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1. Introduction

In this note we present some results on relationships between certain
verbal subgroups of metabelian groups. To state these results explicitly
we need some notation. As usual

x-xy-xxy = [x, y] and [\x, y], z] = \x, y, z];

further [x, Oy] = x and [x, ky] = \x, (k—l)y, y] for all positive integers k.
The s-th term ys(G) of the lower central series of a group G is the subgroup of
G generated by [«i, • • •, as] for all alt • • •, a, in G. A group G is metabelian if
[[ai» ai\> [a3» atl] = e (the identity element) for all at, a2, a3, a4, in G, and
has exponent k if ak = e for all a in G.

This investigation was motivated by the observation that, if a group
G belongs to a proper subvariety of AVAV (the variety of extensions of ele-
mentary abelian ^-groups by elementary abelian />-groups), then for some
positive integer s

{ax, (P-I)a2, {fi-lfa, (p-l)a3, • • •, (j>-l)a.] = e

for all alt • • -, a8 in G. 2

Let s be an integer greater than 1 and let a = (nx, • • •, ns) be an ordered
s-tuplet of positive integers. We write en(G) for the subgroup of a group G
generated by

[alt n2a2> (%—1)« 1 ( n3a3, • • •, n,a,]

for all ax, • • -, a3 in G. A group G is an eB-group if sn(G) is the trivial subgroup.

THEOREM. Let s be an integer greater than 1, let n = (nlt • • •, ns) be an
s-tuplet of positive integers, and let m = 2i=iM»- ^n a metabelian eu-group G

(A) ym+1{G) has exponent dividing

1 Part of this work was done at the fifth Summer Research Institute of the Australian
Mathematical Society.

2 Now superseded by a complete description of the subvarieties of AVAV (Kovacs-New-
man [2]) which, however, makes use of the results obtained here.
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1 > ni

nx\ i = 1 ,=i

and (B) yt[G)/yt+1(G) has exponent dividing

/or < e {ra, m-\-l, • • •} except for s = 2,t = m when the exponent divides

h

g.c.d. («1} w2)

This theorem is best possible in a number of senses:
1) ym-i(G)lym{G) need not have finite exponent — every nilpotent

group of class m—1 is an en-group;
2) if p is a prime divisor of h, then >̂ may divide the exponent of

7t(G)lyt+i{G) f°r a ^ * m {w> *»+!» • • •} — the wreath product of a cyclic
group of order p by a countably infinite elementary abelian ^-group is then
a metabelian £n-group;

3) if s = 2 and n1-\-n2 is a prime, then nx-\-n^ may divide the expo-
nent of ym(G)/ym+1(G) — Example 3.2;

4) in a non-metabelian e^-group ym{G)jym+1{G) need not have finite
exponent — Example 3.1 exhibits a group of this kind which is both abelian-
by-nilpotent-of-class-two and nilpotent-of-class-two-by-abelian.

The theorem includes as special cases all the related results we know:
Theorem 1.10 of Gruenberg [1]; Weston [3]; and an unpublished result
of Mrs. U. Heineken (verbally communicated by Dr. H. Heineken). Gruen-
berg's theorem gives a finite exponent for a term of the lower central series
of a soluble Engel group — the term depending on the soluble length and
the Engel condition. Our result improves the term of the lower central
series involved for the metabelian case; using his techniques (embodied in
his Lemma 4.4), we can improve his result also in the general soluble case
—we will not, however, write these results down explicitly here as they are
most unlikely to be best possible.

We thank the referee for making suggestions which have lead to im-
provements of some of our original results and to shortening of some of our
•original proofs.

2. Proof of theorem

The proof consists largely of commutator calculations. Let a,ax,
m • •,

<at, b, c be elements of a metabelian group G and d an element of the (abe-
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lian) commutator subgroup G' = y2(G) of G. We start from the following
well-known or easily verifiable identities:

(1) [a, b] = [b, a ] - 1

(2) [a, be] = [a, c][a, b][a, b, c]

(3) [a,b,c][b,c,a][c,a,b] = e

(4) \ad,V] = \a,V\{d,b]

(5) [d, alt- • % at] = [d, ala, • • •, aia\

for every permutation a of {1, • • -,t}

(6) [d\ b] = [d, b]' for every integer i.

Let r be a positive integer. A straight-forward induction on r using the
above identities gives

(7) [d, rab] = [d, ra][d, {r-l)a, b]r7i

where n is a product of powers of commutators of the form [d, ja, kb] where
j+k ^ r and k ^ 2.

To make the proof easier to follow we break it up using a number of
lemmas which we prove later. Throughout these lemmas G is a metabelian
group.

(2.1) LEMMA. Let n, t be positive integers. If xeG', [x, bx,- • •, bn+1] = e

for all &!,•••, bn+1 in G, and [x, na]f = e for all a in G, then

{x,ax, • • - , « „ ] " " = e

for all alt • • -, an in G.

(2.2) LEMMA. Let n, t be positive integers. If x e G' and [x, na]* = e

for all a in G, then [x, (n—l)a, b]nH = e for all a, b in G.

(2.3) LEMMA. Let n, r be positive integers. If yn+r+1{G) is trivial and
[a, rb, (n—1)«] = e for all a, b in G, then yn+r(G) has exponent dividing

(2.4) LEMMA. Let n, r be positive integers. If yn+T+2{G) is trivial and
[a, rb, (n—l)a, c] = e for all a, b, c in G, then yn+r+1(G) has exponent dividing
(»- l ) ! ( r - l ) !g .c .d . (n,r)

PROOF OF THEOREM.

(A) (induction on s)
s = 2: Since [a±, n2a2, (%— l)«i] = e for all alt a2 in G, replacing ax, by
a[c, d], a2 by b, and using (4) gives

[c,d,n2b, {n1— 1)a\ = e

for all a, b, c, d in G. The results follows after n1-\-n2—l applications of
Lemma 2.2.
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s > 2: Let n' = (n1, • • •, ng_x). By the inductive hypothesis a;*' belongs to
sH,(G) for all x in ym+1_Bj(G) where

« 1 ! i=l 3=1

Hence, using (4), [x, nsa,]k' = e for all x in ym+1_n (G) and all as in G. The
result follows after ns applications of Lemma 2.2.

(B) Consider first the case t = m. Without loss of generality ym+1(G)
= E. The case s = 2 is the content of Lemma 2.3. If s > 2, then s—2 ap-
plications of Lemma 2.1 give

[ax, n2a2, (n1—l)a1, bx, • • •, bm_n _„ ]n3!"-n«! = e

for all ax, a2, bx, • • •, bm_n _n in G. Let ri = (nx, n2, 1). By Lemma 2.4 xh'
belongs to eH,{G)yni+ni+2{G) for all x in yni+n2+1(G) where

The result follows from these last two statements.
Since the exponent of yt+i{G-)lyt+2(G) divides the exponent of

yt{G)Jyt+1{G), it remains to show that ym+1{G)jym+2(G) has exponent divid-
ing h when s = 2. This follows at once from Lemma 2.4 and the observation
that if eUi>Bj)(G) is trivial, then so is e(Bl(Biil,(G).

PROOF OF LEMMA 2.1. The result for arbitrary / follows at once from
the case t = 1. Replacing a by ax • • • an and expanding using (2) gives

n n

IT ' " ' IT iX> ai ' ' ' •' Uij = e f ° r a ^ al> ' ' '> an m G-

Since G is metabelian the left-hand side of this equation can be written
in the form HxTTx where IJ^ is the product of commutators involving ax and
H i is the product of commutators not involving a±. The relation Hi ITi ~ e

holds for all ax in G and so in particular for ax = e. Thus H^ — e ^or a ^
a2, • • •, an in G. Hence H i = & for all alt • • •, an in G. Repeating this ar-
gument for a2>- • •, an in turn gives

Y[[x,ah, • • -,ain] = e

where (ilt • • •, in) runs over all permutations of {1, • • •, «}. Hence, by (5),
\x, «!,-•- , an]

n' = c as required.

PROOF OF LEMMA 2.2. Again the result for arbitrary t follows from
the case t = 1. For i e {0, • • •, n—1} let / be the function defined by
f{i) = n\/(n—i)[ and let S{ be the statement:

[d, (n-i)a, ib]f^7ii+1(a, b) = e
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for all a, b in G where ni+1{a, b) is a (possibly empty) product of powers of
commutators of the form [d, ja, kb] where j+k ^ n and k ^ i-\-l. The re-
quired result is the statement Sn_1. It is given that So is true. For

* 6 {1, ->,n-l}
suppose Si_1 is true, then

[d, [n-i+l)ab, (*-l)6]«<-1>n4(aJ, b)
{[d, (n-i+l)a, (*-l)&]W-»»f(a, b)}~1 = e.

Hence, using (7) and (4), S,- is true and the result follows.

PROOF OF LEMMA 2.3. The first step of the proof is similar to the proof
of Lemma 2.1: replace a, b by ax • • • an, bx • • • br repectively, write as a
p r o d u c t of c o m m u t a t o r s i n ax, • • •, an, b1, • • •, bT, p u t ax, • • •, an, blt • • • , b r

in turn equal to e and use (5) to permute the entries in the 3rd to (w-f-r)-th
place. This gives

n n [«<.&,.«!.•••.
1 = 1 3 = 1 at_x, ai+1> • • • , a n , b l t " ; b,_lt bj+1, • • -, J j C - D X - D i = , .

for all alt- • •, an, bx, • • •, br in G. Let w(at, bx) denote the left-hand side of
this relation, then

w(«1,Z)1)ze'(61,a1)-1 = e.

Using (1), (3), (4), (5) this gives

\n 7, „ . . . n h • • • h l(«-l)!(r-l)!(n+r) „

as required.

PROOF OF LEMMA 2.4. We have, as in the proof of Lemma 2.3,
n r

I T I T IX-> bj. ai> • • •> ai-i> <*i+i, • • •>««.

for all «1, • • •, an, blt • • •, bT, c in G. Let w(a1, c) denote the left-hand side
of this relation, then

w(ax, c)w(c, ax)~
x = e.

Using (1), (3), (4), (5) this gives

[a1,c,a2,--;cin,b1,--;brr-1^-1^ = e.

A similar operation with bx and c gives
[7, r n . . . a h • • • h "lln-ilU'-i)!" p
\P\, c, «ii J «n> °2> ' °rJ — e

which on interchanging ax and bt and using (5) gives
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[«i» c, «2> " ' '• an> i>i>'' '> br]
{n~1)Hr~1)in = e.

The result follows from combining these two.

3. Examples

(3.1) For every integer m 5; 3, there is a group K with the following
properties:

(a) nilpotent-of-class-2-by-abelian,
(b) abelian-by-nilpotent-of-class-2,
(c) nilpotent of class m-\-l,

(d) 3 generators,
(e) every 2-generator subgroup has class at most m,
(f) Ym+i(K) contains an element of infinite order.

DETAILS. Let H be a nilpotent-of-class-2 group generated by elements
ai> ' ' '> am> bi> ' ' '» m̂ satisfying the following relations (and their conse-
quences but no others)

[a{, dj] = [pi, bj] = e for all *, / in {1, • • •, m}

lai> bj] = e f°r all i, j in {3, • • •, m)

[a2, bj\ = [ajt b2] for all / in {3, • • -,m}

[«2. Kl = e
[a1, bf] = [at, bj] for a l l i i n {2, • • • , ? « }

1 = e.

Clearly [alt bm] has infinite order in H.
It is routine to check that there is an automorphism £ of H which maps

a, to «<«<+!, b{ to b(bi+1 for all i in {1, • • -, m—1} and fixes am, bm. Let K be
the splitting extension of H by an infinite cyclic group gp{x}, with x induc-
ing | in H. Clearly K has properties (a) and (d). Let c m = [«x, b(] for all &'
in {1, • • •, m) and ^i+2 = [as, bs] for all / in {2, • • •, m—1}, then

[c2>a;] = 4di
[cit x] = c,+1rft+1rf,+2 for all i in {3, • • •, m—1}
[cm,x] = cm+1dm+1

[i3-, x] = dj+1 for all / in {4, • • •, m}

It follows that yr(i£) is generated by all the a's b's, c's and d's whose sub-
scripts are at least r. From this properties (b), (c), (/) follow at once and it
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remains to verify (e). Every element of K can be written in the form
xra\b\y where y belongs to y2{K). Therefore, since K is nilpotent of class
m\\, in order to show that every 2-generator subgroup has class at most m,
it suffices to show that every left-normed commutator of weight m-\-\
in xra\b\ and xu'a\b\ is trivial for all choices of r, s, t, u, v, w. There is no
loss of generality in considering only those left-normed commutators of
weight m-\-1 whose first three entries are xra\ b[, xu a\ b\, xu a\ b\ respectively.
Now [xra\b[, xua\b\~\ = a*a~"bf-™cf ~tvy3 where yz belongs to ys{K), so

ixra\b\, xua\b™, x*a\W[\ = fl«('»-™> &»(*«-"»> c^f™-*")^

where yt belongs to y4(ii). It is now routine to prove inductively for all
i in {4, • • •, m-\-l} that every left-normed commutator of weight i in
xra\b\ and xua\Vl starting as above has the form

belongs to yi+1(K) and am+1 = bm+1 = e. It follows from the last relation
given for H that K has property (e) as required.

(3.2) For every odd prime p, there is a group N with the following
properties:

(a) metabelian,
(b) nilpotent of class p,
(c) 3 generators,
(d) every 2-generator subgroup has class at most p—1,
(e) yp(N) contains an element of order p.

DETAILS. For p = 3 the 3-generator free group of exponent 3 has all
these properties. For p J2: 5 let K be the group constructed in 3.1 with
m = p—1, then the second derived subgroup D = y2(y2{G)) is generated
by dt, • • -, dv. Take N to be KjD, then clearly N is metabelian and proper-
ties (b), (c), (d) follow from the properties of K. Finally property (e) holds
because cvD has order p.
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