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ISOMETRIC MAPPINGS OF NON-COMMUTATIVE 
Lv SPACES 

A. KATAVOLOS 

If the Lp spaces of two measure spaces are " the same" , to what extent can 
we identify the underlying measure spaces? This question has been partial ly 
answered by Schneider [7] (extending results of Forelli [2]). He proves t ha t a 
linear isometry between the Lv spaces of two finite measure spaces is in fact 
an (isometric) homomorphism between the corresponding Lœ spaces, if it pre­
serves the identi ty. 

Kadison [4] and later Russo [10], have considered what might be called 
non-commutat ive analogues of the above problem. Their point of view is 
different from ours, however, since their "measure spaces" are already in bi-
jective correspondence by assumption, and their goal is to determine how 
much of the algebraic s t ructure is transferred by this Injection. 

In this paper, we a t t e m p t to extend Schneider's result to the non-commuta­
tive case, thus strengthening Theorem 2 of Russo [10]. Specifically, we consider 
two finite Von Neumann algebras s/\, S$ 2 with faithful traces Wi, m2, and a 
*-linear map T from a *-subalgebra °tt of se \ to Lv (0/2, tn2) for some p > 2, 
which preserves the identi ty and the L^-norm (see Segal [8] for the relevant 
définit ions). We prove tha t T must be a Jordan homomorphism, and must 
preserve the operator norm (and thus, by the Riesz-Thorin-Kunze theorem 
[5], all Z^-norms for q > 2) . In the absence of commuta t iv i ty , we cannot con­
clude tha t T is an associative homomorphism without some extra assumptions. 
In fact, if s/2 is a factor, then we can show tha t T must be either an (associa­
tive) homomorphism or an ant ihomomorphism. 

T h e results of this paper are similar to well known results of Kadison [4]. 
However, our hypotheses are weaker, in t ha t he considers the mapping T to be 
an isometric bijection between s/1 and se 1. Fur thermore , his results are not 
applicable to our problem (but see Corollary 2.1 (ii)), because we need to 
prove first t ha t T is a Jordan homomorphism (using a method entirely different 
from Kadison's) in order to be able to conclude t ha t it preserves the operator 
norm. A similar relation exists between our results and results of B. Russo [10]. 
We note t ha t our Theorem 2 is stronger, since, s tar t ing from weaker assump­
tions (namely, t ha t T maps a *-subalgebra % of &/1 into Lp (S/2J m 2) ra ther 
t han J ^ i onto itself, and tha t T is *-linear, ra ther than positivity preserving) 
we are able to get stronger conclusions (namely, positivity preservation, and 
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Lv SPACES 1181 

preservation of all Lp-norms, for p in [2, oo]). Finally, we note tha t AI. Broise 
[9] has obtained partial results in the semi-finite case. 

Throughout this paper, we l e t J ^ i , J ^ 2 be two finite Von Neumann algebras. 
Thus there exist faithful, central, normal states m j O n j / j (i = 1, 2). Then if 

s/{ acts on the Hilbert space 3#? u (rf?x, S$u Wj)(i = 1, 2) are finite regular 
gage spaces in the sense of Segal [8]. 

We need a technical result constituting an extension to the present, non-
commutat ive case, of results of Schneider [7] and Forelli [2] ; 

T H E O R E M 1. Let 0 < p < oo, ft G Lp(34?t, se u mx) (i = 1, 2) ft normal. 

Suppose that there is a positive constant A, such that, whenever z G C is such that 
\z\ < A, we have 

| |1 +s / l |U P 0»l) = H1 + Zf*\\Lp(m2)-

Then 

( a ) ll/l|U2(mi) = | I/2I |z,2(m2) 
(b) If p > 2, then ||/i|U4(mi) = I L A I U ^ ) . 

Proof. Let 381 ^s/1 be the Von Neumann algebra generated by the spectral 
projections of/* ( that is by the projections e\l such tha t ft = fc\de\\ Since 
ft may be identified with a closed densely defined operator acting on 34? t (this 
is because the gages are finite; see [6, Theorems 4 and 5]), it follows tha t 
ex1 es/,). 

Then (34? i} 38 u nii\m) is a commutat ive finite regular gage space. I t is 
therefore [8, pp. 402-3] algebraically equivalent to the gage space built on a 
finite measure space (2? u 0"*)- Since ft is measurable with respect to 38 % 

[8, Definition 2.1] it follows by [8, Theorem 2] tha t ft corresponds, under 
the above equivalence, to a measurable function (pt on (2? if at). 

We now apply the commutat ive theorem of Forelli-Schneider to the func­
tions c, on the measure spaces (2? u at). Note that , if z £ C is such tha t 
M <A, 

| |1 +Z(pi\\Lp(ai) = I J |1 + ^ i (x ) | P ^(7 i (x ) J 

= [wi( | l + zfi\p)] ,v by the above equivalence 

= [m2(\l + zf2\
p)]Vp = [ J | l + zcp2(x)\pda2(x)j/P 

= | |1 + z<p2\\ Lp(*2) < °° s ince/ i G Lp(34^i,s^i,m{). 

Thus the hypotheses of [2, Proposition 1] and [7, Theorem A] are satisfied, 
and so we conclude 

(a) HPIIUJGTI) = IWL2(*2) 
and 

(b) If p > 2, then ||^i|U4(^i) = I WU4(*2)« 
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The desired conclusion now follows from the fact t ha t if 0 < q < oo , 

| |/i| |L f l<*U-) = mi(\U\Q) = J Wi(pc)\Qdat(x) = \\<Pi\\qLq(ai). 

T H E O R E M 2. Let °ti Q stf \ be a unital *-sub'algebra. For some p in (2, oo)} let 

T: °ti -+Lp(s/2lm2) 

be a *-linear map such that T(l) = 1. Suppose that 

\\TJ\\Lp (m2)
 — ll/l|i»p(mi) for every normal f Ç %. 

Then T is a Jordan homomorphism, that is, 

T(fg + gf) = TfTg + TgTf, f,ge<W. 

Remark 1. Young [12] has shown, based on the coincidence of the Lv topology 
and the strong topology on the unit ball of J^ i (D ixmie r [3]) t ha t T admits an 
extension Te to the weak closure °U~ of °ll, which is also an Lp-isometry. By 
Corollary 2.1 (see below) Te(°U~) C j / 2 . By Dixmier 's result, Te will be ultra-
weakly continuous a t 0, hence everywhere in 90 \. This provides a quicker, if 
indirect, proof of Lemma 3.1 of St0rmer [11]. 

Remark 2. Russo [10] provides an example showing tha t our assumptions 
are too weak for the case p = 2. In this case, the stronger assumptions of his 
Theorem 2 are essential. 

Proof, (i) Let / £ <% be self-adjoint, and z ^ C . Since T(l + zf) = 1 + zTf, 
we have (since Tf is also self-adjoint) 

ill + 3/ILpCroi) = ||1 + zTf\\Lp(m2). 

T h u s Theorem 1 (b) shows 

111 + 3/IL4(mi) = ||1 + zTf\\mm2) < oo, s i n c e / g s/x C L 4 ( w i ) . 

Now 

and so 

m+*ii.*-,£(î)(î ).*.,(/}•>. 
Similarly 

IU + «r/||,«- i Q ( J ) ( ; ) « r y ) W ) . 
Therefore 

(1) rn^/f ) = mt«Tf)'(Tf)*), j , k = 0, 1, 2. 
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(ii) Putting j = 1, k = 2, in (1) yields 

m2((27)') = mxC/8). 

Replacing / with / + ag, a real, / , g self-adjoint, expanding and comparing 
terms in a2, we find 

m2(Tf(Tgy + TgTfTg + (Tg)2Tf) = W l(fe2 + g/g + g2f) 

or, in view of the centrality of the traces 

(2) m,{Tf{TgY) = mdfg2). 

On the other hand, putting j = k = 1 in (1) yields 

m2((TfY) = mi(P) 
which, upon "linearization" and use of centrality as above, yields 

m2(TfTg) = miifg). 

Replacing g by g2 above, and comparing the result with (2) we find 

m2(Tf(TgY) = m2(TfT(g*)) 

and, replacing/ by g2, we get 

(3) m,{T{gi){TgY) = m 2 ( (7V))2) . 

Finally, if we p u t j = k = 2 in (1), we find 

m2((rg)4) = mi(g*) 

while (2) with / = g2 becomes 

m^T{g>){TgY) =m,(g 4 ) 

hence 

(4) m,{{TgY) = m,(T(g*)(TgY). 

Therefore 

\\(TgY- T(g*)\\2* = m2((TgY - (7g)2r(g2) - T(g*)(TgY+ (T(g')Y) = 0 

by (3) and (4), and so (Tg)2 = T(g2) for every self-adjoint g in ^ . 

(iii) Now let f e ^ be arbitrary, and write f = fi + if2 with / l f f2 t ^ 
self-adjoint. Since /1 + /2 is self-adjoint, part (ii) yields 

T((fi + /*)2) = (T(fr +f,)Y = (77x + Tf2Y-

That is, 

r(/,2 + /2
2 + /,/, + /2/,) = r(ft*) + T(fs) + r(/x/2 +/2/,) 

= (7702 + (r/2)
2 + (r/xr/, + 7y,r/i). 
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Thus 

Therefore, 

T(P) = r((/i + iuy) = TW - / 2
2 + i(fif2 +/2/O) 

= (r/02 - (r/2)* + tcr/xzy, + 77,270 
= (r/t + ir/02 = {Tfy. 

Finally, if / , g £ ^ are arbi t rary , we have 

nif + g)2) = T(f + g2 + /g + g/) = (r/)2 + (rg)2 + T(fg + g/) 
= (T(f + g))2 = (r/)2 + (rg)2 + TJTg + TgTf. 

Therefore, 

r/Tg + igr / = r( / g + g/). 

COROLLARY 2.1. (i) / / / ^ % is self-adjoint, | |77| |œ = H/IL-
(ii) for every f Ç <2C, | | r / | U = | | / | |œ . Hewce T( ^ ) C j / , . 

(iii) T is positivity preserving. 

Proof, (i) Let / € N. We have 

\\Tf\\Vulm* = mtQTf\*>) = m,{(Tf*y{Tf)>) 

= m2((T(f'))*(T(f'))) by Theorem 2 

= ll^(/J)llL(m2) = H/'llLcmo by Theorem 1 (a) 

= mi(f*'f) = mxd/l") = ll/lll^»,). 
T h u s 

||^/IU2i(m2) = ||/IU2i(mi)-

T h e result follows by letting / tend to infinity. 

(ii) If / G °à is arbi t rary , write f = fi + if 2 with fk self-adjoint. Since 

h = Uf + / * ) , h = (U2i){f - / * ) , it follows tha t HA-IU ^ H/IU Therefore 

P7IU =£ lir/xiu + ||r/2||œ - I^IU + WML s 2||/||œ. 
This shows tha t T ( ^ ) Ç J^ 2 . 

Now the proof of Kadison [4, Theorem 5] is applicable, and shows t ha t T is 
actually isometric. (Although he assumes T to be a bijection, the a rgument 
proving tha t T is isometric does not depend on this, bu t only on the fact t ha t 
T is a Jordan homomorphism and tha t it is isometric on self-adjoint elements, 
which follows from par t (i) of the corollary.) 

(iii) In view of par t (ii), there is no loss of generality in assuming fyl to be 
uniformly closed. 

If / G % is positive, there is a unique g £ °tt such tha t g2 = f and g ^ 0. 
Now T(J) = T(g2) = (Tg)2 is positive since Tg is self-adjoint. This completes 
the proof. 
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T H E O R E M 3 There exists an orthogonal central projection p Ç s$ i such that 
the map 

T1:f^T(f)p 
(respectively T2 : / - > T(f)(l - p)) 

is a *-homomorphism (respectively a *-anti-homomorphism) and T — T\ + T2 

as linear maps. 

Proof. We have shown tha t the image of °l/ under T consists of bounded 
operators. Therefore, the extension Te of T to °ti~ (cf. the first remark following 
Theorem 2) satisfies the hypotheses of Theorem 3.3 of S termer [11]. 

COROLLARY 3.1. Suppose that, in addition to the assumptions of Theorem 2, 
0/2 is a factor. Then T must be either an (associative) homomorphism or an 
antihomomorphism. 

Proof. As T has now been proved to be a Jordan homomorphism from °ti 
intoJ^/2 , this is an immediate consequence of Theorem 3. 

Remark. I t is not possible, without some extra assumption, to exclude one or 
the other possibility. For example, the identi ty mapping is an homomorphism 
of any factor onto itself, and it clearly preserves the L^-norm. As an example 
of an ant ihomomorphism consider the mapping T defined as follows: s/\ is 
a factor on a Hilbert s p a c e d ; v is an antilinear ant iuni tary operator îromJ^ 
to some Hilbert space J T ; we put T(f) = v~lf*v, (f £ ^ 1 ) . Then T(s/1) is 
a factor and T preserves the L^-norm for every p > 1. (This example is due 
to Dixmier [1]). 
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