT (Z). Denote
the graded Lie algebra of the latter by

gm = L(σ3, σ5, . . .). (1.3)

It is the free graded Lie algebra generated by noncanonical elements σ2n+1 in
degree −2n − 1 for n > 1. We obtain a morphism of Lie algebras

i0 : gm −→ Der1 L(x0, x1) (1.4)

where Der1 L(x0, x1) denotes derivations which send x1 to 0. The subscript of i0

refers to genus zero. Furthermore, we know that (1.4) factors through a morphism

i0 : gm i−→ L(x0, x1) −→ Der1 L(x0, x1)

where the second map sends f ∈ L(x0, x1) to the derivation x0 7→ [x0, f ], x1 7→ 0.
The main result of [4] states that i , and hence i0, is injective, and therefore enables
us to expand elements σ ∈ gm in ‘coordinates’ x0 and x1. We wish to describe the
i(σ2n−1) as explicitly as possible. One way to do this is using the known relations
which are satisfied by its image. Indeed, Racinet [35] showed that the image of i
is contained in the Lie algebra dmr0 of solutions to the double shuffle equations.
It is also contained in the space of solutions to Drinfeld’s associator equations,
which by a result of Furusho [17], are contained in dmr0. The associator relations
will not be used in this paper.

It is well known that

i(σ2n+1) = ad(x0)
2nx1 + (terms of degree > 2 in x1), (1.5)
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but little is known about the coefficients of i(σ2n+1) of degrees > 3 in the x1, and
worse, they depend on the choice of generators σ2n+1. In this paper, we show:

THEOREM 1.1.

(1) There is a choice of generators σ c
2n+1 ∈ gm which is given by an explicit

formula (1.11) modulo terms of degree > 5 in x1.

(2) There is a rational associator τ c which is given by an explicit formula modulo
terms of degree > 4 in x1.

Statement (1) is surprising because a choice of generators σ2n+1 are a priori
only well defined up to addition of triple commutators of σ2m+1. The key point is
that by passing to genus 1, we can fix these uniquely. A similar story holds for (2).

In the course of the proof of this theorem, we discover that it is more
convenient to consider a different normalization for the σ2n+1 from the canonical
normalization (1.5). For want of a better name, we shall call it the heretical
normalization

σ 2n+1 ≡
B2n

(2n)!σ2n+1 (mod terms of degree > 2 in x1), (1.6)

where B2n is the 2nth Bernoulli number. Throughout this paper, objects which are
normalized according to the heretical normalization will be underscored.

1.3. The fundamental group of the first-order Tate curve. Let E×∂/∂q denote
the punctured fibre of the universal elliptic curve M1,2 → M1,1 over the
tangential base point ∂/∂q on M1,1, where Mg,n denotes the moduli space of
curves of genus g with n marked points. In a future paper with Hain, we shall
show (as suggested in [25]) that its de Rham fundamental group

P = π dR
1 (E

×
∂/∂q,

→
11) (1.7)

where
→
11 is the tangent vector of length 1 with respect to a natural choice of

holomorphic coordinate w on E×∂/∂q , is the de Rham realization of a pro-object
in the category of mixed Tate motives over Z. Its weight filtration is denoted
by M (for monodromy-weight), but it also possess an additional filtration W
(the ‘elliptic weight’), which coincides with the lower central series filtration.
Its associated bigraded Lie algebra is the free Lie algebra on certain canonical
generators a,b. Correspondingly, one obtains a morphism of Lie algebras

i1 : gm −→ DerΘ L(a,b) ⊆ DerL(a,b) (1.8)

where DerΘ denotes the subspace of derivations δ such that δ(Θ) = 0, where
Θ = [a,b]. We shall show as a consequence of [4] that (1.8) is injective. (If one
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thinks of gm as being bigraded for M and W , with W = M , then the map i1

respects the M-grading, but not the W -grading, only the W -filtration, see [25].)
There exist distinguished elements ε∨2n ∈ DerΘ L(a,b) whose action on a is

ε∨2n(a) = ad(a)2nb for n > 1.

They were first studied by Tsunogai [32, 37] in a slightly different context and
rediscovered in [11, 28]. The action of ε∨2n on b is determined by the condition
ε∨2nΘ = 0 together with the fact that it is homogeneous of degree 2n in a,b.
The derivations ε∨2n are ‘geometric’ in the sense that the relative completion of
SL2(Z) = π1(M1,1, ∂/∂q) (or universal monodromy) acts on the completion
(with respect to the lower central series) L(a,b)∧ via the Lie algebra generated
by the ε∨2n and their images ad(ε∨0 )

kε∨2n under the adjoint action of

ε∨0 ∈ DerΘ L(a,b) where ε∨0 (a) = b, ε∨0 (b) = 0.

Denote the Lie subalgebra generated by the ε∨2n , for all n > 0, by

ugeom ⊂ DerΘL(a,b).

It is the M,W -bigraded image of the universal monodromy [24]. The elements
ε∨2n satisfy relations studied by Pollack [34]. The image of gm in DerΘ L(a,b)
under (1.8) is by no means contained in ugeom, but in low degrees with respect to
b, the ε∨2n give canonical ‘coordinates’ in which to write down the initial terms of
elements i1(σ2n+1). Indeed, the motivic version of a formula due to Nakamura is

i1(σ2n+1) ≡ ε∨2n+2 (mod W−2n−3)

for all n > 1. We shall prove:

THEOREM 1.2. Let n > 2. There exists a choice of elements σ c
2n+1 satisfying

i1(σ
c
2n+1) ≡ ε∨2n+2 +

∑
a+b=n

1
2b
[ε∨2a+2, [ε∨2b+2, ε

∨
0 ]] (mod W−2n−5) (1.9)

where the ε∨2n are heretical normalizations (3.4) of the ε∨2n .

This theorem is equivalent to an explicit formula for the i0(σ
c
2n+1) ∈ L(x0, x1)

modulo terms of degree > 5 in x1. Note that the case σ c
3 is exceptional. The sheer

simplicity of formula (1.9) leads one to wonder if it can be extended further.
This theorem is equivalent to a formula for i0(σ

c
2n+1) using an explicit morphism

from the de Rham fundamental group of P1\{0, 1,∞} to that of E×∂/∂q which was
written down by Hain. Since i0 and i1 are compatible with this morphism, the
expansion (1.9) of i1(σ

c
2n+1) in terms of derivations ε∨2k implies an expansion for

i0(σ
c
2n+1) in terms of x0, x1 in genus 0.
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1.4. Rankin–Selberg method. The third way of understanding the elements
σ c

2n+1, and the inspiration for this paper, came from the theory of iterated integrals
of holomorphic modular forms for SL2(Z). The coefficients in equation (1.9)
come from the computation [8] of the imaginary part of an iterated integral
of two Eisenstein series using the Rankin–Selberg method. They turn out to
be the coefficients of ζ(2n − 1) in the convolution of two Eisenstein series of
different weights, which are products of Bernoulli numbers. Equivalently, they are
proportional to the coefficients in the odd period polynomials of Eisenstein series.
This is how I found both the heretical normalizations (1.6), and the formula (1.9).

1.5. Further remarks. We discuss the methods used in this paper, and further
applications to the double shuffle equations and Broadhurst–Kreimer conjecture.

1.5.1. Commutative power series and anatomy of associators. One tool which
we use extensively is the method of commutative power series. It is closely related
to Ecalle’s theory of moulds [14, 15]. Let L(u, v) be the free bi-graded Lie algebra
generated by two elements u, v. The degree in v will be called the depth-grading.
For any r > 1, elements of depth r in the tensor algebra T (u, v) can be represented
as commutative polynomials in r variables

ρ : grr
v T (u, v) −→ Q[x1, . . . , xr ] r > 1 (1.10)

ui0vui1 . . . vuir 7→ x i1
1 . . . x

ir
r .

We apply this construction to (u, v) = (x0, x1) and (u, v) = (a,b), and their
derivation algebras. We shall explain why, in certain situations, it is natural
to rescale the morphism ρ by introducing polynomial denominators. In this
manner, elements of Der1 L(x0, x1) and DerΘ L(a,b) are uniquely encoded by
sequences of rational functions in x1, . . . , xr . The double shuffle equations
(defining equations for the Lie algebra dmr0) can be translated into functional
equations for commutative power series via the map ρ. A surprising discovery is
that there exist canonical solutions (in fact, several natural choices with different
properties) if one allows poles:

THEOREM 1.3 [3]. There exist explicit solutions to the double shuffle equations
in the space of rational functions in all weights and all depths.

There is a particular family of solutions we denote by ξ (r)2n+1 ∈ Q(x1, . . . , xr ) in
weight 2n + 1 > 3. Their components in depths r = 1, 2 are polynomials, but
they have poles in depths r > 3. Furthermore, a new element emerges in weight
−1 which we denote by ξ (r)−1 ∈ Q(x1, . . . , xr ). The idea of [3] is to write the
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polynomial representation of zeta elements ρ(i(σ2n−1)) in terms of the rational
functions ξ2n+1, for n > −1 (‘anatomy’). It can be computed explicitly in low
depth:

THEOREM 1.4. If { , } denotes the Ihara bracket, transposed and extended to
rational functions via (1.10), then the canonical zeta elements up to depth 4 are
given, in the heretical normalization, by the simple formula:

ρ(i(σ c
2n+1)) ≡ ξ 2n+1

+
∑

a+b=n

1
2b
{ξ

2a+1
, {ξ

2b+1
, ξ−1
}} (mod depth > 5). (1.11)

Writing this formula in the canonical, as opposed to heretical normalizations,
produces coefficients which are products of Bernoulli numbers in the sum in
the right-hand side. These coefficients are essentially the coefficients in the odd
period polynomial of Eisenstein series, a fact which emerges from Section 9.

Theorem 1.4 is proved by combinatorial methods, and uses Goncharov’s
theorem [20] enumerating the solutions to the double shuffle equations in
depth 3. It makes no reference to the first-order Tate curve E×∂/∂q . It is more
illuminating, however, to interpret this theorem by passing to genus 1. Via the
Hain morphism 3.3, it turns out that the rational function representations of the
ξ2n+1 correspond in low depths to those of the derivations ε∨2n+2, and enables us to
deduce Theorem 1.2 from Theorem 1.4.

1.5.2. Double shuffle equations. Our elements σ c
2n+1 are explicit solutions to

the double shuffle equations in depths 6 4 and odd weights. We also construct,
in Section 7.1, an explicit solution τ c in depths 6 3 and all even weights. Using
Goncharov’s theorem mentioned above, we deduce

THEOREM 1.5. Every solution to the regularized double shuffle equations in
depths 6 4 (odd weight) and depths 6 3 (even weight) can be expressed using
the explicit elements σ c

2n+1 and the element τ c.

This theorem can be applied to the method of [5] for decomposing motivic
multiple zeta values into a basis, which involved a numerical computation at each
step. One application of the elements σ c

2n+1 and τ c is to remove this transcendental
step, leading to an exact algorithm for proving any motivic relation between
multiple zeta values in depth 6 3, and any weight. It replaces the need to store
tables of multiple zeta values in this range [10].

A further manifestation of the double shuffle equations occurs in genus 1. As
above, we encode elements of DerΘ L(a,b) by rational functions, by composing
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the morphism δ 7→ δ(a) : DerΘ L(a,b) −→ L(a,b) ⊂ T (a,b) with the linear
map

grr
b T (a,b) −→ Q(x1, . . . , xr ) (1.12)

ai0bai1b . . . bair 7→ x i1
1 . . . x

ir
r

x1(x1 − x2) . . . (xr−1 − xr )xr
.

In [3], we defined a bigraded Lie algebra pls to be the space of solutions to the
linearized double shuffle equations with poles at worst of the above form.

PROPOSITION 1.6. The Lie algebra of geometric derivations is contained,
via (1.12), in the space of solutions to the linearized double shuffle equations:
ugeom ⊂ pls.

Thus the linearized double shuffle equations arise naturally in the elliptic
setting. An obvious question to ask is if ugeom = pls. It is proved in depths 6 3
in an appendix, where we also compute the generating function of dimensions for
both ugeom and pls in this range.

The previous proposition can be used to detect nongeometric derivations.
Indeed, the stuffle relations give rise to an infinite family of functions

(DerΘ L(a,b))/ugeom −→ Q.

1.5.3. Depth 4 generators in the Broadhurst–Kreimer conjecture. A further
application of the elements σ c

2n+1 is to the Broadhurst–Kreimer conjecture.
It is well known since Ihara and Takao [26] that there exist quadratic relations∑

i, j

λi, j [σ2i+1, σ2 j+1] ≡ 0 (mod terms of degree > 4 in x1) (1.13)

where λi, j ∈ Q are coefficients of period polynomials P of even, cuspidal SL2(Z)-
cocycles. In [7], we reformulated the Broadhurst–Kreimer conjecture, which
describes the dimensions of the space of multiple zeta values graded by the depth,
in terms of the spectral sequence induced on gm by the depth filtration D. Using
the elements σ c

2n+1 we can compute the first nontrivial differential (conjecturally,
the only nontrivial differential) in this spectral sequence. A motivic version of
the Broadhurst–Kreimer conjecture provides an explicit presentation for grDg

m

in terms of the σ c
2n+1 (see Section 8).

1.6. Aide-mémoire. There are several different filtrations at play in this paper.
At a referee’s request, and for the convenience of the reader, the corresponding
degrees are summarized below.
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For the de Rham Lie algebra L(x0, x1) of the fundamental group of
P1\{0, 1,∞}, we define the Tate degree to be one half of the weight as a
mixed Tate motive.

T = ‘Tate’ degree = −L D = ‘Depth’ degree
x0 −1 0
x1 −1 1

For the bigraded de Rham Lie algebra L(a,b) in genus one:

M = ‘Monodromy-weight’ W =‘Elliptic weight’= −L B = b-degree
a −2 −1 0
b 0 −1 1

The Hodge filtration will always be denoted by F , and the lower central
series by L . The weight-grading in genus 0, which is double the Tate degree, is
traditionally denoted by W . We shall never use this notation, since it corresponds
to the M degree in genus 1, and W here will always denote the elliptic weight
filtration.

Finally, we present a tableau of the main Lie algebras which will be defined and
studied in this paper. The second column features the main objects of study: the
motivic Lie algebra gm, its depth-graded version d, and the geometric derivations
ugeom. The next column features Lie algebras of solutions to double shuffle
equations (Racinet’s double shuffle Lie algebra dmr0, the linearized double shuffle
algebra ls, and its version with poles pls). The right-hand column lists the ambient
space of derivations on de Rham fundamental groups of curves. One of the main
points in this paper is that the depth-graded motivic Lie algebra in genus 0 is very
closely related to the B-graded geometric Lie algebra in genus 1. In the following
table ‘g = 0, 1’ denotes genus 0, 1, respectively.

Protagonist Double shuffle Ambient space
g = 0 gm ⊆ dmr0 ⊆ Der1L(x0, x1)

D-graded g = 0 d := grDg
m ⊆ grDdmr0 ⊆ ls ⊆ grDDer1L(x0, x1)

B-graded g = 1 ugeom ⊆ pls ⊆ grBDerΘL(a,b)

In the appendix, we introduce a new filtration R• on pls in terms of residues of
rational functions such that ls = R0pls. It would be interesting to interpret this
filtration intrinsically on ugeom and verify that R0u

geom ∼= d.
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2. Reminders on the projective line minus 3 points

Background material can be found in [7, 12, 35].

2.1. Depth. Let L(x0, x1) denote the free graded Lie algebra over Q on
two generators x0, x1, where x0 and x1 have T -degree −1. The depth filtration
DnL(x0, x1) is the decreasing filtration such that D0 = L(x0, x1) and

D1L(x0, x1) = ker(L(x0, x1) −→ L(x0))

where the map on the right sends x1 to 0 and x0 to x0. It is defined by Dn =
[D1, Dn−1] for all n > 2. It is the decreasing filtration associated to the D-degree,
for which x0 has D-degree 0 and x1 has D-degree 1. Therefore, DnL(x0, x1)

consists of Q-linear combinations of Lie brackets of x0 and x1 with at least n
x1’s.

The universal enveloping algebra of L(x0, x1) is the graded tensor algebra
T (x0, x1) on Qx0 ⊕ Qx1. The D-degree is defined in the same manner on T (x0,

x1) and defines a decreasing filtration DnT (x0, x1) spanned by words in > n x1’s.
We shall embed L(x0, x1) ⊂ T (x0, x1); the embedding is compatible with the
filtrations D.

2.2. Ihara bracket. The de Rham fundamental groupoid [12]

0Π1 = π dR
1 (P

1\{0, 1,∞},→10,−
→
11)

is the de Rham realization of a mixed Tate motive over Z, and admits an action
of the de Rham motivic Galois group GdR. The action on the trivial de Rham path
011 from the tangential base point 1 at 0 to the tangential base point −1 at 1 gives
a morphism of schemes

g 7→ g.011 : GdR −→ 0Π1. (2.1)

It becomes a morphism of groups if one equips 0Π1 with the Ihara group law,
which is denoted by ◦. If R is a commutative unitary algebra, its set of R-
points 0Π1(R) is the set of invertible group-like (with respect to the completed
coproduct for which x0, x1 are primitive) formal power series R〈〈x0, x1〉〉 in two
noncommuting variables. The Ihara group law is then given by the formula

◦ : 0Π1 × 0Π1 −→ 0Π1 (2.2)
F ◦ G = G(x0, Fx1 F−1)F.

The expression on the right-hand side is also equal to

F ◦ G = FG(F−1x0 F, x1).
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Likewise, the de Rham fundamental group with tangential base point −1 at 1

1Π1 = π dR
1 (P

1\{0, 1,∞},−→11)

admits an action of GdR, which can be shown to factorize through the composition
of the map (2.1) with the left action

◦1 : 0Π1 × 1Π1 −→ 1Π1 (2.3)
F ◦1 H = H(F−1x0 F, x1).

Now pass to graded Lie algebras. The graded Lie algebras of both 0Π1 and 1Π1

can be identified with L(x0, x1). Let gm = Liegr U dR, where U dR is the unipotent
radical of GdR = U dR oGm . Equation (2.1) gives a morphism

i : gm −→ (L(x0, x1), { , }) (2.4)

where { , } is the Ihara bracket, for which we give a formula below. Let Der1 L(x0,

x1) denote the Lie subalgebra of derivations δ ∈ DerL(x0, x1) which satisfy
δ(x1) = 0. The left action (2.3) is given on the level of graded Lie algebras by

(L(x0, x1), { , }) −→ Der1 L(x0, x1) (2.5)

σ 7→
{

x0 7→ [x0, σ ],
x1 7→ 0.

THEOREM 2.1 [4]. The morphism (2.4) is injective.

Because of this theorem, we can identify gm with its image in L(x0, x1) via i . The
graded Lie algebra gm is freely generated by elements σ2n+1 in T -degree−2n−1,
for all n > 1. Their images in L(x0, x1) are the zeta elements

i(σ2n+1) = ad(x0)
2nx1 + terms of depth > 2. (2.6)

One also knows the coefficients of (x0x1)
ax0(x0x1)

b in i(σ2a+2b+1) by [4] and [39].
The elements σ2n+1 are not a priori canonical for n > 5. However, the Hoffman–
Lyndon basis for motivic multiple zeta values allows one to define canonical
choices σ h

2n+1 of generators [6]. Very little is known about these elements.

2.3. Linearized Ihara action and depth. In [7], we considered the following
linearized version of the Ihara action. For any ai ∈ {x0, x1}×, let

(a1 . . . an)
∗ = (−1)nan . . . a1.
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DEFINITION 2.2. Define a Q-bilinear map

◦ : T (x0, x1)⊗Q T (x0, x1)→ T (x0, x1)

inductively as follows. For any words a, w in x0, x1, and for any integer n > 0, let

a ◦ (xn
0x1w) = xn

0ax1w + xn
0x1a∗w + xn

0x1(a ◦w) (2.7)

with the initial condition a ◦ xn
0 = xn

0 a, for n > 0.

The antisymmetrization of the map ◦ restricts to the Ihara bracket on L(x0, x1):

{ f, g} = f ◦ g − g ◦ f for all f, g ∈ L(x0, x1). (2.8)

It follows from this formula that the Ihara bracket is homogeneous for the D-
degree (the weaker fact that it respects the depth filtration follows from the
geometric interpretation of the depth filtration using the embedding P1\{0, 1,∞}
⊂ P1\{0,∞} [12]). If we embed gm ↪→ L(x0, x1) via (2.4) we can define the
depth filtration Dgm on gm to be the decreasing filtration induced by the depth
filtration on L(x0, x1).

For later use, remark that if A(a, b, c) = a ◦ (b ◦ c)− (a ◦ b) ◦ c, then

A(a, b, c) = A(b, a, c) (2.9)

for any a, b, c ∈ T (x0, x1), which follows from the definitions, and implies that
the linearized Ihara bracket (2.8) indeed satisfies the Jacobi identity.

2.4. Double shuffle equations. The double shuffle equations are a family of
equations satisfied by multiple zeta values which are well adapted to the depth
filtration. In his thesis [35], Racinet defined a subspace

dmr0 ⊂
(
L(x0, x1), { , }

)
,

called the regularized double shuffle Lie algebra, which encodes these relations
in terms of two Hopf algebra structures. He proved the

THEOREM 2.3 [35]. The space dmr0 is closed under the Ihara bracket { , }.

Since the regularized double shuffle equations hold for actual multiple zeta
values, and are stable under the Ihara bracket, it follows that they are motivic.
Combined with Theorem 2.1 we deduce that there is an inclusion of Lie algebras

gm ⊂ dmr0 ⊂
(
L(x0, x1), { , }

)
.
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Therefore, we can study elements σ2n+1 by attempting to solve the defining
equations of dmr0 in low depths. This will be achieved below using the language
of commutative power series (Section 4), and the trick of introducing poles.

2.5. Depth-graded motivic Lie algebra. The depth filtration induces a
decreasing filtration D• on GdR and hence gm via the maps (2.1) and (2.4). Let

d = gr•Dg
m (2.10)

denote the associated graded Lie algebra. It is bigraded for weight and depth.
The component of d of depth d and T -degree −n will be denoted by dd

n . Let
dd = ⊕n>0 d

d
n , denote the (infinite-dimensional) component in depth d, and let

dn =
⊕

d>1 d
d
n denote the (finite-dimensional) component in T -degree −n.

The linearized double shuffle equations are a family of equations which were
introduced in [18] and further studied in [7]. It follows from a variant of Racinet’s
theorem that their solutions, denoted by ls ⊂ gr•D(L(x0, x1), { , }•), is a bigraded
Lie algebra for the (graded) Ihara bracket { , }•. One has gr•Ddmr0 ⊂ ls, and it is
expected that equality holds.

A corollary of Theorem 2.1 and Racinet’s theorem is

THEOREM 2.4 [7, Section 5]. d ⊂ ls.

The following theorem was proved by Tsumura [36]. See [7], Section 6.4 for a
short proof. There are recent generalizations due to Glanois [19] and Panzer [33].

THEOREM 2.5 (Depth-Parity for double shuffle equations). We have

lsd
n = 0 if n ≡ d + 1 (mod 2).

Combining the previous two theorems gives the

COROLLARY 2.6 (Depth-Parity theorem). If n ≡ d + 1 (mod 2), then dd
n = 0.

3. The fundamental Lie algebra of the first-order Tate curve

Background material for this section can be found in [23], [24], and [25].

3.1. Background. Let E×∂/∂q denote the punctured first-order Tate curve,
which is the fibre of the universal elliptic curve over M1,1 with respect to the
tangential base point ∂/∂q . Its de Rham fundamental group

P = π dR
1 (E

×
∂/∂q,

→
11) (3.1)
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where
→
11 is the tangent vector of length 1 with respect to a natural choice of

holomorphic coordinate w on E×∂/∂q , is, we claim, the de Rham realization of a
pro-object in the category of mixed Tate motives over Z. This will be proved in
future joint work with Hain. Since its mixed Hodge structure is the limiting mixed
Hodge structure of a variation, it comes equipped with a relative monodromy-
weight filtration denoted by M , and a geometric weight filtration W . This data
defines a universal mixed elliptic motive according to Hain and Matsumoto [25].
The associated M,W bigraded Lie algebra is the free Lie algebra L(HdR) where

HdR = (H 1
dR(E

×
∂/∂q;Q))∨ = Qa⊕Qb (= Q(1)⊕Q(0))

which has two canonical de Rham generators a and b. It will be denoted by
L(a,b). The generators a and b have (M,W ) bidegrees (−2,−1) and (0,−1),
respectively. The elliptic weight filtration W coincides with the lower central
series filtration on P . Since, as claimed above, the latter is the de Rham realization
of a mixed Tate motive over Z, it admits an action of the de Rham motivic Galois
group GdR of MT (Z) by the Tannakian formalism. Passing to Lie algebras gives
a morphism

i1 : gm −→ DerΘ L(a,b) (3.2)

where Θ = [a,b] and

DerΘ L(a,b) = {δ ∈ DerL(a,b) : δ(Θ) = 0}.
This is because Θ = [a,b] corresponds to the de Rham path which winds once
around the puncture in E×∂/∂q , and generates a copy of Q(1), which is fixed by U dR,
the prounipotent radical of GdR.

3.2. Derivations. Define the B-filtration to be the decreasing filtration

BrL(H) = {w ∈ L(a,b) : degbw > r}
associated to the B-degree on L(a,b), which is defined to be the degree
in b. It induces a decreasing filtration B• on DerΘ L(a,b), which is the
filtration associated to the grading by B-degree. It satisfies DerΘ L(a,b) = B−1

DerΘ L(a,b). The subspace B0 DerΘ L(a,b) is the space of derivations δ such
that

δ(b) ∈ B1L(a,b) := ker(L(a,b)→ L(a))
where the map on the right sends b to zero (it is the composition of the natural map
L(HdR) → L(HdR)

ab = HdR followed by the projection HdR → HdR/F0 HdR =
Qa). Equivalently, the coefficient of a in δ(b) is zero. Such a derivation is
uniquely determined by its value δ(a) since δΘ = [δ(a),b] + [a, δ(b)] = 0,
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and the commutator of a is aQ. Thus δ 7→ δ(a) gives an embedding of vector
spaces B0 DerΘ L(a,b)→ L(a,b).

For each n > −1, one shows that there exist elements

ε∨2n+2 ∈ B0 DerΘ L(a,b) ⊂ DerΘ L(a,b)
which are uniquely determined by the property

ε∨2n+2(a) = ad(a)2n+2(b).

The elements ε∨2n+2 were first defined by Tsunogai [37]. The element ε∨2 is central
in DerΘ L(a,b) and plays no role here. Let

ugeom ⊂ DerΘ L(a,b) (3.3)

be the Lie subalgebra spanned by the ε∨2n+2, for n > −1. It contains ε∨0 =
b∂/∂a. One shows that the completion of π1(M1,1, ∂/∂q) = SL2(Z) relative to
SL2(Z) → SL2(Q), acts on L(a,b) via ugeom [24]. Quadratic relations between
the elements ε∨2n predicted by Hain and Matsumoto were studied by Pollack in his
thesis [34].

We define heretical normalizations of these derivations as follows. Let

ε∨0 =
1
12
ε∨0 and ε∨2n+2 =

B2n

(2n)!ε
∨
2n+2 for n > 1 (3.4)

where Bk denotes the kth Bernoulli number.

3.3. The Hain morphism. There is a natural morphism [23, Section 16–18]:

π1(P1\{0, 1,∞},→11) −→ π1(E×∂/∂q,
→
11). (3.5)

Using the work of Levin and Racinet, Hain computed this map in the de Rham
realization [23], (18.1). On de Rham Lie algebras it is the continuous morphism

φ : L(x0, x1)
∧ −→ L(a,b)∧ (3.6)

x0 7→ ad(b)
ead(b) − 1

a = a− 1
2
[b,a] + 1

12
[b, [b,a]] + · · ·

x1 7→ [a,b]
where ∧ denotes completion with respect to the lower central series.

Let Der1L(x0, x1)
∧, DerΘ L(a,b)∧ denote the continuous derivations of

completed Lie algebras which send, respectively, x1 to 0 or [a,b] to 0. We say
that an element σ ∈ Der1L(x0, x1)

∧ lifts to a derivation σ̃ ∈ DerΘ L(a,b)∧ (and
conversely, σ̃ descends to the derivation σ ) if

σ̃ ◦ φ = φ ◦ σ (3.7)

which is equivalent to the equation σ̃ φ(x0) = φσ(x0). An element of
DerΘ L(a,b)∧ descends to an element of Der1L(x0, x1)

∧ if and only if it
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preserves the subspace φ(L(x0, x1)
∧) in L(a,b)∧. Since (3.6) is injective, σ and

σ̃ determine each other uniquely. Furthermore, lifting derivations respects the
Lie brackets: if σ1, σ2 ∈ Der1 L(x0, x1)

∧ admit lifts σ̃1, σ̃2 ∈ DerΘ L(a,b)∧, then
[σ1, σ2] admits the lift [̃σ1, σ̃2].

Since (3.5) is geometric, it is compatible with the actions of GdR on the de
Rham fundamental groups (the case of the Hodge realization is [23], Theorem
15.1). Thus φ commutes with the action of gm, and the morphism (3.2) is the lift
of the map i0 : gm→ Der1 L(x0, x1). In particular,

i1(σ )
(
φ(x0)

) = φ(i0(σ )(x0)) for all σ ∈ gm, (3.8)

where i0 was defined in (2.4).

THEOREM 3.1. The map i1 : gm→ DerΘ L(a,b) is injective.

Proof. The map i is injective by [4], and its image is contained in D1L(x0, x1).
The map (2.5) restricts to an injective map on D1L(x0, x1), and hence their
composition i0 is injective. The morphism φ is injective (for example, because
its associated graded (6.2) is injective). Since i1 is the lift of i0, it follows that i1

is injective.

3.4. B-filtration. We show that the B-filtration defined above on the bigraded
Lie algebra of P is in fact induced by a natural filtration on the Lie algebra of P ,
which we shall also call the B-filtration.

LEMMA 3.2. Consider the filtration defined by the convolution of the Hodge
filtration F and the lower central series filtration L:

(F ? L)r =
∑

a+b=r

Fa ∩ Lb.

It induces a decreasing filtration on the Lie algebra of P , which coincides with
the B-filtration on its associated bigraded for M,W .

Proof. Note that Lb = W−b, where W denotes the weight filtration. Since the
filtrations F,W, and M can be split simultaneously [23], F ?L induces a filtration
on L(H) = grW grM Lie P . We must check that it coincides with the B-filtration.
To see this, note that Br grn

LL(HdR) = F r−ngrn
LL(HdR). Since grn

LL(HdR) consists
of words of length n in a and b, and since

Qa⊕Qb = F−1 HdR ⊃ F0 HdR = Qb,

it follows that F r−ngrn
LL(HdR) is spanned by words with at least r letter b’s.
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Note also that 2 degb+2 degW = degM in the bigraded Lie algebra of P .

LEMMA 3.3. The B-filtration on P is motivic, that is, it is stable under the image
of the de Rham motivic Galois group i1(g

m).

Proof. We must verify that i1(g
m) ⊂ B0 DerΘ L(a,b)∧. Since the group GdR acts

on L(a,b)ab = HdR through its quotient Gm , and because HdR = Q ⊕ Q(1) is
a direct sum of pure Tate motives, the graded Lie algebra of its prounipotent
radical gm acts trivially on L(HdR)

ab. Therefore, i1(g
m)(b)⊂ [L(HdR),L(HdR)] ⊂

B1L(HdR).

We now show that the B-filtration gives one possible way to cut out the depth
filtration on the image of gm inside DerΘ L(a,b).

LEMMA 3.4. Let α ∈ L(x0, x1)
∧. Then α ∈ Dr if and only if φ(α) ∈ Br .

Proof. The fact that φ Dr ⊂ Br is clear from the definition (3.6). The converse
follows from the fact that the associated graded morphism

φ0 : gr•DL(x0, x1) −→ gr•BL(a,b)

given by φ0(x0) = a and φ0(x1) = [a,b], is injective.

Observe that if δ ∈ Der1 L(x0, x1) then δ ∈ Dr if and only if δ(x0) ∈ Dr .

LEMMA 3.5. Let δ ∈ B0 DerΘ L(a,b). The following are equivalent:

(1) δ ∈ Br DerΘ L(a,b);

(2) δ(a) ∈ Br L(a,b);

(3) δ(φ(x0)) ∈ Br L(a,b).

Proof. Clearly (1) implies (2) and (3). Now suppose that (2) holds. We have

0 = δ[a,b] = [a, δ(b)] + [δ(a),b]
which implies that [a, δ(b)] ∈ Br+1 L(a,b). Since the coefficient of a in δ(b)
vanishes, this implies that δ(b) ∈ Br+1L(a,b). Together with δ(a) ∈ Br this
implies (1).

Now suppose (3) holds. Write φ(x0) = a+ w where w ∈ B1L(a,b). By (3),

δ(a)+ δ(w) ∈ Br .
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If we have shown that δ(a) ∈ B i , then by (2)⇒ (1), we have δ ∈ B i and hence
δ(w) ∈ B i+1. The previous equation then implies δ(a) ∈ Bmin(i+1,r). Starting with
i = 0, repeat this argument to deduce that δ ∈ Br which proves (3)⇒ (1).

PROPOSITION 3.6. Let σ ∈ Der1L(x0, x1) which lifts to σ̃ ∈ B0 DerΘ L(a,b).
Then σ ∈ Dr if and only if σ̃ ∈ Br .

Proof. We have φ(σ(x0)) = σ̃ (φ(x0)). Now apply the previous two lemmas to
deduce that σ ∈ Dr if and only if σ̃ ∈ Br .

COROLLARY 3.7. The B-filtration cuts out the depth filtration on the image of
gm:

Br ∩ i1(g
m) = i1(Drgm). (3.9)

Proof. Apply Lemma 3.3, the previous proposition, and i1φ = φ i0 (3.8).

By considering the symmetry t 7→ 1 − t on P1\{0, 1,∞} (duality relation),
one knows that an element σ ∈ gm of T -degree −m is uniquely determined by
its image in D1/Dd(m+1)/2eL(x0, x1) under the map i . It follows from Theorem 3.1
that

COROLLARY 3.8. An element σ ∈ gm of T -degree−m is uniquely determined by
the image of i1(σ ) in B1/Bd(m+1)/2eDerΘL(a,b).

REMARK 3.9. It follows that the ‘tails’ of the generators i1(σ ) in the B-
filtration, which could be infinitely long, are uniquely determined from their
‘necks’ i1(σ ) (mod Bd(m+1)/2e). Furthermore, one can show (for instance, using the
description [8, Section 9] of the group of automorphisms of a semidirect product)
that, modulo Bm , i1(σ ) is equivalent to an element of ugeom, so can be expressed
(nonuniquely) in terms of the geometric derivations ε∨2n+2 for n > −1. It is by no
means true, however, that the i1(σ ) are contained in ugeom.

For instance, a choice of zeta element of T -degree−2n−1 admits an expansion

i1(σ2n+1) ≡
∑

a1,...,ar

λ(2n+1)
a1,...,ar

[
ε∨a1
,
[
ε∨a2
,
[
. . . ,

[
ε∨ar−1

, ε∨ar

] · · · ] (mod B2n+1)

where λ(2n+1)
a1,...,ar

∈ Q, and ai > 0 are even. The nonuniqueness of this expansion
corresponds to the fact that there exist relations between the generators ε∨2n+2 in
ugeom [34]. Nonetheless, an explicit formula for this geometric expansion for the
elements i1(σ

c
2n+1), for n > 2, will be determined modulo B4 below.
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4. Commutative power series

We discuss commutative power series representations for the Lie algebras
L(x0, x1), L(a,b) and describe the composition laws for their derivation algebras.

4.1. Commutative power series. The method of commutative power series is
based on the observation that there is an isomorphism of Q-vector spaces

ρ : grr
DT (x0, x1)

∼−→ Q[y0, . . . , yr ] (4.1)
xi0

0 x1x
i1
0 . . . x1xir

0 7→ yi0
0 . . . yir

r ,

where we recall that the D-degree is the degree in x1. Let us denote by

P =
⊕
r>0

Q[y0, . . . , yr ].

Since L(x0, x1) is D-graded, (4.1) induces a map ρ : L(x0, x1)→ P . We have

ρ(ad(x0)
n(x1)) = (y0 − y1)

n. (4.2)

Furthermore, by [7, Lemma 6.2], the image of grr
DL(x0, x1), for r > 1, is

contained in the subspace of polynomials which are translation invariant:

f (y0, . . . , yr ) = f (y0 + λ, . . . , yr + λ) for all λ ∈ Q.

Such a polynomial f is uniquely determined by its image in

Q[y0, . . . , yr ] −→ Q[x1, . . . , xr ] (4.3)
f (y0, . . . , yr ) 7→ f (x1, . . . , xr ) = f (0, x1, . . . , xr ).

We call this the reduced representation of a translation-invariant polynomial, and
it applies equally well to translation-invariant rational functions. The variables xn

will be reserved for the reduced representations. Since L(x0, x1) ∼= gr•DL(x0, x1)

is graded with respect to the D-degree, there is an injection

ρ : D1L(x0, x1) −→
⊕
r>1

Q[x1, . . . , xr ] (4.4)

σ 7→
∑
r>1

σ (r).

One can describe the image of this map in terms of double shuffle equations
(see below). The σ (r) will be called the depth r components of (the polynomial
representation of) σ . The zeta elements satisfy σ (1)2n+1 = x2n

1 , for n > 1 by (4.2).
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4.2. Concatenation products. The concatenation of words in the alphabet x0,

x1 defines a noncommutative multiplication law f, g 7→ f · g:

grr
DT (x0, x1)× grs

DT (x0, x1) −→ grr+s
D T (x0, x1).

On the level of commutative power series, it is the operation

Q[y0, . . . , yr ] ⊗Q[y0, . . . , yr+s] −→ Q[y0, . . . , yr+s] (4.5)
f (y0, . . . , yr ) · g(y0, . . . , yr+s) = f (y0, . . . , yr )g(yr , . . . , yr+s).

It follows from the definition of the linearized Ihara action (2.7) that

f ◦ (g · h) = ( f ◦ g) · h + g · ( f ◦ h)− g · f · h. (4.6)

Note that equation (4.6) is equivalent to the condition that the linear map

w 7→ f ◦w − f · w
is a derivation with respect to ·. There is another concatenation product, denoted
by · , which comes from the stuffle Hopf algebra [3]. It will only be used once in
this paper, so will not be discussed in any detail here.

4.3. Linearized Ihara action. The operator ◦ : T (x0, x1) ⊗Q T (x0, x1) →
T (x0, x1) is homogeneous for the D-degree, and therefore defines a map

◦ : Q[y0, . . . , yr ] ⊗Q Q[y0, . . . , ys] −→ Q[y0, . . . , yr+s] (4.7)
f (y0, . . . , yr )⊗ g(y0, . . . , ys) 7→ f ◦ g (y0, . . . , yr+s)

whose r, s component is given explicitly by the formula

f ◦ g (y0, . . . , yr+s)

=
s∑

i=0

f (yi , yi+1, . . . , yi+r )g(y0, . . . , yi , yi+r+1, . . . , yr+s)

+ (−1)deg f+r
s∑

i=1

f (yi+r , . . . , yi+1, yi)g(y0, . . . , yi−1, yi+r , . . . , yr+s).

(4.8)

This can be read off from equation (2.7). Antisymmetrizing gives a pairing

{ f, g} = f ◦ g − g ◦ b
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which coincides with the Ihara bracket on the image of L(x0, x1). Clearly, if f, g
are both translation invariant, then so too are f ◦ g and { f, g}.

The Ihara action (4.8) extends to rational functions by the identical formula:

◦ : Q(y0, . . . , yr )⊗Q Q(y0, . . . , ys) −→ Q(y0, . . . , yr+s),

and by restricting to translation-invariant rational functions, we obtain a map on
their reduced versions ◦ : Q(x1, . . . , xr )⊗Q Q(x1, . . . , xs)→ Q(x1, . . . , xr+s).

EXAMPLE 4.1. Let r = s = 1 and f, g ∈ Q(x1). Then { f, g} ∈ Q(x1, x2) equals

f (x1)g(x2)−g(x1) f (x2)+ f (x2−x1)(g(x1)−g(x2))+( f (x2)− f (x1))g(x2−x1).

In the following sections we shall work in the graded vector space

R P =
⊕
r>0

Q(y0, . . . , yr )

and its translation-invariant subspace R P =⊕r>0 Q(x1, . . . , xr ). The map ◦ and
its antisymmetrization { , } define linear maps

◦ , { , } : R P ⊗Q R P −→ R P and ◦ , { , } : R P ⊗Q R P −→ R P

via the formulae (α ◦β)(n) = ∑i+ j=n α
(i) ◦β( j) and {α, β} = α ◦β − β ◦α. The

equation (2.9) automatically extends to the setting of rational functions.

4.4. Derivations on L(x0, x1) and power series. Consider the isomorphism

L(x0, x1)
∼−→ Der1 L(x0, x1) (4.9)

w 7→ δw

where δw denotes the derivation δw(x0) = w, δw(x1) = 0. This isomorphism
respects the D-grading on both sides. Let

P ′ =
⊕
r>1

Q[y0, . . . , yr ] 1
y0 − yr

,

viewed inside R P . Using (4.1), define a linear map

ρ ′ : D1Der1 L(x0, x1) −→ P ′ (4.10)

δw 7→
∑
r>1

ρ(r)(w)
1

y0 − yr

where ρ(r) denotes the depth r component of ρ.
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PROPOSITION 4.2. The following diagram commutes:

D1Der1L(x0, x1) ×
(
L(x0, x1), [ , ]

) −→ (
L(x0, x1), [ , ]

)
↓ρ′ ↓ρ ↓ρ

� : P ′ × P −→ R P

where for f ∈ P ′ and g ∈ P,

f � g = f ◦ g − f · g. (4.11)

The composition of derivations is given by the linearized Ihara bracket:

ρ ′([δw, δv]) = {ρ ′(δw), ρ ′(δv)}. (4.12)

Thus ρ ′ : D1Der1L(x0, x1)→ (P ′, { , }) is a morphism of Lie algebras.

Proof. The shuffle distributivity law (4.6), and the remark which follows, implies
that the operator �, defined by formula (4.11), is a derivation: f � (g · h) =
( f � g) · h + g · ( f � h), for all f ∈ P ′, g, h ∈ P . It therefore suffices to show
that for all w ∈ D1L(x0, x1), and i = 0, 1, we have

ρ ′(δw)� ρ(xi) = ρ(δw(xi)).

Write f = ρ ′(w). Since w ∈ L(x0, x1), we have w + w∗ = 0 and hence

f (y0, . . . , yr )+ (−1)deg f+r f (yr , . . . , y0) = 0.

We check that ρ(x0) = y0 ∈ Q[y0] and ρ(x1) = 1 ∈ Q[y0, y1], and verify that

f (y0, . . . , yr ) ◦ y0 = y0 f (y0, . . . , yr )

f (y0, . . . , yr ) ◦ 1 = f (y0, . . . , yr )

from the definition (4.8), applied in the cases s = 0, g = y0 and s = 1, g = 1
respectively. Via (4.11), these equations imply that f � y0 = (y0 − yr ) f and
f � 1 = 0. This proves that ρ ′(δw) � ρ(x0) = ρ(w) and ρ ′(δw) � ρ(x1) = 0
as required. For the last part, use the fact that Der1L(x0, x1) acts faithfully on
L(x0, x1) and the identity f � (g� h)− g� ( f � h) = { f, g}� h which follows
from a manipulation of (4.11), (4.6) and (2.9).

The following corollary is not essential for the remainder of this paper, but
provides an interpretation of the map f 7→ {x−1

1 , f }.

COROLLARY 4.3. Let w ∈ L(x0, x1) of D-degree r , and write f = ρ(r)(w). Then

ρ(r+1)(δx1(w)) = { f x−1
r , x−1

1 }xr+1 ∈ Q[x1, . . . , xr+1]. (4.13)

https://doi.org/10.1017/fms.2016.29 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.29


Zeta elements and the Lie algebra of π1(E×
∂/∂q ) 23

Proof. Use (4.9) and (4.10). Apply (4.12) to [δx1, δw] = δδx1 (w)
to give

ρ ′(δδx1 (w)
) = {ρ ′(δx1), ρ

′(δw)}.
The left-hand side is ρ(r+1)(δx1(w))/(y0 − yr+1), the right-hand side is
{1/(y0 − y1), ρ

(r)(w)/(y0 − yr )}. Then pass to the reduced representation
(y0, y1, . . . , yr ) 7→ (0, x1, . . . , xr ).

4.5. Derivations on L(a, b) and power series. Define

DΘ = DerΘ(L(a, [a,b]), B1L(a,b))

to be the vector space of linear maps δ : L(a, [a,b]) → B1L(a,b) satisfying
δ[p, q] = [δ(p), q] + [p, δ(q)] and δ([a,b]) = 0. Such a δ ∈ DΘ is uniquely
determined by the element δ(a) ∈ B1L(a,b). There is an injective map

B1DerΘ(L(a,b)) −→ DΘ

obtained by restricting to the Lie subalgebra L(a, [a,b]) ⊂ L(a,b).
Denote also by ρ the linear map

ρ(r) : grr
B T (a,b) ∼−→ Q[y0, . . . , yr ] (4.14)

ai0bai1 . . . bair 7→ yi0
0 . . . yir

r .

Let `0 = 1 and for r > 1, set

`r = (y0 − y1)(y1 − y2) . . . (yr−1 − yr ). (4.15)

Define a graded vector space

Q =
⊕
r>0

`−1
r Q[y0, . . . , yr ]

and a linear map

` : L(a,b) −→ Q (4.16)

w 7→
∑

r

`−1
r ρ

(r)(w).

Since `r · `s = `r+s , Q is an algebra for shuffle concatenation (4.5). Define

Q ′ =
⊕
r>1

Qr
1

y0 − yr
(4.17)
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and setting cr = `r (y0 − yr ) (c for ‘cyclic’) consider the linear map

`′ : DΘ −→ Q ′ (4.18)

δ 7→
∑
r>1

c−1
r ρ

(r)δ(a).

It is injective, since δ(a) uniquely determines δ ∈ DΘ . Note that Q, Q ′ ⊂ R P .

PROPOSITION 4.4. The following diagram commutes:

DΘ × (L(a, [a,b]), [ , ]) −→ (
L(a,b), [ , ])

↓`′ ↓` ↓`
~ : Q ′ × Q −→ R P

where, as in (4.11), we have

f ~ g = f ◦ g − f · g. (4.19)

Similarly, we have a commutative diagram

B1DerΘL(a,b) × L(a,b) −→ L(a,b)
↓`′ ↓` ↓`

~ : Q ′ × Q −→ R P

Furthermore, we have the identity for all δ1, δ2 ∈ B1DerΘL(a,b):

`′([δ1, δ2]) = {`′(δ1), `
′(δ2)}. (4.20)

Thus `′ : B1DerΘL(a,b)→ (Q ′, { , }) is a Lie algebra homomorphism.

Proof. The proof is similar to the proof of Proposition 4.2. We must check
that `′(δ) ~ `([a,b]) = 0 and `′(δ) ~ `(a) = `(δ(a)). But `([a,b]) =
(y0 − y1)/(y0 − y1) = 1 and `(a) = y0, so this calculation is formally identical to
the one in Proposition 4.2. The commutativity of the second diagram follows from
the first, using the fact that an element in B1DerΘL(a,b) is uniquely determined
by its image in DΘ , and the fact that ~ is a derivation for the shuffle concatenation
product.

Derivations in DΘ cannot be extended to derivations on L(a,b). But the two
commutative diagrams in Proposition 4.4 show that, passing to rational function
representations, namely Q ′, enables us to do precisely that.
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4.6. Double shuffle equations. The equations defining dmr0 can be spelt
out explicitly and translated via (4.1) into the language of commutative power
series [3]. We shall only require their restriction to depths 6 3 and work with
translation-invariant representations (4.3). Let

( f (1), f (2), f (3)) ∈ Q[x1] ⊕Q[x1, x2] ⊕Q[x1, x2, x3].

Writing xi j for xi + x j and xi jk for xi + x j + xk , the shuffle equations modulo
products in depths 2 and 3 are given by

f (2)(x1, x12)+ f (2)(x2, x12) = 0 (4.21)
f (3)(x1, x12, x123)+ f (3)(x2, x12, x123)+ f (3)(x2, x23, x123) = 0.

Note that starting from depth four there will be several such equations in each
depth. It is straightforward to show [3] that the solutions to the shuffle equations
modulo products correspond, via (4.1) and (4.3), to the image of L(x0, x1) inside
T (x0, x1). The stuffle equations modulo products, in depths 2 and 3, correspond
to the (regularized versions of) the equations (a, b, c ∈ N):

ζ(a, b)+ ζ(b, a)+ ζ(a + b) ≡ 0 (mod products)
ζ(a, b, c)+ ζ(b, a, c)+ ζ(b, c, a)+ ζ(a + b, c)+ ζ(a, b + c) ≡ 0

(mod products).

From depth four onwards, there are more than one such equation in each
depth. By considering the series Z (r) = ∑n1,...,nr>0 ζ∗(n1, . . . , nr )x

n1−1
1 . . . xnr−1

r ,
where the subscript ∗ denotes the stuffle regularization, these equations translate
into

f (2)(x1, x2)+ f (2)(x2, x1) = f (1)(x1)− f (1)(x2)

x2 − x1
(4.22)

f (3)(x1, x2, x3)+ f (3)(x2, x1, x3)+ f (3)(x2, x3, x1)

= f (2)(x2, x1)− f (2)(x2, x3)

x3 − x1
+ f (2)(x1, x3)− f (2)(x2, x3)

x2 − x1
.

Note that the right-hand sides of the equations are in fact polynomials. These
equations extend to an infinite family of equations in every depth [3]. The Lie
algebra dmr0 is defined to be the sets of solutions to both shuffle and stuffle
equations modulo products.

The linearized double shuffle equations [7] are the same sets of equations in
which the right-hand sides are zero. The linearized shuffle equations are identical
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to the ordinary shuffle equations, but the linearized stuffle equations are:

f (1)(x1)+ f (1)(−x1) = 0 (4.23)
f (2)(x1, x2)+ f (2)(x2, x1) = 0

f (3)(x1, x2, x3)+ f (3)(x2, x1, x3)+ f (3)(x2, x3, x1) = 0.

The linearized double shuffle equations are also closed under the Ihara bracket,
by a (simpler) version of Racinet’s theorem [35].

4.7. Geometric derivations and linearized double shuffle with poles. The
Lie algebra ugeom ⊂ B1DerΘL(a,b) of geometric derivations was defined in
(3.3). We shall identify ugeom with its associated B-graded. The definition of
the linearized double shuffle equations (4.21) and (4.23) can be extended in the
obvious way to rational functions.

DEFINITION 4.5. Define pls ⊂ Q ′ to be the subspace of Q ′ of translation-
invariant rational functions (4.17) whose reduced versions (image under (4.3))
satisfy the linearized double shuffle equations. It is bigraded by weight and depth.

Denote the reduced version of pls by pls. By a version of Racinet’s
theorem, pls is also a Lie subalgebra of Q ′ for the linearized Ihara bracket
{ , }• (antisymmetrization of ◦ ). The notation stands for ‘polar linearized
double shuffle’ solutions. It is a bigraded Lie algebra in the category of sl2-
representations over Q (see appendix).

PROPOSITION 4.6. The geometric derivations, in their rational function
representation (4.18), satisfy the linearized double shuffle equations:

`′(ugeom) ⊂ pls.

Proof. The images of the generators `′(ε∨2n+2) = x2n
1 by (4.2) for n > −1. They

are even and hence solutions to the linearized double shuffle equations. It follows
from (4.20) that `′ is a morphism of Lie algebras as pls is closed under { , }•.

A natural question to ask is whether the sl2-equivariant map `′ : ugeom → pls is
an isomorphism. It is true in depths 6 3 (see appendix), and also in certain limits
with respect to the residue filtration [3].

The previous proposition implies that the linearized stuffle equations define
maps from the space of nongeometric derivations

B1DerΘ L(a,b)/ugeom
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to spaces of rational functions. The map is as follows. For δ ∈ grr
BDerΘL(a,b),

compute the image of `
′
(δ) under any stuffle equation of depth r . It defines an

element in R P , which is zero if δ ∈ ugeom, by the previous proposition. We shall
show in Remark 5.8 that this map is nonzero and provides a new tool to prove that
certain derivations are not geometric. It could in particular be used to study the
image of i1(g

m) in B1DerΘ L(a,b)/ugeom.

5. Zeta elements in depth 3 via anatomical construction

We wish to write down elements

σ c
2n+1 ∈ D1L(x0, x1)/D4L(x0, x1)

by exhibiting explicit polynomials

(σ
(1)
2n+1, σ

(2)
2n+1, σ

(3)
2n+1) ∈ Q[x1] ⊕Q[x1, x2] ⊕Q[x1, x2, x3]

which are solutions to the equations (4.21) and (4.22).

5.1. Polar solutions. The shape of the equations (4.22) suggests searching for
solutions amongst the space of rational functions in xi with Q-coefficients. Let

s(1) = 1
2 x1

and s(2) = 1
6

( 1
x1x2
+ 1

x2(x1 − x2)

)
. (5.1)

It is easy to verify that (s(1), s(2)) is a solution to the double shuffle equations
(4.21) and (4.22) in depths one and two.

DEFINITION 5.1. For n > −1, define rational functions in x1, x2, x3 by

ξ
(1)
2n+1 = x2n

1 (5.2)

ξ
(2)
2n+1 = {s(1), x2n

1 }•
ξ
(3)
2n+1 = {s(2), x2n

1 }• + 1
2 {s(1), {s(1), x2n

1 }•}•
where curly brackets denote the linearized Ihara bracket. Explicitly, we have

ξ
(2)
2n+1 =

1
2

( x2n
2 − (x2 − x1)

2n

x1
+ x2n

1 − x2n
2

x2 − x1
+ (x2 − x1)

2n − x2n
1

x2

)
(5.3)

which defines a polynomial in Q[x1, x2]whenever n > 0. On the other hand, ξ (3)2n+1
is a rational function in x1, x2, x3 with nontrivial poles. When n > 0 it has at most
simple poles along x1 = 0, x3 = 0, x1 = x2 and x2 = x3.

One checks that the case n = 0 is trivial: ξ (1)1 = 1 and ξ (2)1 = ξ (3)1 = 0.
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PROPOSITION 5.2. Let n > −1. The elements

ξ2n+1 = (ξ (1)2n+1, ξ
(2)
2n+1, ξ

(3)
2n+1)

satisfy the double shuffle equations modulo products (4.21), (4.22) in depths 2, 3.

Proof. This is a straightforward finite computation and only uses the fact that
x2n

1 is an even function. It also follows from the fact that (s(1), s(2)), and x2n
1 are

solutions to the double shuffle equations via a version of Racinet’s theorem.

REMARK 5.3. The elements ξ2n+1 can be extended to all higher depths by the
equation ξ2n+1 = exp(ad(s))x2n

1 to define solutions to the full set of double shuffle
equations with poles, where s is one of (many possible) solutions to the polar
double shuffle equations in weight 0 (that is, whose depth i components s(i)

are homogeneous rational functions of degree −i). This is discussed in [3], and
implies the previous proposition. The component of s in depth 3 is unique by an
extension of the depth-parity theorem for double shuffle equations (Theorem 2.5)
to the case of rational functions. It is given by s(3) = {s(1), s(2)}•.

5.2. Definition of canonical elements. It is convenient to define heretical
normalizations of the elements ξ as follows. Let

ξ−1
= 1

12
ξ−1 and ξ

2n+1
= B2n

(2n)! ξ2n+1 for n > 0 (5.4)

where B2n is the 2nth Bernoulli number. Set

b(x) = 1
ex − 1

+ 1
2
. (5.5)

Recall the well-known functional identity

b(x1)b(x2)− b(x1)b(x2 − x1)+ b(x2)b(x2 − x1) = 1
4 . (5.6)

DEFINITION 5.4. Let n > 2. Define elements σ c
2n+1 ∈ L(x0, x1)/D4L(x0, x1) by

ρ(σ c
2n+1) = ξ 2n+1

+
∑

a+b=n

1
2b
{ξ

2a+1
, {ξ

2b+1
, ξ−1
}} (mod D4) (5.7)

where the sum is over a, b > 1. Definition (5.7) makes sense, since we shall prove
in the next paragraph that the right-hand side has no poles. Define

σ c
2n+1 =

(2n)!
B2n

σ c
2n+1 for n > 2

to be the canonical normalizations, and set σ c
3 = [x0, [x0, x1]] + [x1, [x0, x1]].
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By Racinet’s theorem, the space of solutions to the double shuffle equations is
closed under the Ihara bracket, so for n > 2, the elements σ c

2n+1 are solutions to
the double shuffle equations in depths 6 3, by Proposition 5.2.

REMARK 5.5. The σ c
2n+1 have the canonical normalization. For n > 1,

(σ c
2n+1)

(1) = ξ (1)2n+1 = x2n
1 and (σ c

2n+1)
(2) = ξ (2)2n+1

is given by (5.3). We have (σ c
3 )
(3) = 0 and for n > 2,

(σ c
2n+1)

(3) = ξ (3)2n+1 +
∑

a+b=n

B2a B2b

B2n

(
2n
2a

)
1

24 b
{x2a

1 , {x2b
1 , x−2

1 }•}•. (5.8)

The previous expression can be written more symmetrically in terms of lowest-
weight vectors for the action of sl2 (see appendix), namely:

1
2b
{x2a

1 , {x2b
1 , x−2

1 }•}• +
1

2a
{x2b

1 , {x2a
1 , x−2

1 }•}•.

On the other hand, compare the odd part of the period polynomial [27] for the
Eisenstein series of weight 2n, which is proportional to:∑

a+b=n,a,b>1

(
2n
2a

)
B2a B2b X 2a−1Y 2b−1 ∈ Q[X, Y ].

This is no accident, and follows from the computations in Section 5.3 as well as
Section 9.

5.3. Cancellation of poles. We show that (5.8) has no poles. We need the
following notation. Given two even functions f, g of one variable, define

( f ? g)(x1, x2) = f (x1)g(x2)− f (x2−x1)g(x2)+ f (x2−x1)g(x1)− f (x2)g(x1).

In the notation of [3] it is f ? g = f ◦ g − g · f , where · is the ‘stuffle
concatenation’.

LEMMA 5.6. For all n, a, b > 1,

Resx3=0
(
ξ
(3)
2n+1

) = 1
12 x2n

1 ? x−1
1 (5.9)

Resx3=0
({x2a

1 , {x2b
1 , x−2

1 }•}•
) = 2b x2a

1 ? x2b−1
1 .

Proof. This is a straightforward computation and follows from the definitions.
The second equation easily generalizes [3].

https://doi.org/10.1017/fms.2016.29 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.29


F. Brown 30

PROPOSITION 5.7. The elements (σ c
2n+1)

(3) have no poles, for all n > 2.

Proof. Since pls (Definition 4.5) is a Lie algebra for the Ihara bracket and is
contained in Q ′, the element {x2a

1 , {x2b
1 , x−2

1 }•}• is in pls and has at most simple
poles along x1 = 0, x2 = x1, x3 = x2 and x3 = 0, whenever a, b > −1. We first
check that the residue of (σ c

2n+1)
(3) along x3 = 0 vanishes for n > 2. It is given via

(5.8) by

B2n

(2n)!Resx3=0
(
ξ
(3)
2n+1

)+ 1
12

∑
a+b=n

B2a

(2a)!
B2b

(2b)!
1

2b
Resx3=0

({x2a
1 , {x2b

1 , x−2
1 }•}•

)
.

Pass to generating series and substitute (5.9) into the previous expression to give

12
∑
n>1

Resx3=0 σ
(3)
2n+1 = (xb(x)− 1) ? x−1 + (xb(x)− 1) ? (b(x)− x−1)

= (xb(x)− 1) ? b(x),

where b(x) was defined in (5.5). To compute this, observe that 1 ? f = 0 and

(x f ? f )(x1, x2) = (x1 − x2)
(

f (x1) f (x2)− f (x1) f (x2−x1)+ f (x2) f (x2−x1)
)

for any even function f . Substituting for f = b(x) and using (5.6), we deduce
that (xb(x)− 1) ? b(x) = 1

4 (x1− x2). Now let n > 2. The above argument proves
that the (σ c

2n+1)
(3) have no poles along x3 = 0. Now we use the fact that σ c

2n+1
satisfies the double shuffle equations modulo products in depths two and three.
Since (σ c

2n+1)
(i) has no poles for i = 1, 2, the stuffle equation (4.22) implies that

(σ c
2n+1)

(3)(x1, x2, x3)− (σ c
2n+1)

(3)(x3, x2, x1) ∈ Q[x1, x2, x3] . (5.10)

It follows that its residue at x1 = 0 also vanishes. The shuffle equation is

(σ c
2n+1)

(3)(x1, x12, x123)+ (σ c
2n+1)

(3)(x2, x12, x123)+ (σ c
2n+1)

(3)(x2, x23, x123) = 0.

By taking the residue of this expression at x2 = 0, we deduce that (σ c
2n+1)

(3) has
no pole along x2 = x1. Finally by (5.10), this implies that it has no pole along
x2 = x3 either.

The last part of this argument can be generalized using the dihedral symmetry
structure of the linearized double shuffle equations [7], Section 6.3.

REMARK 5.8. The element (σ c
3 )
(3) does have poles. It is equal to 3z3, where

z3 = 4
3
+ x1

x3 − x2
+ x3

x1 − x2
+ x3 − x2

x1
+ x1 − x2

x3
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and corresponds to a lift to DerΘ L(a,b) of the ‘arithmetic image’ of the element
i1(σ3) in (DerΘ L(a,b))/ugeom. The corresponding derivation was written down
in [34]. Computing the stuffle equation (4.23) gives

z3(x1, x2, x3)+ z3(x2, x1, x3)+ z3(x2, x3, x1) = 4

which is nonzero, and shows, by Proposition 4.6, that z3 is, as expected,
nongeometric, that is, not in the image of ugeom.

5.4. Zeta elements in depth three.

THEOREM 5.9. The elements σ c
2n+1 are in the image of the map

i0 : gm/D4gm −→ L(x0, x1)/D4L(x0, x1).

Proof. The elements σ c
2n+1 satisfy the double shuffle equations so lie in

D1/D4dmr0. The theorem follows immediately from the fact that

i : D1/D4gm −→ D1/D4dmr0

is an isomorphism. This is equivalent to the statement that i induces an
isomorphism on each depth-graded piece

i : dd ∼= lsd for d 6 3.

This is trivial for d = 1, and follows from a computation of the dimensions of
lsd

n obtained by Zagier [38] for d = 2, and by Goncharov [21, Theorem 1.5] for
d = 3.

REMARK 5.10. It follows from the depth-parity theorem that the elements σ c
2n+1

are uniquely determined in depth 4 also (but not in depth 5). A closed formula for
these elements can be deduced from Remark 5.3.

6. Zeta elements in depth 3 via geometric derivations

Recall the notations from Section 3.

THEOREM 6.1. For all n > 2, we have an explicit expansion

i1(σ
c
2n+1) ≡ ε∨2n+2 +

∑
a+b=n

1
2b

[
ε∨2a+2,

[
ε∨2b+2, ε

∨
0

]]
(mod B4).

For n = 1, i1(σ
c
3 ) = ε∨4 + 3z3 (mod B4), where z3 is defined in Remark 5.8.
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In terms of the standard normalizations, this equation is equivalent to

i1(σ
c
2n+1) ≡ ε∨2n+2 +

∑
a+b=n

B2a B2b

B2n

(
2n
2a

)
1

24b

[
ε∨2a+2,

[
ε∨2b+2, ε

∨
0

]]
(mod B4).

One can also write the right-hand side symmetrically using elements

lwa,b = 1
2b

[
ε∨2a+2,

[
ε∨2b+2, ε

∨
0

]]+ 1
2a

[
ε∨2b+2,

[
ε∨2a+2, ε

∨
0

]]
.

These are lowest-weight vectors for the action of sl2, that is, ε0(lwa,b) = 0,
where ε0 is the derivation on L(a,b) such that ε0(a) = 0 and ε(b) = a. This
yields a direct comparison with the period polynomials of Eisenstein series [8,
Section 7.3].

The strategy for the proof is as follows. The elements ε∨2n+2 do not preserve
the image of Der1 L(x0, x1)

∧ under (3.6) and do not descend to derivations on
L(x0, x1)

∧. However, if we pass to commutative power series representations via
Section 4.1 and enlarge this space by introducing poles, then the elements ε∨2n+2,
considered modulo B4, descend to the elements ξ2n+1 defined in the previous
section. Theorem 6.1 is then equivalent to Theorem 5.9 via Definition 5.4.

The proof of Theorem 6.1 given here is from the ‘bottom up’: that is, by lifting
the analogous result for derivations on the de Rham fundamental groupoid of
P1\{0, 1,∞} via the Hain morphism. A different way to prove Theorem 5.9 from
the ‘top down’ via M1,1, is sketched in the final section of the paper.

6.1. Hain homomorphism in low depth. We shall apply the method of
commutative power series Sections 4.1, 4.5 to both L(x0, x1) and L(a,b).

We wish to consider the depth r components of the Hain morphism Section 3.3:

φr : gr•D T (x0, x1) −→ gr•+r
B T (a,b).

Translating into rational functions Section 4, and using the fact that ρ :
gr•DT (x0, x1) ∼= P is an isomorphism, we obtain a commutative diagram

gr•D T (x0, x1)
φr−→ gr•+r

B T (a,b)
↓ρ ↓`
P

φr−→ Q.

(6.1)

The map along the top is denoted by a superscript, the one along the bottom by a
subscript. The map φ0 is simply the associated graded of (3.6):

φ0 = grφ :
{

x0 7→ a,
x1 7→ [a,b], (6.2)
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and via T (x0, x1) = grDT (x0, x1) and T (a,b) = grB T (a,b), we have φ =∑
r>0 φ

r . The idea of the following discussion is that although the map of Lie
algebras φ0 + φ1 + φ2 : L(x0, x1) → L(a,b) does not factorize through φ0,
its rational function representation φ62 = φ0 + φ1 + φ2 will in fact factorize
through φ0:

L(x0, x1)
φ0−→ L(a, [a,b]) L(a,b)

↓ρ ↓` ↓`
φ62 : P

φ0−→ Q
?−→ Q

After computing φ0, we shall express the map ? using Proposition 4.4. It will be
an exponential, with respect to ~, of the element −s(1) − s(2), modulo depth > 3.

LEMMA 6.2. The map φ0 : P → Q is the inclusion P ⊂ Q.

Proof. We show that φ0 : Q[y0, y1, . . . , yr ] → Q[y0, y1, . . . , yr ] is multiplication
by the element `r of (4.15). To see this, (6.2) is the map x0→ a, x1→ b, followed
by the composition of r maps, where the kth map, for 1 6 k 6 r , replaces the kth
occurrence of the letter b in ai0bai1b . . . air−1bair with ab− ba. On commutative
power series (4.14), this is multiplication by yk−1 − yk .

We next determine φr for r = 1, 2. In degree r = 1, it follows from the
definition (3.6) of φ(x0) = a + 1

2 [a,b] + · · · that it is a composition of φ0 (6.2),
whose image consists of words in a, [a,b], followed by the derivation in DΘ

(Section 4.5) which sends a 7→ 1
2 [a,b] and [a,b] to zero. Note that the latter

does not extend to an element of DerΘ L(a,b). It is nonetheless represented, via
Proposition 4.4, by

−s(1) = 1
2
`′([a,b]) = 1

2(y0 − y1)
∈ Q ′,

whose reduced representation is minus (5.1). Therefore, if f ∈ P , we have

φ1( f ) = −s(1) ~ φ0( f ). (6.3)

Similarly, in degree r = 2, we have for f ∈ P ,

φ2( f ) = 1
x s(1) ~ (s(1) ~ φ0( f ))− s(2) ~ φ0( f ), (6.4)

where

−s(2) = 1
12
`′([b, [b,a]]) = 1

12
y0 − 2y1 + y2

(y0 − y1)(y1 − y2)(y0 − y2)
∈ Q ′.
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This holds from the definition of φ (which is a homomorphism, not a derivation)
since φ2 + 1

2 s(1)φ1 is the composition of φ0 followed by the derivation
L(a, [a,b]) → L(a,b) which sends a 7→ 1

12 [b, [b,a]] and [a,b] to zero.
By Proposition 4.4 the latter corresponds to the action of s(2).

REMARK 6.3. Because elements of Q ′ act trivially on `([a,b]) = −s(1) ~ y0,

s(1) ~ ( f ~ y0) = {s(1), f }~ y0 for all f ∈ Q ′. (6.5)

This can also be read off Corollary 4.3 upon writing φ1 = 1
2φ

0 ◦ ∂x1 .

6.2. Proof of Theorem 6.1. Recall that an element σ ∈ Der1L(x0, x1) lifts to
σ̃ ∈ Der1L(a,b) if and only if the following equation holds in L(a,b):

σ̃ φ(x0) = φσ(x0).

Finding an element σ ∈ Der1L(x0, x1) whose lift is ε∨2n+2, is equivalent via (3.6),
modulo terms of B-degree > 4, to the following equation

ε∨2n+2

(
a+ 1

2 [a,b] + 1
12 [b, [b,a]]

) ≡ φ(σ(x0)) (mod B4).

It is easy to verify that it has no solution σ ∈ Der1 L(x0, x1). Note that
ε∨2n+2([a,b]) = 0 so the middle term on the left-hand side can be dropped. We
can pass to rational function representations via Propositions 4.2 and 4.4, and
view the previous equation in Q. Since `′(ε∨2n+2) = (y1 − y0)

2n , and ρ(a) = y0,
ρ(x0) = y0, it is equivalent to

(y1 − y0)
2n ~

((
1− s(2)

)
~ y0

) ≡ φ(ρ ′(σ )� y0) (mod B4). (6.6)

It has no solutions ρ ′(σ ) ∈ P ′. Now observe that

φ0(ρ
′(σ )� y0) = φ0(ρ

′(σ ))~ y0

since the formulae for � and ~ (Propositions 4.2 and 4.4) are formally identical
and φ0 is the identity. Let us write χ instead of φ0(ρ

′(σ )) and try to solve (6.6)
for χ ∈ Q ′. By (6.3), (6.4), the right-hand side of (6.6) is equal, after expanding
φ ≡ φ0 + φ1 + φ2 mod B4 and applying (6.5), to

χ ~ y0︸ ︷︷ ︸
φ0

−{s(1), χ}~ y0 + 1
2 {s(1), {s(1), χ}}~ y0︸ ︷︷ ︸
φ1

− s(2) ~
(
χ ~ y0

)︸ ︷︷ ︸
φ2

(mod B4).
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Using the fact (Proposition 4.4) that the Lie bracket { , } is the antisymmetrization
of ~, and that the action of Q ′ on y0 ∈ Q is faithful, we deduce that the
components of equation (6.6) in depths 1, 2, 3 are the equations:

(y1 − y0)
2n = χ (1)
0 = χ (2) − {s(1), χ (1)}

−(y1 − y0)
2n ~ s(2) = χ (3) − {s(1), χ (2)} + 1

2 {s(1), {s(1), χ (1)}} − s(2) ~ χ (1).

These three equations are equivalent to the definition of the elements χ2n+1 after
passing to reduced versions (y0, y1, y2) 7→ (0, x1, x2) and using definition (4.19).
This proves that Theorem 6.1 is equivalent to Theorem 5.9.

It would be interesting to generalize this picture to all higher depths.

7. Explicit rational associator in depths 6 3

In Section 5 we wrote down explicit solutions to the double shuffle equations
modulo products, in odd weights and depths 6 3. The goal of this paragraph is to
discuss solutions to the full double shuffle equations with even weights.

7.1. Double shuffle equations. The full double shuffle equations in depth two
are given by the pair of equations:

f (2)(x1, x1 + x2)+ f (2)(x2, x1 + x2) = f (1)(x1) f (1)(x2)

f (2)∗ (x1, x2)+ f (2)∗ (x2, x1) = f (1)∗ (x1)− f (1)∗ (x2)

x2 − x1

+ f (1)∗ (x1) f (1)∗ (x2) (7.1)

where f (1), f (1)∗ ∈ Q[[x1]] and f (2), f (2)∗ ∈ Q[[x1, x2]] are formal power series in
commuting variables. A power series f without a subscript will denote its shuffle-
regularized version; a subscript ∗ will denote its stuffle-regularized version. They
differ by a factor which is well understood [35]. Our normalizations will be such
that

f (1)∗ = f (1) and f (2)∗ = f (2) + 1
48 .

One can easily convince oneself that the second equation of (7.1) is the direct
translation of the stuffle product formula

ζ(m, n)+ ζ(n,m)+ ζ(m + n) = ζ(m)ζ(n).
Note that, in contrast to the double shuffle equations modulo products, the right-
hand term in the previous equation means that we must consider all weights
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simultaneously. The shuffle equation in depth three takes the form

f (3)(x1, x12, x123)+ f (3)(x2, x12, x123)+ f (3)(x2, x23, x123) = f (1)(x1) f (2)(x2, x23)

and the stuffle equation takes the form

f (3)∗ (x1, x2, x3)+ f (3)∗ (x2, x1, x3)+ f (3)∗ (x2, x3, x1)

= f (2)∗ (x2, x1)− f (2)∗ (x2, x3)

x3 − x1
+ f (2)∗ (x1, x3)− f (2)∗ (x2, x3)

x2 − x1

+ f (1)∗ (x1) f (2)∗ (x2, x3),

where in this case the comparison between the two regularizations is given by

f (3)(x1, x2, x3) = f (3)∗ (x1, x2, x3)+ 1
96

(
b(x1)− 1

x1

)
The general principle [3] of constructing solutions to these equations with poles

and correcting with counterterms also holds in this situation. The full double
shuffle equations are inhomogeneous in two different ways: there are several
linear terms of lower depths and a single term consisting of products of elements
of lower depth. The strategy is to construct solutions γ to the equations in which
lower depth terms are omitted, but with all product terms retained, and to use the
element (5.1) to convert these solutions into polar solutions to the full equations.
The polar parts are then subtracted using counterterms involving the elements
ξ2n+1 constructed before.

7.2. Polar solutions. Recall that b1(x) = b(x) (5.5) is a generating series for
Bernoulli numbers whose Laurent series is x−1 + O(x). Thinking of b1(x) as a
deformation of the rational function x−1, leads us to introduce, following (5.1),
the function

b2(x1, x2) = 1
3

(
b1(x1)b1(x2)+ b1(x2)b1(x1 − x2)

)
.

With these definitions, set

2γ (1) = −b1

4γ (2) = −b2 + 1
2 b1 ◦ b1

8γ (3) = b2 ◦ b1 − 1
6 b1 ◦ (b1 ◦ b1).

The element γ (2), for example, solves the semihomogeneous equations

γ (2)(x1, x1 + x2)+ γ (2)(x2, x1 + x2) = γ (1)(x1)γ
(1)(x2) (7.2)

γ (2)∗ (x1, x2)+ γ (2)∗ (x2, x1) = γ (1)(x1)γ
(1)(x2)
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where γ (2)∗ = γ (2) + 1
48 , and γ (3) satisfies the equations

γ (3)(x1, x12, x123)+ γ (3)(x2, x12, x123)+ γ (3)(x2, x23, x123) = γ (1)(x1)γ
(2)(x2, x23)

γ (3)∗ (x1, x2, x3)+ γ (3)∗ (x2, x1, x3)+ γ (3)∗ (x2, x3, x1) = γ (1)(x1)γ
(2)
∗ (x2, x3)

where γ (3)∗ (x1, x2, x3) = γ (3)(x1, x2, x3)+ 1
48γ

(1)(x1). This follows from (5.6).
New series Θ are now defined by twisting on the left by the elements (5.1):

Θ (1) = γ (1)
Θ (2) = γ (2) + s(1) ◦ γ (1)
Θ (3) = γ (3) + s(1) ◦ γ (2) + 1

2 s(2) ◦ γ (1) + 1
2 s(1) ◦ (s(1) ◦ γ (1)).

They have poles in xi . More precisely, the element dr ×Θ (r) is viewed as a formal
power series in Q[[x1, . . . , xr ]], where dr = x1 . . . xr

∏
i< j(xi−x j), for 1 6 r 6 3.

For 1 6 r 6 3, we can write

Θ (r) = pr +Φ(r),

where pr is a homogeneous rational function in x1, . . . , xr of degree−r , and Φ(r)

is a power series in homogeneous rational functions of degrees > 1 − r . With
these definitions, one verifies that the truncated elements Φ(r) are polar solutions
to the full double shuffle equations Section 7.1 with

Φ(2)
∗ = Φ(2) + 1

48 and Φ(3)
∗ = Φ(3) + 1

48Φ
(1)(x1).

It remains to remove the poles from the Φ(r) to obtain bona fide polynomial
solutions to the double shuffle equations with no polar terms.

7.3. Subtraction of counterterms. Let us define a formal power series by

C =
∑
n>1

1
2n
{ξ−1

, ξ
2n+1
} (7.3)

where the elements ξ
2n+1

were defined in Section 5.1. Its definition was only given
in depths 1, 2, 3. Using this element to provide counterterms, we can finally write
down a canonical element τ in depths 1, 2, 3 as follows:

τ (1) = Φ(1)

τ (2) = Φ(2) + C (2)

τ (3) = Φ(3) + C (2) ◦Φ(1) + C (3).
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A straightforward residue computation along the lines of Section 5.3 suffices to
show that the elements τ (i), where i = 1, 2, 3 have no poles, and therefore lie in
Q[[x1, . . . , xi ]]. We omit the details. Note that by the depth-parity theorem, the
element τ (3) is uniquely determined from τ (2). By a version of Section 4.1, the
coefficients of τ (i) correspond to words in x0, x1, and taking the limit defines a
unique element

τ ∈ Q〈〈x0, x1〉〉/D4Q〈〈e0, e1〉〉.

THEOREM 7.1. The element τ is an explicit (shuffle-regularized) solution to the
full double shuffle equations in depths 6 3.

A similar construction holds in depth four, but there is a priori no canonical
way to cancel the poles: one must subtract counterterms consisting of quadruple
brackets in the ξ2n+1’s, which involves some choices because of quadratic relations
amongst them (see Section 8.2). It is an interesting question to ask if the element
τ defined above can in fact be extended to an explicit associator in higher depths.

Since the solutions to the full double shuffle equations is a torsor under the left
action of the prounipotent algebraic group DMR0 whose Lie algebra is dmr0, we
can twist the elements τ (i) on the left with our canonical elements exp◦σ

c
2n+1 to

obtain all other rational solutions to the double shuffle equations in depths 6 3.

COROLLARY 7.2. Every rational solution s to the full double shuffle equations
in depths 6 3 can be written explicitly in the form

s ≡ exp◦(g) ◦ τ (mod D4)

where g ∈ (gm/D4gm)∧ is an (infinite) linear combination of commutators in the
canonical elements σ c

2n+1 of length 6 3.

Note that the element g in the corollary is not unique because of quadratic
relations Section 8.2 in gm/D4gm.

7.4. Remarks. The elements τ (i) for i 6 3 define a homomorphism from
motivic multiple zeta values in depths 6 3 and even weight to rational numbers,
given by

τ (r)ζm(n1, . . . , nr ) = coeff. of xn1−1
1 . . . xnr−1

r in τ (r). (7.4)

They respect all the relations between motivic multiple zeta values and satisfy

τ (1)ζm(2n) = ζ(2n)/(2π i)2n ∈ Q.
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Likewise, the canonical elements σ c
2n+1 ∈ gm/D4gm define a map from motivic

multiple zeta values in depth 6 4 and odd weight to rational numbers given by

σ
(r)
2n+1ζ

m(n1, . . . , nr ) = coeff. of xn1−1
1 . . . xnr−1

r in σ (r) (7.5)

where 2n + 1 = n1 + · · · + nr . The maps (7.5) annihilate products, respect all
relations between motivic multiple zeta values (modulo products) and satisfy

σ
(1)
2n+1ζ

m(2n + 1) = 1.

In [5], a method was described to decompose any motivic multiple zeta value (and
hence, by taking the period, any actual multiple zeta value) into a chosen basis of
motivic multiple zeta values using the motivic coaction. The method is not an
algorithm because it requires a transcendental computation at each step involving
the period map. However, the maps (7.4) and (7.5) can be used as an algebraic
substitute for the period map. Thus we obtain an exact algorithm to decompose
any multiple zeta value of depth 6 3 (and depth 6 4 in the case of odd weight)
into a chosen basis of multiple zeta values of the same or smaller depth. Ideally,
one would like to generalize this to all weights and depths.

8. Cuspidal elements and the Broadhurst–Kreimer conjecture

We can recast the version of the Broadhurst–Kreimer conjecture [9] formulated
in [7] using the elements σ c

2n+1, first in grD Der1 L(x0, x1) and then in the elliptic
setting in grB DerΘ L(a,b).

We seek a conjectural presentation for d. The first set of obvious generators
are the images of the zeta elements σ2n+1 ∈ D1gm in the associated graded d• =
gr•Dg

m:
σ 2n+1 ∈ d1

2n+1 for all n > 1. (8.1)

They are well defined (independent of the choice of σ2n+1). They satisfy quadratic
relations which can be described in terms of period polynomials.

8.1. Reminders on period polynomials. Let n > 0 and let Vn =⊕
i+ j=n Qx i

1x j
2 denote the vector space of homogeneous polynomials of degree n.

It is equipped with the right action of Γ = SL2(Z) given by the formula

P(x1, x2)|γ = P(ax1 + bx2, cx1 + dx2) if γ =
(

a b
c d

)
∈ Γ, P ∈ Vn.

Let V ′n ⊂ Vn denote the subspace of polynomials which vanish at x1 = 0 and
x2 = 0. It is naturally isomorphic to the vector space quotient Vn/(Qxn

1 ⊕Qxn
2 ).
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DEFINITION 8.1. Let n > 1 and let S2n ⊂ V ′2n denote the vector space
of homogeneous polynomials P(x1, x2) of degree 2n satisfying P(x1, 0) =
P(0, x2) = 0

P(x1, x2)+ P(x2, x1) = 0, P(x1, x2)+ P(x1− x2, x1)+ P(−x2, x1− x2) = 0.

The subspace S+2n ⊂ S2n consisting of polynomials which are of even degree in
both x1 and x2 is called the space of even (cuspidal) period polynomials.

REMARK 8.2. Denote S = (
0 −1
1 0

)
and T = (

1 1
0 1

)
in Γ . Consider the following

linear map from right Γ group cochains [8, Section 2.3] to polynomials

f 7→ π( f (S)) : Z 1
cusp(Γ ; V2n) −→ V ′2n (8.2)

where Z 1
cusp(Γ ; Vn) ⊂ Z 1(Γ ; Vn) is the subgroup of cochains f such that f (T ) =

0, and π : Vn → V ′n is the projection. It is well known that this induces an
isomorphism

H 1
cusp(Γ ; V2n)

∼−→ S2n+2

where H 1
cusp(Γ ; V2n) = ker(H 1(Γ ; V2n) → H 1(Γ∞; V2n)), and Γ∞ 6 Γ is the

subgroup generated by −1, T . This in turn induces an isomorphism

H 1
cusp(Γ ; V2n)

+ ∼−→ S+2n+2 (8.3)

where the+ on the left-hand factor denotes invariants with respect to the action of
the real Frobenius involution [8, Sections 5.4, 7.4]. The Eichler–Shimura theorem
states in particular that integration defines an isomorphism:

S2n(Γ )
∼−→ H 1

cusp(Γ ; V2n−2)
+ ⊗ R

where S2n(Γ ) denotes the space of cuspidal modular forms of weight 2n.

8.2. Quadratic relations. Define a vector space K

K = ker({ , } : d1 ∧ d1 → d2)

to be the kernel of the Ihara bracket. It is weight-graded (twice the T -degree) in
even degrees K =⊕n K2n . Since gm ⊂ D1gm is generated in depth 1, D1∧D1→
D2 is surjective, and hence d1 ∧ d1 → d2 is surjective, that is,

0 −→ K −→ d1 ∧ d1 { ,}−→ d2 −→ 0
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is an exact sequence. Now embed gm in L(x0, x1) via (2.4). It follows that d =
grDg

m is also embedded in L(x0, x1) since the latter is graded for the D-degree. By
passing to reduced polynomial representations Section 4.1, we have a canonical
isomorphism

d1 ∼= x2
1Q[x2

1 ]
σ 2n+1 7→ x2n

1 for n > 1.

We can thus identify d1 ⊗ d1 = x2
1Q[x2

1 ] ⊗ x2
1Q[x2

1 ] ∼= x2
1 x2

2Q[x2
1 , x2

2 ], and hence
view elements of d1 ∧ d1 ⊂ d1 ⊗ d1 as antisymmetric polynomials in x2

1 , x2
2 .

LEMMA 8.3. The polynomial representation gives an isomorphism

K2n
∼→ S+2n. (8.4)

Proof. This is immediate from the formula for ◦ given in Section 2.3
(Example 4.1)

{x2a
1 , x2b

1 }• = P(x1, x2)+ P(x2 − x1, x1)+ P(−x2, x1 − x2)

where P(x1, x2) = x2a
1 x2b

2 − x2a
2 x2b

1 and a, b ∈ N.

These quadratic relations appear in several contexts:

COROLLARY 8.4. The elements ε∨2n+2, ξ2n+1, σ 2n+1 and x2n
1 satisfy the identical

quadratic relations. In other words, if f• ∈ {ε•+2, ξ•+1, σ •+1}, then∑
λi j { f2i , f2 j }• = 0⇐⇒

∑
λi j x2i

1 ∧ x2 j
1 ∈ K .

Proof. The reduced polynomial representations of ε∨2n+2 and σ 2n+1 via
Propositions 4.2 and 4.4 are both x2n

1 , and the Lie brackets correspond to
the Ihara bracket { , }. Therefore, they satisfy the identical quadratic relations.
For the elements ξ2n+1, this either follows from their definition, because they are
obtained from the x2n

1 via the Ihara bracket, or from the computations of Section 6
relating them to the ε∨2n+2.

The existence of such quadratic relations was first observed by Ihara–Takao
and has been reproved in many ways since. The smallest example of a period
polynomial is the element x2

1 x2
2(x

2
1 − x2

2)
3 = x8

1 x2
2 − 3x6

1 x4
2 + 3x4

1 x6
2 − x2

1 x8
2 . It

corresponds to the relations

[σ 3, σ 9] − 3[σ 5, σ 7] = 0, {x2
1 , x8

1}• − 3{x4
1 , x6

1}• = 0.
[ε∨4 , ε∨10] − 3[ε∨6 , ε∨8 ] = 0, {ξ3, ξ9} − 3{ξ5, ξ7} = 0.
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8.3. Cuspidal generators in depth 4. As explained in [7], the depth filtration
on gm gives rise to a spectral sequence and in particular a differential

d : H2(d) −→ H1(d).

Since H2(d) = ker(∧2d→ d)/ ∧3 d, there is a natural map K → H2(d). It is in
fact injective on K since the image of ∧3d is in depth > 3. Composing with this
map gives a linear map d : K → (d4)ab as we explain presently, and the canonical
zeta elements defined in Section 5 give a means to compute it explicitly. To see
this, the elements σ c

2n+1 can be interpreted as a linear map

σ c : d1 −→ D1gm/D4gm

σ 2n+1 7→ σ c
2n+1

which splits the natural map D1/D4gm→ D1/D2gm = d1. Consider

d1 ∧ d1 σ c∧σ c−→ D1/D4gm ∧ D1/D4gm
{ ,}−→ D2/D5gm. (8.5)

The subspace K maps via (8.5) to D3/D5gm, since its image in D2/D3 = d2

is zero. Since K has even weights, the depth-parity Theorem 2.6 implies that
D3/D4gm = d3 vanishes in even weights. Therefore, the restriction of (8.5) to K
gives a linear map

c : K −→ D4/D5gm = d4. (8.6)

The letter c was chosen to stand for ‘cuspidal’, for the following reason. Its weight-
graded components c2n can be viewed, via (8.4), as linear maps

c2n : H 1
cusp(Γ, V2n)

+ −→ d4
2n.

These maps are closely related to the discussion in [31, Section 9].

THEOREM 8.5. Let P(x1, x2) =
∑

i+ j=n λi, j x2i
1 x2 j

2 be an even period polynomial
of degree 2n, where λi, j = −λ j,i . Thus P ∈ K . It gives rise to a relation of the
form ∑

i< j,i+ j=n

λi, j [σ 2i+1, σ 2 j+1] = 0 in d2.

Then the image of the element c(P) ∈ d4 in Q[x1, x2, x3, x4] is

ρ(4)(c(P)) =
∑

i+a+b=n

λi,a+b
B2a B2b

B2a+2b

(
2a + 2b

2a

)
1

24b
{x2i

1 , {x2a
1 , {x2b

1 , x−2
1 }•}•}•

− 3λn−1,1{x2n−2
1 , z3}• (8.7)

where z3 was defined in Remark 5.8.
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Proof. The element c(P) is by definition

c(P) =
∑
i< j

λi, j {σ c
2i+1, σ

c
2 j+1} (mod D5).

Now substitute the expressions (5.8) for σ c
2 j+1 in terms of the polar elements ξ2a+1

(work in Q(x1, . . . , x4)). By Corollary 8.4, the ξ2a+1 satisfy the relations(∑
i< j

λi, j {ξ2i+1, ξ2 j+1}
)(r) = 0 for 1 6 r 6 3,

where a superscript (r) denotes the depth r component. The theorem follows from
formula (5.8), together with the definition of the element z3 = − 1

3ξ
(3)
3 .

If one believes the Broadhurst–Kreimer conjecture, one is led to the following

CONJECTURE 1 (Broadhurst–Kreimer: compare with [7, Section 9]).

H1(d;Q) ∼=
⊕
n>1

σ 2n+1Q⊕ c(K ) (8.8)

H2(d;Q) ∼= K
Hi(d;Q) = 0 for all i > 3.

Thus d admits the following conjectural presentation. It should have
(i) Generators: the σ 2n+1 in depth 1 for n > 1, and c(K ) in depth 4.
(ii) Relations: the quadratic relations of Section 8.2.

REMARK 8.6. As noted in [16], H3(d;Q) = 0 implies that Hi(d;Q) = 0 for all
i > 3. In fact, for any pronilpotent Lie algebra g over a field k of characteristic
zero, Hi(g, k) = 0 implies that Hn(g, k) = 0 for all n > i . To see this, note
that since g is a projective limit of finite-dimensional nilpotent Lie algebras, and
(co)homology commutes with limits, we can assume g nilpotent and H i(g, k) = 0.
Every finite-dimensional g-module M has an increasing filtration by submodules
Mm ⊂ M such that the associated graded is a trivial module. By the long exact
cohomology sequence and induction on m, H i(g;M) = 0 for all such M . Now
interpret H n(g;M) as the Ext group Extn(k,M) in the category of Ug-modules,
and use the well-known fact that if Exti(k,M) vanishes for all M then it also
vanishes for all n > i .

The conjecture given in [7] involved certain exceptional generators denoted
e f , for f ∈ P , in the depth 4 component of the larger Lie algebra gr4

Ddmr of
double shuffle equations. It is not known if they are in the image of d4. Thus the
formulation (8.8) eliminates part of the conjecture given in [7].
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8.4. Remarks on the role of z3. The element z3 is the first of a sequence z2n+1

of derivations in DerΘ L(a,b) which are sl2-invariant and well-defined modulo
(ugeom)sl2 . It follows from [8, Theorem 10.1] that their action on the derivations
ε∨2k+2 are known explicitly modulo Lie brackets involving at least three ε∨2n+2, with
n > 0. It is possible that this computation can be extended to the next order, which
in particular would give a formula for {z3, x2n

1 } for all n > 1.

REMARK 8.7. In [7] we defined an injective linear map

e : P −→ ls4

from the space P of even period polynomials to the space of solutions ls4 to the
linearized double shuffle equations in depth 4. It only depends on the functional
equations satisfied by elements of P . It is natural to extend this linear map to the
polynomials x2n

1 − x2n
2 ∈ V2n , which are the images of coboundaries under the

morphism (8.2). Since they satisfy the same functional equations as elements of
P , they define elements of pls4 which have poles. One easily verifies from the
definitions that:

e(x2n
1 − x2n

2 )+ {z3, x2n−2
1 }• = 0. (8.9)

This gives a different interpretation of the role of z3 in formula (8.7).

8.5. Elliptic interpretation of the Broadhurst–Kreimer conjecture. We can
transpose the previous conjecture into the Lie algebra DerΘ L(a,b) as follows.
Recall that the map i1 : gm → DerΘ L(a,b) (3.2) is injective by Theorem 3.1.
Since B cuts out the depth filtration on the image i1(g

m) (Corollary 3.7) we obtain
an injective morphism

i1 : d→ grB DerΘ L(a,b).

We wish to describe the conjectural generators in B-degrees 1 and 4. For
simplicity, we shall use the heretical normalizations ε2n to simplify the statement.
This has the side effect of rescaling the period polynomial relations.

More precisely, consider linear map

Q[x2
1 , x2

2 ] −→ Q[x2
1 , x2

2 ]
x2n

i 7→
(2n)!
B2n

x2n
i for n > 1

and let K denote the image of K . Lemma 8.3 and Corollary 8.4 imply that P =∑
i, j λi, j x2i

1 x2 j
2 ∈ K where λi, j + λ j,i = 0, if and only if∑

i< j

λi, j [ε∨2i+2, ε
∨
2 j+2] = 0.
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Define, for all P ∈ K , elements

c(P) =
∑
i< j

λi, j {σ c
2i+1, σ

c
2 j+1} ∈ gr4

B DerΘ L(a,b),

and let z3 ∈ gr3
BDerΘ L(a,b) denote the unique derivation such that `′(z3) is the

element (5.8).

THEOREM 8.8. For any P ∈ K ,

c(P) =
∑

j

λ1, j
[
z3, ε

∨
2 j+2

]+∑
i,a,b

λi,a+b
1

2b

[
ε∨2i+2,

[
ε∨2a+2,

[
ε∨2b+2, ε

∨
0

]]]
.

The Broadhurst–Kreimer conjecture suggests the following:

CONJECTURE 2 (Elliptic geometric Broadhurst–Kreimer conjecture).

H1(d,Q) ∼=
⊕
n>1

ε∨2n+2Q⊕ c(K ) (8.10)

H2(d,Q) ∼= K
Hi(d,Q) = 0 for all i > 3.

Note that K in the above is viewed as the space of quadratic relations between
the ε∨2n+2, for n > 1. This conjecture is equivalent to conjecture (1) by Section 6.

8.6. Some related problems.

(1) Show that the map c(P) : K → (d4)ab is injective.

(2) Relate the elements c(P) to the exceptional elements e f defined in [7].

(3) Construct a basis of the space of motivic periods of MT (Z) of motivic depth
2 and even weight out of motivic multiple zeta values of depth 6 4.

9. Some motivation from the relative completion of SL2(Z)

I shall very briefly sketch how I arrived at formula (1.11) and (1.9) by
considering double integrals of Eisenstein series. This explains why the
coefficients for the explicit formula for the σ c

2n+1 involve the odd period
polynomials of Eisenstein series. The arguments which follow require more
substantial technical background.
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9.1. Overview. Denote the Hecke-normalized Eisenstein series by

E2k(q) = − B2k

4k
+
∑
n>0

σ2k−1(n)qn,

where 2k > 4 and σk(n) denotes the divisor function. For any modular form f (τ )
of weight 2k > 4 for SL2(Z) we shall write (see [8] for further details):

f (τ ) = (2π i)2k−1 f (τ )(X − τY )2k−2dτ (9.1)

where q = exp(2iπτ). It is to be viewed as a global section of V2k−2 ⊗Ω1
H over

the upper-half plane H. In [8, Section 5] we defined regularized iterated integrals
of Eisenstein series between cusps, building on [29, 30]. Consider the double
integrals: ∫ ∞

0
E2m+2(τ )E2n+2(τ ) ∈ V2m ⊗ V2n ⊗ C (9.2)

along the geodesic path from 0 to∞ (suitably interpreted as the path S from
→
1∞,

the unit tangential base point at the cusp to itself). For each k > 0, there is an
explicit morphism of SL2-representations [8, Section 2.4]

∂k : V2m ⊗Q V2n −→ V2m+2n−2k .

In this way the imaginary part of the image of (9.2) under ∂1 defines a
homogeneous polynomial in R[X, Y ] of degree 2m + 2n − 2 whose coefficients
can be described explicitly. The method described in [8, Section 11], computes
this polynomial as the Petersen inner product of two (real analytic) modular
forms. The part we are interested in, by the unfolding method, corresponds to the
convolution of two Eisenstein series, and yields a certain multiple of an odd zeta
value. The ratios of the coefficients are the odd period polynomials of Eisenstein
series.

9.2. Precise statement. All the notation in this section is borrowed from [8],
Section 11. Let k > 1 be odd, a, b > 2, and w = 2a + 2b − 2k − 2. Set

Ĩ k
2a,2b = I k

2a,2b + δ0∂k(v2a ∪ b2b − b2a ∪ v2b) (9.3)

where δ0 is the boundary for 0-cochains, and for all k > 2,

v2k = (2π i)2k−1v2k

where v2k was defined in [8], (10.7). Then I claim that Ĩ k
2a,2b is cocycle for SL2(Z),

and cuspidal for k < 2 min{a, b} − 2. For such k,

{i Ĩ k
2a,2b, e0

w} = 6(2π i)−w−1C k
a,b ζ(k+1)ζ(2a−k−1)ζ(2b−k−1) ζ(k+w) (9.4)
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where e0
w the rational Eisenstein cocycle defined in [8, Section 7.3] and

C k
a,b = k!(2a − 2)!(2b − 2)!(k + w − 1)!.

The equation (9.4) can be written, using Euler’s formula, in terms of a product of
three Bernoulli numbers and a single odd zeta value. Note that we only require
the case k = 1 here. The proof is essentially the same as in [8] with minor
modifications to account for divergences.

9.3. Zeta elements from periods. Let G B/dR
1,1 denote the Betti and de Rham

versions of the completion [24] of π1(M1,1, ∂/∂q) = SL2(Z) relative to its
inclusion into SL2(Q), and U B/dR

1,1 their unipotent radicals. They are affine group
schemes over Q, in a Tannakian category of realizations H [6]. The de Rham
Tannaka group GdR

H of H acts on GdR
1,1. The Lie algebra of GdR

H contains zeta
elements σ2n+1 which are dual to the zeta values ζm(2n+ 1) in the ring of periods
of H. They are only well defined up to commutators.

The (M,W-bigraded) Lie algebra udR
1,1 of U dR

1,1 is free, generated by symbols

e2n+2 ⊗ V dR
2n and m f ⊗ V dR

2n

corresponding to Eisenstein series and a Q-basis for the generalized Hecke-
eigenspaces of cusp forms f of weight 2n + 2. Here V dR

2n is the SL2-module
isomorphic to homogeneous polynomials over Q in two variables of degree 2n.

Let us choose a basis for the (motivic) periods of regularized iterated integrals
of Eisenstein series of length 6 2 along the path S (that is, from 0 to∞). Via the
theory in [8], we can view the ‘geometric part’ of the σ2n+1 as elements of udR

1,1.
Taking the coefficient of ζm(2n + 1), for n > 1, enables us to compute the image
of a choice of zeta elements σ2n+1 in udR

1,1. We can read off the coefficients of Lie
brackets of length two in the e2n+2, from the period computations of Section 9.2.

The group GdR
1,1 acts on P , the de Rham fundamental group of the punctured

curve E×∂/∂q [24, 25]. We obtain a morphism of (M,W )-bigraded Lie algebras

udR
1,1 −→ DerL(a,b).

It sends the generators m f to zero, and the lowest-weight vectors in e2n+2 ⊗ V dR
2n

to the derivations ε∨2n+2. The images of our σ2n+1 provide a choice of zeta
elements in DerL(a,b), for which we know the coefficients of [ε∨2a+2, [ε∨2b+2, ε

∨
0 ]],

corresponding to the case k = 1 in Section 9.2. The cases k > 2 also provide the
coefficients of Lie brackets involving two ε∨2n+2, where n > 0, and several ε∨0 .

Acknowledgements

This paper was written at the IAS and IHES, partially supported by NSF grant
DMS-1128155 and ERC grant 257638. Its origin was an attempt to interpret the

https://doi.org/10.1017/fms.2016.29 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.29


F. Brown 48

algebraic structures in the notes [3] geometrically. This paper owes a great deal
to Richard Hain, who kindly explained his recent papers [24, 25] to me and made
many suggestions. Many thanks also to H. Bachmann, Ding Ma, N. Matthes, and
K. Tasaka for corrections.

Appendix

Recall that ugeom ⊂ gr>1
B DerΘL(a,b) is the Lie algebra generated by the set of

derivations ε∨2n , for n > 0. It is bigraded for the weight W and monodromy-weight
M filtrations. We defined in Section 4.5 an injective morphism of Lie algebras

`′ : ugeom −→ pls. (A.1)

Throughout this section we identify pls ∼= pls. The latter is the space of
solutions to the linearized double shuffle equations with poles. Let plsk denote
the component of pls in depth k. The following theorem is extracted from [3].

THEOREM A.1. The morphism (A.1) is an isomorphism in B-degrees 6 3, that
is,

grB
k u

geom ∼−→ plsk

for k = 1, 2, 3. Denote the Poincaré series for grB
k u

geom by

uk(s) =
∑
n∈Z

sn dimQ(grB
k grM

2nu
geom).

Then

u1(s)= s−1

1− s2
, u2(s)= s2

(1− s2)(1− s6)
, u3(s)= s

(1− s2)(1− s4)(1− s6)
.

The spaces plsk can be further broken down into smaller spaces using an action
of sl2, and a new filtration we call the residue. The proof will give, more precisely,
dimensions and in fact generators for each graded piece.

A.1. Description of pls in depths 6 3. The space pls
1 ⊂ Q(x1) is the

graded vector space of even rational functions f ∈ Q(x2
1) such that x2

1 f (x1) is
a polynomial. By the definitions in Section 4.5, and the formula for ε∨2n(a), we
have

`′ : ε∨2n 7→ x2n−2
1 for n > 0.

Therefore, in particular ⊕
n>0

ε∨2nQ ∼= pls1.
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Now pls
2 ⊂ Q(x1, x2) is the graded vector space of rational functions f such that

f (x1, x2)x1(x2 − x1)x2 ∈ Q[x1, x2]
which also satisfy the linearized double shuffle equations

f (x1, x1 + x2)+ f (x2, x1 + x2) = 0
f (x1, x2)+ f (x2, x1) = 0,

and pls
3 ⊂ Q(x1, x2, x3) is the graded vector space of rational functions f with

f (x1, x2, x3)x1(x2 − x1)(x3 − x2)x3 ∈ Q[x1, x2, x3],
which satisfy the linearized double shuffle equations

f (x1, x12, x123)+ f (x2, x12, x123)+ f (x2, x23, x123) = 0 (A.2)
f (x1, x2, x3)+ f (x2, x1, x3)+ f (x2, x3, x1) = 0,

where xi j = xi + x j and xi jk = xi + x j + xk . The usual T -grading for multiple
zeta values corresponds to one half of the M-grading. It is given by the degree of
the polynomials plus the number of variables. Thus x2n

1 has T -degree 2n + 1 and
x2n

1 x2m
2 has T -degree 2n + 2m + 2. We give a complete description of pls63.

A.2. The residue filtration. An element f ∈ pls
k

is a rational function in x1,

. . . , xk with at most simple poles along xi = xi+1 for 1 6 i 6 k − 1 and x1 = 0,
xk = 0 (the latter coincide when k = 1, giving a possible double pole at x1 = 0 in
this case) and satisfying the linearized double shuffle equations.

For any such function f ∈ pls
k
, define the residue

Rk f = Resxk=0 f ∈ Q(x1, . . . , xk−1) when k > 2,

and in the case k = 1, let R1 f = Resx1=0(x1 f ). The rational function Rk f depends
on x1, . . . , xk−1 and has the same pole structure described above. It is not an
element of pls

k−1
in general, however. Define the residue filtration

Rmpls
k = { f ∈ pls

k
such that Rk−m Rk−m+1 . . . Rk f = 0},

for all m > 0, and set R−1pls = 0. (One can show [3] that the linearized stuffle
equations are stable under the residue Rk , but the linearized shuffle equations
are not.) Although we shall not need it, a theorem proved in [3] states that this
filtration is compatible with the Lie algebra structure:

{Rppls,Rqpls}• ⊂ Rp+qpls,
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and furthermore, using the dihedral symmetry of the linearized double shuffle
equations [7, Section 6.5], that R0pls is the Lie subalgebra of pls consisting
of rational functions with no poles at all (that is, polynomials satisfying the
linearized double shuffle equations). It is denoted by

ls = R0pls

and was studied in [7]. The generating series of its dimensions are predicted by
a version of the Broadhurst–Kreimer conjecture, proven in depths 6 3. Since the
residue maps Ri are homogeneous for the M-weight, the Lie algebra grRpls is
bigraded for the M-weight and R-grading. It follows from the definitions that

R0pls
1 =

⊕
n>0

Qx2n and grR1 pls
1 ∼= Qx−2

1 . (A.3)

We have Rk−1pls
k = pls

k
for k > 2, since if R2 . . . Rk f ∈ Q(x1) had a pole in x1

then it would be a multiple of x−2
1 and this forces f to be of M weight −2, and

hence a rational multiple of (x1(x2 − x1) . . . (xk − xk−1)xk)
−1. One easily shows

that the latter does not satisfy the requisite equations to be in pls
k
.

In summary, in depths two and three we have

grR• pls
2 = grR0 pls2 ⊕ grR1 pls2 (A.4)

grR• pls
3 = grR0 pls3 ⊕ grR1 pls3 ⊕ grR2 pls3.

We shall compute the generating series for the dimensions of these five pieces.

A.3. sl2-algebra structure. The Lie algebra ugeom admits an action of sl2
which is compatible with the Lie algebra structure. Similarly, one can show [3],
that there is also an action of sl2 on pls which is compatible with (A.1).

DEFINITION A.2. Define operators e : plsk → plsk+1 and f : plsr → plsr−1 on
the level of reduced rational function representations by the formulae

e( f ) = {x−2
1 , f }• (A.5)

f( f ) =
r−1∑
i=1

xi Resz=xi f (x1, . . . , xi , z, xi+1, . . . , xr−1). (A.6)

One can prove [3] that these operators indeed preserve pls, generate a copy of
sl2, and are derivations for the Lie bracket. There is a simple general formula [3]
for f on plsk in terms of the residue operator Rk and a certain cyclic symmetry.
We only need the case of depth 3. If g ∈ pls

3
, then

f(g(x1, x2, x3)) = x1g3(x2 − x1,−x1)+ x2g3(−x2, x1 − x2), (A.7)
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where g3 = Resx3=0 g. One can check that e(Rk)⊂Rk+1, and that the composition
fe : lsk → R1pls

k+1 is multiplication by the polynomial degree. In particular, we
shall need the fact that e : ls2 → R1pls

3 is injective.
Here we only need the case of depths 2, and 3, and all of the claims made above

can be checked by elementary manipulations on rational functions.

A.4. Recap on ls in depths 2, 3. As a consequence of the work of Zagier and
Goncharov, who computed the dimensions of the weight-graded pieces of ls2 and
ls3 respectively (see also [1]), one can prove that there are exact sequences:

0 −→ S −→
2∧
ls1 −→ ls2 −→ 0 (A.8)

0 −→ S ⊗ ls1 −→ Lie3(ls
1) −→ ls3 −→ 0.

For further details, see [7, equations (7.8) and (7.10)]. The third map in each line
is given by the Lie bracket on ls. Here S is the space of solutions to the period
polynomial equations, and is isomorphic to the graded vector space of cuspidal
cocycles for SL2(Z).

There are two consequences: every element of ls2, ls3 is generated by Lie
brackets of elements in ls1, and so the morphism of Lie algebras

`′ : ugeom,+ −→ ls

is surjective in depths 6 3, where ugeom,+ is the Lie subalgebra of ugeom generated
by the ε∨2n for n > 1. The second consequence is that it gives formulae for the
generating series of dimensions with respect to the M-weight. If

dk(s) =
∑
n>0

sn dim(lsk
n) and S(s) =

∑
n

sn dim(Sn) = s12

(1− s4)(1− s6)

then it follows from (A.3) that d1(s) = s3/(1− s), and the first line of (A.8) gives

d2(s) = 1
2

(
d1(s2)− d1(s)

)− S(s) = s8

(1− s2)(1− s6)
. (A.9)

Remark that the smallest element in ls2 is of degree 8 and is given explicitly by

{x2
1 , x4

1}• = x1x2(x1 − x2)(2x1 − x2)(x1 − 2x2)(x2 + x1) (A.10)

which will play a role later on.
The second short exact sequence gives, after a similar calculation,

d3(s) = s11(1+ s2 − s4)

(1− s2)(1− s4)(1− s6)
. (A.11)
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The coefficient of s2n+1, for n > 2, is given simply by the sequence
b((n − 1)2 − 1)/12c, which is essentially the statement of Goncharov’s theorem
for dimQls

3
n [21].

Thus the parts ls2, ls3 of pls2, pls3 are generated respectively by

{x2a
1 , x2b

1 }• and {x2a
1 , {x2b

1 , x2c
1 }•}• where a, b, c > 1. (A.12)

A.5. The trivial piece grRk−1pls
k. The iterated residue defines an injection

R2 . . . Rk : grRk−1pls
k −→ Q(x1). (A.13)

It is easy to show that grRk−1pls
k is generated by ek−1ls1, that is, the elements

{x−2
1 , . . . {x−2

1 , x2n−2
1 }• · · · }•,

with k − 1 terms x−2
1 . They are the images of the elements (ad(ε∨0 ))

kε∨2n ∈ ugeom

under (A.1). Note that for reasons to do with the sl2-weights, this vanishes if
k > 2n − 1. It follows that if we write

tk(s) =
∑
n>0

sn dim(grRk−1pls
k
n)

then for k > 1,

t2k(s) = s2

1− s2
and t2k+1(s) = s

1− s2
.

We immediately deduce the enumeration of pls in depth 2, from (A.4).

COROLLARY A.3. The generating series for the dimensions p2(s) =∑
n sn dim(pls2

n) is given by the formula

p2(s) = s2

(1− s2)(1− s6)
.

The coefficient of s2n is b(n + 2)/3c.

Proof. Since pls2 = grR0 pls2 ⊕ grR1 pls2 = ls2 ⊕ grR1 pls2, its Poincaré series is
given by p2(s) = d2(s)+ t2(s).

It follows that the pieces grR1 pls
2
, grR2 pls

3
are generated respectively by

{x−2
1 , x2n

1 }• and {x−2
1 , {x−2

1 , x2n
1 }•}• where n > 1.
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A.6. The final piece grR1 pls3. Using the sl2 action, we deduce that there is a
direct sum decomposition

grR1 pls3 = e(ls2)⊕ H

where H = ker(f)/R0 is the space of lowest-weight vectors. Since e is injective
on ls2, it suffices to compute H .

LEMMA A.4. There is an exact sequence of graded vector spaces

0 −→ H(−5) −→ ls2 −→ Q(−8) −→ 0

where the Tate twist (−n) denotes a shift in M-weight of +2n. Thus the copy of
Q in the right-hand factor sits in degree 8, that is, M-weight 16.

Proof. Let f ∈ pls3 satisfying f( f ) = 0. Let g = R3 f denote its residue along
x3 = 0. By taking the residue along x3 = 0 of the first equation of (A.2), we get

g(x1, x2)+ g(x2, x1) = 0 (A.14)

since f has no poles along x2 = 0. Now from the formula for f( f ) it also satisfies

x1g(x2 − x1,−x1)+ x2g(−x2, x1 − x2) = 0. (A.15)

Inspired by (A.10), define

h(x1, x2) = x1x2(2x1 − x2)(x1 − 2x2)(x1 + x2)× g(x1, x2).

Then h is homogeneous of even degree in x1, x2. A trivial calculation shows that
(A.14) and (A.15) imply that h satisfies the pair of equations

h(x1, x2)+ h(x2, x1) = 0
h(x2 − x1,−x1)− h(−x2, x1 − x2) = 0

which is equivalent, by replacing x1 with −x1 and noting that h is of even degree,
to the linearized double shuffle equations. So we have constructed an injection

H −→ ls2

of degree 5. Now we want a lower bound on H . For this, consider elements

`a,b = 1
2b
{x2a

1 , {x−2
1 , x2b

1 }•}• +
1

2a
{x2b

1 , {x−2
1 , x2a

1 }•}•, for a, b > 1. (A.16)
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These elements are in R1pls3 and in the image of (A.1). They are the images of
lowest-weight vectors in ugeom, and therefore satisfy f(`a,b) = 0, a fact which can
also be checked directly. Since `a,b = `b,a , a linear combination

∑
a,b>1 ca,b`a,b

can be represented by a symmetric polynomial in two variables

P(x1, x2) =
∑

a,b>1

ca,b x2a−1
1 x2b−1

2 .

Equivalently, let V be the graded vector space of symmetric polynomials in two
variables x1, x2 of odd degree in x1 and x2, and consider the linear map

` : V −→ H
x2a−1

1 x2b−1
2 7→ `a,b.

Using the definitions or (5.9), we have

R3
1

2b
{x2a

1 , {x−2
1 , x2b

1 }•}•
= x1r(x1, x2)− x2r(x2, x1)+ (x2 − x1)(r(x2 − x1, x1)− r(x2 − x1, x2)),

where r = x2a−1
1 x2b−1

2 . Using the fact that P is symmetric in x1, x2, it follows that
the kernel of R3` ⊂ V is the set of polynomials satisfying

(x1 − x2)
(
P(x1, x2)+ P(x2 − x1,−x1)+ P(x1 − x2,−x2)

) = 0.

The solutions to this equation are precisely the defining equations for the space of
odd period polynomials. As is well known, the generating series for its dimensions
are again given by the generating series S(s) of dimensions of the space of cusp
forms, which gives us a lower bound for the dimensions of H . This lower bound
coincides, via (A.8), with the upper bound on the dimension coming from ls2

except for the first term. This gives the exact sequence.

The kernel of the map ` was first computed by Pollack [34] by a different
method. He showed that the relations between the `a,b (or rather their versions in
ugeom) are exactly given by odd period polynomials.

REMARK A.5. In the course of the proof we have a given a new interpretation of
the double shuffle space ls2 as the set of symmetric odd polynomials modulo the
odd period polynomial relations.

In particular, the spaces e(ls2) and H are, respectively, generated by

{x−2
1 , {x2m

1 , x2n
1 }•}• where m, n > 1, and `a,b.
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As a consequence of the previous lemma, we have

COROLLARY A.6. The Poincaré series for grR1pls3 = H ⊕ e(ls2) is

d2(s)− s8

s5
+ d2(s)

s

In conclusion, the Poincaré series of grRpls3 = ls3 ⊕ grR1 pls3 ⊕ grR2 pls3 is

u3(s) = d3(s)+ d2(s)− s8

s5
+ d2(s)

s
+ s

1− s2

which, when simplified, gives the formula stated in the theorem. The surjectivity
of `′ follows from our explicit description of generators on each piece grRi plsk .
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[10] J. Blümlein, D. J. Broadhurst and J. A. M. Vermaseren, ‘The multiple zeta value data mine’,

Comput. Phys. Comm. 181 (2010), 582–625.
[11] D. Calaque, B. Enriquez and P. Etingof, ‘Universal KZB equations: the elliptic case’, in

Algebra, Arithmetic, and Geometry: in honor of Yu. I. Manin. Vol. I, Progress in Mathematics,
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