J. Functional Programming 5 (3): 345-382, July 1995 © 1995 Cambridge University Press 345

Prototyping a parallel vision system
in Standard ML

GREG MICHAELSON AND NORMAN SCAIFE

Department of Computing and Electrical Engineering,
Heriot-Watt University,Edinburgh, EH14 4AS.
(e-mail: {greg,norman}@cee.hw.ac.uk)

Abstract

The construction of a parallel vision system from Standard ML prototypes is presented.
The system recognises 3D objects from 2D scenes through edge detection, grouping of
edges into straight lines and line junction based model matching. Functional prototyping for
parallelism is illustrated through the development of the straight line detection component.
The assemblage of the whole system from prototyped components is then considered and its
performance discussed.

Capsule Review

Functional languages are said to be easy to read and write, and thus suitable for prototyping.
This paper describes prototyping a complete vision system in Standard ML. The system
recognises 3D objects from 2D scenes. It is fairly large and complex, and may be one of the
few state-of-the-art computer vision systems written in a functional language. The prototype
is then translated into Occam?2 taking measurements from the prototype into account. This
development process is particularly interesting, and advantages and problems in using the
method are discussed. The paper provides important information to developers of parallel
systems looking for design and prototyping methods.

1 Introduction
1.1 Overview

We have been investigating the use of functional prototyping in the development of
parallel systems. In this paper we discuss the construction of a simple but complete
parallel vision system which will recognise 3D objects from 2D intensity images. The
system was prototyped in a pure functional subset of Standard ML and implemented
in Occam?2 on a Meiko Computing Surface.

An important objective of this work is to give us experience in building a large
scale project from discrete modules. In particular, we want to investigate how
parallel performance is affected when existing prototyped system components are
linked together to give a complete system. Subsidiary issues are the problems asso-

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

346 G. Michaelson and N. Scaife

ciated with connecting together such modules and the programmer effort involved
in the connection process. To investigate this we take our existing components,
combine them at the prototype and implementation level and then compare the
optimal performance predicted by the prototype with a hand-optimised implemen-
tation.

Thus, our main focus is on the development of individual parallel components
from functional prototypes, the subsequent integration of these components and the
resulting parallel performance. We also consider various issues in the translation
from SML to Occam2, in particular the use of skeletons in the identification of
useful parallelism.

We choose to prototype systems rather than implementing them directly for a
number of reasons. First, during system development, as opposed to design, it is
common to identify changes and improvements which have major implications for
the design and would best be met by rebuilding the system. We view prototyping as
a bridge between design and implementation, where the design drives the prototype
but the prototype can have implications for the design. Thus, major design changes
are made at the prototyping stage: thereafter the implementation is based on a
frozen design and is subsequently straightforward. Secondly, prototyping enables a
focus on functionality as opposed to efficiency. A prototype demonstrates practically
that particular algorithmic approaches will work. Once the algorithms are chosen
the implementation work can concentrate on efficiency issues. Finally, a prototype
forms a practical standard for evaluating the implementation. That is, while the
performance of the prototype and implementation may differ markedly, the I/O
behaviour on common test data should be the same.

Note that our choice of SML and Occam? are effectively pre-given as we already
have substantial experience in using both for computer vision. SML was developed at
the University of Edinburgh in the late 1970s, and so we benefited from proximity to
an active local community and excellent support for mature, robust implementations.
SML has been taught at Heriot-Watt University since the early 1980s, and was a
natural choice when we began to look at functional prototyping. Similarly, when
we started investigating parallel computer vision, we had access to the transputer
based Meiko Computing Surface at the Edinburgh Parallel Computer Centre. At
that time, programming transputers using Occam? was significantly faster than in
other languages, for example Parallel C — hence our initial decision to use Occam?
as the target for parallel implementations.

The rest of the paper is organised as follows. The next two sub-sections give
brief overviews of functional prototyping for parallelism and computer vision. Sec-
tion 2 considers in detail the prototyping of a Hough transform for straight line
detection from edge detected images. Section 3 discusses the translation from SML
to Occam?, illustrated with fragments of the Hough transform prototype and par-
allel implementation. Section 4 describes the integration of the Hough transform
with existing functionally prototyped components for edge detection and vertex
based model matching. Section 5 presents the performance of the combined par-
allel system. Finally, in Section 6 conclusions and future avenues for research are
considered.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 347

1.2 Functional prototyping for parallelism

Parallelism is a ‘Holy Grail’ for computing, bearing a seductive promise of vast
increases in performance and functionality. Alas, despite intensive research, general
methodologies for parallel system development remain elusive. Much parallel system
construction is ad hoc, and performance is often disappointing.

Functional programming appears attractive as a basis for parallelism. Referential
transparency means that functional components cannot interact through changes
to shared objects. Thus, programs are evaluation order independent and contain a
richness of potential parallelism.

There have been three main approaches to exploiting functional parallelism. Im-
plicit parallelism secks to map functional programs directly onto multi-processor
hardware. For example the ALICE (Cripps et al., 1987) and GRIP (Peyton Jones
et al., 1987) systems are based on special hardware for graph reduction of func-
tional programs after compilation to combinatory forms. While this approach has
been immensely influential, both for functional language implementation and for
parallel hardware design, the parallelism tends to be too fine grain for direct ef-
ficient exploitation. For explicit parallelism, functional languages are augmented
with special constructs or libraries for parallelism, for example Caliban (Kelly,
1987) and paraML (Bailey and Newey, 1994). This has the disadvantage of plac-
ing the onus on the programmer to identify where parallelism is appropriate, re-
quiring detailed knowledge of the underlying architecture and the performance
of programs upon it, analogous to machine code programming. Skeleton paral-
lelism (Cole, 1989) is based on efficient generic parallel harnesses for common
functional constructs, typically higher order functions. Programmers may either
choose skeletons based on expert understanding of the program and architecture,
or skeletons may be identified automatically from programs (Darlington et al,
1993). The harnesses are then instantiated with code equivalent to the function
parameters. Skeletons may be thought of as lying between implicit and explicit
parallel programming. The use of higher order functions explicitly identifies sites
of potential parallelism but does not necessarily imply that such parallelism will be
exploited.

We have been using skeleton parallelism for the parallel implementation of vision
algorithms from functional prototypes (Wallace et al, 1992). A prototype is con-
structed from common or special purpose higher order functions for which there are
parallel harnesses. The program is then instrumented on characteristic and patho-
logical data sets to find data flows and processing costs. These costs enable the
identification of sites of useful parallelism. Programs may be transformed to try and
optimise parallelism. For sites of useful parallelism, the corresponding harnesses are
instantiated. Otherwise, sequential code is produced.

1.3 Computer vision

Computer vision has been a major research area for over 40 years. While general
visual abilities comparable to even the humblest animal remain a distant prospect,

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

348 G. Michaelson and N. Scaife

there have been striking successes in restricted domains, for example, manufacturing
inspection, and the application of computer-based vision systems is growing.

Computer vision is generally divided into low, intermediate and high level tasks.
Low level vision is concerned with converting one iconic image into another, usually
convolving or transforming the source to the target image, for example, edge
detection is based on convolution with filters to enhance discontinuities. Intermediate
level vision involves grouping low level details with common properties, for example,
feature space transformation enables the detection of features such as vertices, lines
and surfaces from convolved images. High level vision enables object recognition,
typically by matching known models to parts of scenes, where the models and scenes
are described in terms of features. Figure 1 shows a 3D object recognition system
based on intensity images where a low level Canny edge detector (Canny, 1986)
feeds an intermediate level Hough transform (Leavers, 1993), which in turn feeds a
high level perspective inversion algorithm (McAndrew and Wallace, 1989) for model
matching.

Vision algorithms are data intensive and hence good candidates for benefiting
from parallelism. Most work has been on SIMD implementations of low level
tasks (Kittler and Duff, 1985) where ease of problem decomposition enables good
performance from simple algorithms. Intermediate vision algorithms have been
implemented on both SIMD (Rosenfeld et al., 1988) and MIMD (Austin et al,
1991) architectures. As with low level activities, pixel based data eases partitioning.
Parallel high-level vision is relatively recent (Bhanu and Nuttall, 1989; Amini et al.,
1989). Here, the main requirement is to constrain the search space which grows with
both scene detail and the number of models.

We are starting to build a multi-source (e.g. intensity, depth, surface data) parallel
vision system which will dynamically reallocate resources to the most promising
source. We already have parallel implementations of a low level Canny edge detec-
tor (Koutsakis, 1993) and a high level model matcher (Waugh et al., 1990), both
developed through functional prototyping. We decided to use these components to
construct an experimental complete parallel vision system to recognise 3D objects
in 2D scenes from intensity data.

The missing component for a complete vision system was the straight line detector.
The Hough transform was selected as a well-studied and reasonably reliable method
and was subjected to our familiar method of prototyping in SML and implementing
in Occam2. It turns out, however, that the Hough transform represents a tricky
problem for parallel systems and so has been discussed at length in the next section.

2 Prototyping the Hough transform
2.1 The Hough transform

The Hough transform is a general technique for solving sets of underdetermined
equations where the number of solution classes is unknown. The solutions are arrived
at by forming clusters of potential solutions in the solution space and attributing
dense clusters of possible solutions to the most likely solutions. The technique was

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 349

Intensity Image

Canny Edge Detector

Edge Edge
Strength Angle
Map Map

Hough Transform
Model Description

Detected Lines

Pose Estimation

Fig. 1. Object Recognition

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

350 G. Michaelson and N. Scaife

B Lodadaduaaas - e ’;H
R R
Zr N

//// B \1:} RECE: :

X e :
[P b W
I p/ i | i

rd ; .
/® .
Line in Image Hough space cells P Least squares fitting

Fig. 2. Schematic of the Hough transform process

originally developed for recognising particle tracks in bubble chambers (Hough,
1962), but has widespread uses in vision-related tasks.

An example of one of these tasks is locating 2D lines in an intensity image
(Dudani and Luk, 1978). In this case the system of equations is the normal form for
the equation of a straight line:

p = xcosf + y sind (1)

The potential solutions are plotted in solution space (Hough space), which in this
case consists of (p,) space. For each point in the image (x, y), a sinusoid is plotted
in Hough space by scanning 8 over a suitable range of values and calculating p
using Eqn. 1. Points through which large numbers of these sinusoids pass represent
the likely (p, 8) value of straight lines in the image. Practically, this can be achieved
by quantising (p, 8) and using a voting system to determine the most likely values
of p and 6, see figure 2.

Formulated in this way, the Hough transform technique is a reasonably robust
method in that it has good resistance to noise and can work with high levels of
occlusion (Illingworth and Kittler, 1988). This is because the method uses global
information concentrated at single possible solutions. It is also a very general method,
being applicable to any curves for which parametric forms are available and can
be generalised (at the expense of computational complexity) to any representable
object (Ballard, 1981).

Note, however, that there are a large number of variations on this basic theme
(Leavers, 1993). The major drawbacks of the Hough transform are the size of
the transformation space and the computational complexity of the accumulation
process, and there have been a number of methods developed to reduce one or both
of these resource problems. One such trick for a straight line Hough transform is
that if angular information is available from an edge detector then it can be used
directly in equation (1) to give a one to one mapping which reduces the complexity
of the accumulation strategy.

There have been numerous attempts to implement the Hough transform in parallel,
for instance, Austin et al. (1991). The Hough transform represents a tricky problem
for parallel systems, since the accumulation stage implies some kind of global
communications.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 351

Note that by global communication we refer to any inter-processor communica-
tion during the parallel portion of the algorithm (as opposed to the initialisation
phase). This means both point-to-point communications such as between individual
processing elements as well as global updates of data from one processor to all
Processors.

Broadly speaking, parallel Hough transforms can be classified into the three
categories of input partitioning, output partitioning and mixed input/output parti-
tioning (Leavers, 1993). Input partitioning requires the starting image to be divided
up between the processing elements. Each element then transforms its portion and
transmits the resulting histogram to a central element for combining into a single
Hough space. This process is highly inefficient and is only feasible when the number
of points accumulated for each image point is small. Output partitioning requires
Hough space to be divided up between the processing elements. Each element trans-
forms the entire image, accumulating only those points that lie within its designated
portion of Hough space. This has greater potential for exploiting parallelism, par-
ticularly if the post-processing in Hough space is extensive, for instance, modelling
noise by Gaussian filtering or performing maximal likelihood estimation in the form
of linear regression.

There is still an element of global computation, however, since peaks in Hough
space can be split between neighbouring Hough cells which may be on distinct pro-
cessing elements. This requires global processing to merge similar features although
this need not be significant for sparse images. It would be possible to overcome
this locally by providing direct communications between processing elements, for
instance, in a two-dimensional array. We use a simple parallel processing model in
which there is no direct communication between slave processors: introducing such
refinements would complicate our analysis. The algorithmic skeletons approach,
however, is not restricted in this way, and could decide between such implementa-
tions based on suitable performance models.

Mizxed input/output partitioning requires a relatively sophisticated communica-
tions model, but has been implemented in practice on shared memory architectures
(Leavers, 1993).

2.2 Prototyping the Hough transform in SML

Although previous work has reported acceptable results with the input partitioned
algorithm (Lotufo et al, 1989), in our case the output partition was chosen on
the basis of the degree of post-processing required in the implementation. Mixed
partitioning was rejected to allow the implementation to use the simple algorithmic
skeleton implementations that have been well-studied in the past. Figure 3 is a block
diagram of the implementation.

An important point is that, under the algorithmic skeletons methodology, the
top-level problem decomposition is set by the choice of higher-order functions
(skeletons) made by the programmer. This suggests to the system (the implementer
in this case, or more ideally, a parallelising compiler) how the problem is structured,
but not how to go about mapping this structure onto the chosen hardware. These

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

352 G. Michaelson and N. Scaife

Input Edge Maps
Edge Strength and Orientation

Input Partition

<«<— Data Convolution

Detect Peaks in Hough Space

Least Squares Fit for Line Segments . Output Partition

Segment Line (Split and Merge)

r Output Line End-points J

Fig. 3. Block diagram of the Hough implementation

architectural decisions, such as the geometric arrangement of processor farms'
and processor pipelines, can be made with the aid of performance data from the
prototype, which can be used to make direct predictions about the performance of
a given arrangement.

There are three top-level candidates for parallelism in the Hough transform de-
scribed above: the transformation from the image to Hough space; the accumulation
of Hough space points into a histogram; and the post-processing of Hough space.

The post-processing operation can additionally be subdivided into peak detection,
least squares fitting (where the pixels accumulated in a Hough cell are fitted to a
straight line) and line segmentation (the process of dividing up pixels on an infinite
straight line into contiguous, finite subsegments). These, however, were considered
as a single entity since there was not, in the images studied, a sufficient number
of peaks in Hough space or contiguous subsegments on detected lines to consider
implementing these operations in parallel.

In modelling the parallel aspects of the system it has been found from previous
work (Wallace et al., 1992; Bratvold, 1993) that a small number of high-level pro-
gramming constructs suffice to model the coarse grain MIMD parallelism available
to the project. Summarising this work, the constructs considered were function com-
position, which models processing elements in a pipeline, the higher-order function

f We use the terminology processor farm first introduced by May and Shepherd at Inmos in
1987 (May and Shepherd, 1987). Under this scheme there is a master processor (valve or
Jfarmer processor) meting out work allocations to worker processors on demand. It is also
sometimes called the demand-driven model.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 353

map, which can be implemented efficiently in a number of ways on parallel systems,
most notably processor farms and simple geometric decomposition, partial applica-
tion, which corresponds to preloading of data onto processing elements during an
initialisation phase, and the higher-order function flatten, which can be viewed in
terms of worker processors communicating their results to a single processor. Note,
however, that although these represent equivalent constructs between the functional
language and the parallel implementation, these issues would not normally be taken
into account by a programmer developing a functional language prototype under
algorithmic skeletons method of parallel programming,

The basis of our prototype is the application of map to a list of Hough space
portion definitions with the input image and program parameters built into the
function that map applies. While it is disappointing that map is the only algorithmic
skeleton in the top level of this application, it is encouraging that a complex
system such as a Hough transform can be built using only a small subset of the
skeleton parallelism available. There has been some criticism of the algorithmic
skeletons idea in that it lacks the generality of other methods (Hammond, 1994).
This application, however, illustrates that complete generality is not necessary in the
skeleton component of an application. The host languages provide the generality
and the skeleton parallelism controls the parallel component of the system.

Provided a sufficient number of skeletons and their equivalent implementations
are available, any parallel architecture can be treated in this way. What constitutes
a minimal set of skeletons, however, is open to debate. It may be that only a small
number are required, since some skeletons can be expressed in terms of others
(Bratvold, 1994).

map is the only skeleton required, because at all stages of the computation the
data is represented by lists of homogeneous data. The edge map and Hough space
are both represented using nested lists, and the histogram is built using indexed lists.
Post-processing is carried out on lists of (x,y) co-ordinates representing detected
lines. Below the top level, however, there are other skeletons in use, for instance,
fold and filter play a significant role in the post-processing function.

2.2.1 The SML prototype

Figure 4 shows the top level code for one possible SML implementation.

The image is supplied in HIPS (Cohen et al, 1982) format in the guise of a
HIPS abstype. The dimensions of the image are extracted (rows and cols) along
with the edge image eimg and the angular information aimg. The definitions of the
rectangular areas in Hough space to be processed by each worker are generated
by split_hough, although strictly speaking this is not necessary in predicting the
performance of the parallel implementation and has been done this way merely to
indicate one possible method of parallelisation. The parameters hpx, hpy and hpo
define the number of divisions in the x and y dimensions and the percentage of
overlap of the portions.

The functions modelling the discrete processes (transformation, accumulation
and post-processing) are then generated by partial application (tfn, acfn and ppfn,

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

354 G. Michaelson and N. Scaife

fun hough (hips:HIPS)
(low:int) (rhoinc:int) (angleinc:int)
(hpx:int) (hpy:int) (hpo:int)
(peakth:int) (clustdist:real)
(mergedist:real) (mergeangle:real) (minlinelen:real) =

let

(* Get data from image abstype *)
val rows = get_rows hips
val cols = get_cols hips
val eimg = nth(get_frames hips,0)
val aimg = nth(get_frames hips,1)

(* Split hough space into portions *)
val hough_portions = flatten (split_hough cols rows hpx hpy hpo)

(* Transform image into parametric form *)
val tfn = transform2 low rhoinc angleinc rows eimg aimg

(* Generate histogram in hough space and threshold peaks *)
val acfn = accumulate2 peakth

(* Perform post-processing on data *)
val ppfn = map (post_process2 clustdist)

(* Run farm/pipeline emulation *)
val lines = map (ppfn o acfn o tfn) hough_portions

(* Merge resulting lines *)
val fflines = flatten (flatten lines)
val mrglines = map t1f4 (merge_lines mergedist mergeangle fflines)

in

(* Filter out short lines *)
filter (fn 1 => rline_length 1 > minlinelen) mrglines

end

Fig. 4. Top level SML Hough implementation

respectively), corresponding to pre-distribution of the program parameters, including
the initial image. The three components (tfn, acfn and ppfn) are composed and
mapped over the Hough space portion definitions (hough_portions), corresponding
to farming pipelines of three processors.

Finally, the global merge process is carried out by flattening the result list, if
processor farming is used as the parallel implementation then flattening a list that
has been distributed among separate processing elements is conceptually similar to
the worker processors returning their results to a central point (the farmer proces-

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 355

(* Transform partial images into list of partial Hough spaces *)
val hough_space_list = map transform image_portions

(* Accumulate Hough space from partial Hough spaces *)
val hough_space = fold accumulate null_space hough_space_list

(* Perform post-processing on Hough space *)
val lines = map post_process hough_space

Fig. 5. Hypothetical prototype for input partitioning

sor). Some essential global post-processing is then carried out by the merge_lines
function.

2.2.2 Input vs Output Partitioning

Although we have stated our preference for the output partitioned version, in fact
both input and output partitioned versions were written initially and the two were
used as the basis for the final version.

The problem with input partitioning (figure 5) is that partial Hough spaces have
to be redistributed in the middle of the computation entailing an extra global
communication of iconic data compared to the output partition method. On some
parallel system architectures (e.g.shared memory systems) this might actually be more
efficient, but for linear pipelines of transputer systems it is likely to be expensive.

It became obvious comparing the two that there was substantially more work
required on Hough space (peak detection, least squares fitting and line segmentation)
than in converting the edge map into Hough space (thresholding and applying
equation (1)), and so output partitioning is more likely to benefit from parallelism.
An interesting fact is that it only takes about a couple of hours to recode from
one to the other in SML, although it should be said that the conversion was more
complex than the simple program transformations used elsewhere in this paper, and
would be difficult to automate.

Theoretically, it is possible to deduce both partitioning methods (and even mixed
partitioning) from a purely declarative definition of the problem. The number of
transformations required and the high complexity of costing each possible alter-
native (either running each version on test data or predicting performance from
a performance model) means that arriving at two radically different solutions will
require prohibitive calculation times. Good heuristics in the search process may,
however, make such a proposition viable so automatic program transformation is
still a very promising line of enquiry.

2.2.3 Handling iconic data

One of the problems in prototyping vision algorithms in functional languages is that
most images are two-dimensional in nature. One possible means of handling this

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

356 G. Michaelson and N. Scaife

fun foldr ff def nil def
| foldr ff def (h::t) = ff h (foldr ff def t)

fun foldrll ff def nil = def
| foldrll £ff def (h::t) = foldr ff (foldrll ff def t) h

Fig. 6. The foldr Function generalised to nested lists

fun map2xyll nil = nil

map2xyll _ _ _ nil _ = nil

| map2xyll ff x y (hl::t1) (h2::t2) =
(map2xy ff x y hl h2)::(map2xyll ff x (y + 1) t1 t2)

and map2xy _ _ _ _ nil = nil
| map2xy _ _ _ nil _ = nil
| map2xy ff x y (hil::t1) (h2::t2) =
(ff (x,y,h1,h2))::(map2xy ff (x + 1) y t1 t2)

Fig. 7. The map211 function with counters

data is to represent a 2D array of pixels with nested lists:
type HIPS_IMAGE = int list list

The complication here is that not all the basic operations on lists can be nested,
only those that can be partially or fully applied to give a value of the same type as
one of their arguments, such as map or flatten:

- map (map I) [[1,2],[3,41];

val it = [[1,2],(3,4]] : int list list

- flatten (flatten [[[1],[2]11,([3],[4]111);
val it = [1,2,3,4] : int list

Most of the other list operations have to be built from the non-nested list
equivalent, for instance the foldr function can be generalised to nested lists (see
figure 6), although in this case there is an equivalent expression using the standard
list operations (foldr ff def (flatten 11)).

To write generic routines which are polymorphic in terms of nesting would
require a higher level of polymorphism than provided by SML. The vision algorithms
discussed in this paper have all been implemented using either explicit decomposition
of iconic data or a small set of higher-order functions over nested lists, the most
salient being mapll, map211, foldlll, foldrll, filterll and unzipll?,

The only slight complication for the Hough transform is that the (x,y) co-ordinates
are required in the application of equation (1) by the transformation function. This
is easily handled by the introduction of counters, as shown in figure 7.

¥ We generally use the suffix -11 to mean the equivalent of a higher-order function on lists
generalised to lists of lists.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 357

The function map2xyl1 forms the basis for the transformation into Hough space.
The transformation function is passed the tuple (x,y,edge_strength,edge_angle)
and returns a tuple (x,y,p,0,edge_strength). Note that p and 6 are suitably
quantised. This results in a 2D transformed space which is then reduced into the
Hough space histogram by foldrll. The histogram itself is a list of complex tuples
of the form: ((p,0) ,accum,point_list), where (p,) is the index of the Hough
cell, accum is the histogram accumulator (using the well-known heuristic of summing
the edge_strength values) and point_list is the list of (x,y) points accumulated in
the (p, 8) Hough cell. From this point onwards the normal list processing functions
suffice.

For this particular application, developing the prototype involves no more effort
than developing normal functional code, once the extensions to the normal list
processing functions are available. There is a leap of intuition in realising that,
for the type of manipulations required here, 2D data can be treated in exactly the
same way as 1D data. Issues relating to the construction of 2D operations from
1D operations are discussed in Kozato (1994). It should be pointed out, however,
that this will not be the case for all 2D data operations; for instance, had we
implemented an edge tracking algorithm instead of the Hough transform none of
the foregoing discussion would apply and the code would have been very convoluted.
It would also have been much more difficult to maintain correspondence between
the prototype and parallel implementation. The key issue is that our decomposition
of the iconic data was both regular and not dependent on any particular order of
access (row-column versus column-row, for instance).

Handling a method such as edge-tracking really requires unit time random access
to the data, which implies some kind of array representation. Although we have
overcome this requirement in our application by structuring the algorithm in a
specific way, there is no doubt that an even more efficient version could be written
using New Jersey SML’s struct Array2. We did not investigate arrays because
New Jersey SML’s implementation is somewhat unwieldy in syntax, and is also
not referentially transparent. While these could have been overcome with careful
coding, it is probably not a good idea to let automatic program transformations
loose among non-referentially transparent constructs. The prototype would also lose
its aesthetically pleasing purely functional nature.

2.2.4 Program transformation

The two main possibilities for the parallel architecture are a farm of pipelines which
corresponds to the following SML skeleton:

map (ppfn o acfn o tfn) hough_portions
or as a pipeline of farms:
(map ppfn) o (map acfn) o (map tfn) hough_portions

These architectures represent two extremes of a range of possible implementa-
tions, but the intermediate possibilities are most likely intermediate in terms of

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

358 G. Michaelson and N. Scaife

performance, and so were not considered. The reason for this is that the same
transformation rule can be used to transform one form into any other:
map (f 0 g) < (map f) o (map g)
thus:
map (ppfn o acfn o tfn) hough_portions
= map ((ppfn o acfn) o tfn) hough_portions
< (map (ppfn o acfn)) o (map tfn) hough_portions
<> ((map ppfn) o (map acfn)) o (map tfn) hough_portions
= (map ppfn) o (map acfn) o (map tfn) hough_portions
To decide which construct represents the best solution requires a combination
of timing results with static data transfer analysis for each of the components
individually. Timing information for sets of representative data gives relative com-
putational requirements for each of the components. Static data flow analysis gives
an approximation to the communications overhead. Note that, due to the influence
of the garbage collector in the SML implementation, the timing results need to be
averaged over a significant number of runs. The data flows can be calculated from
the type signature in the SML functions. Yet again, we emphasise that these issues
would not normally be considered by the prototype implementer since, ideally, they
could be automated by a parallelising compiler such as SkeIML (Bratvold, 1994).

2.2.5 Test data

The set of test images of dimensions 256 by 256 pixels, which is the maximum
image size that can be handled by the SML program is illustrated in figure 8. The
reason the prototype can only handle 256 by 256 images is due to the size of the
intermediate representations indicated in section 2.2.3. As well as both edge strength
(twice) and angle, the (x,y) co-ordinate, the histogram accumulator and the (p,8)
Hough cell co-ordinate all have to be simultaneously stored as pixel data. For a 512
by 512 image this is over 12 MB of data which is about the maximum heap size
available on our SPARC machines.

Note, however, that the space efficiency of the prototype is not a design criterion.
Provided the routines developed on the prototype are scalable, which they are for
all the code developed here, then it is acceptable to test the prototype on smaller
sets of data. This could be for convenience or because of a system limitation, as in
this instance. The point is that the test data has to be representative of the data
to be processed by the implementation. An image of 256 by 256 pixels is large
enough to contain virtually all the information found in, say, a 1024 by 1024 image.
Reducing an image to much less than 256 by 256, however, would probably result
in undesirable effects, features would become unrecognisable and make higher level
processing such as model matching difficult or unreliable.

2.2.6 Prototype time profiling
The main problem which became apparent when the SML implementation was run

on real data was that the processing time is very highly data dependent.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 359

1) Random 2) Widget

3) Phwidg 4) Postvan

1. A randomly generated image in which each pixel has a normal distribution of intensity,
in effect an image consisting solely of noise.

2. A synthetic image of an object comprising mostly of rectangular faces but with one
large radius cylinder. This represents the best quality image the system would be
presented with in practice.

3. A real (photographic) image of a single object. This image exhibits extremely poor
contrast (the image seen here has been enhanced) and has background features that
coincide with edges on the object. This is about the poorest quality image of a simple
scene with which the system is likely to be presented.

4. A much more complex image with curved surfaces, specular reflections and marked
surfaces. This is an unrealistic image for our simple algorithms, and in fact even a
simple box-shaped model could not be reliably matched with this image.

Note that the reason for this particular set of images is that image 1 represents a null case
with important properties for the algorithms we use, images 2 and 3 bracket the useful range
of image types that we would expect our methods to handle, and image 4 is a pathological
case.

Fig. 8. Test images

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

360 G. Michaelson and N. Scaife

Table 1. SML timing summary

Mean SML processing time ¢ in seconds

Phase random widget phwidg postvan

transform 68.5 (117.2) 29.60 (4920) 29.90 (50.40) 3520 (61.50)
accumulate 1189 (40.2) 116 (224) 489 (16.60) 1075 (10.70)
post-process 157 (17.2) 046 (0.39) 097 (272) 232 (3.15)
global merge 3450 (2088) 162 (1.89) 9.72 (43.80) 1790 (23.10)

¢ This is the user time for the given phase averaged over a wide range of program parameters
(mostly the thresholds), each set of parameters is itself is averaged over ten identical runs
b Values in brackets are standard deviations

Those portions of Hough space with no peaks require very little processing at
all. Other portions with peaks to process have only a small number of lines to
process and a few portions of Hough space have a large number of lines, each
with possibly several subsegments to process. In practice, with geometrically regular
objects virtually all the processing may be concentrated in a small number of Hough
space portions.

One symptom is that the timing results are highly dependent upon the program pa-
rameters such as threshold values, with the added complication that some parameters
affect different parts of the computation than others, for instance, the peak threshold
has no effect on the accumulation step at all whereas the input threshold can affect
any part of the computation. The timing runs were carried out over as wide a variety
of parameter combinations as possible and over several different types of image.

The results are summarised in Table 1. Based on a very rough average for this set
of test images the transformation stage dominates the others, with a ratio of approx-
imately 30:5:1 for transformation to accumulation to post-processing computation
times. Note, however, that the results for the random image (which is by far the
most dense image of the set) indicate that this relationship will not always hold.

2.2.7 Static Data flow analysis

The data flow calculations are complicated by the data dependency of the algorithms.
Assuming averages based on the images used for the test runs (10% of input pixels
thresholded, 16 portions in Hough space, 50 points per detected line and 30 lines
per image) gives estimates for the communications load, as indicated in Table 2.
Consider the implementation of the transformation function shown in figure 9,
which has been shown with its type signature. The program works by partially
applying transform2 from the low argument up to aimg; these parameters are
therefore initialisation data. Considering the images are 256 by 256 int images, this
gives a total of 4 x (4 + (2 x (256 x 256))) = 524304 bytes. In fact, the parallel

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 361

Table 2. Static data flow analysis

Communications loads (typical values)

Phase Initialisation bytes Input bytes Output bytes
Transformation 512k 256 128k
Accumulation 4 128k 12k
Post-processing 32 12k 480

fun transform2 low rinc tinc ymax eimg aimg hough_portion =

let

val tfn = transformfn low rinc tinc ymax hough_portion

val tdata = map2xyll tfn O O eimg aimg

fun ffn (x,y,t,r,e) = t <> NODATA andalso r <> NODATA
in

flatten (filterll ffn tdata)
end :

int -> int -> int -> int ->
int list list -> int list list ->
(int * int) * (int * int) ->
(int * int * int * int * int) list

Fig. 9. Hough Transformation function and type signature

implementation optimises this by encoding byte images. Since this is initialisation
data, however, it does not affect the parallel performance.

The partially applied function is then mapped over the list of Hough space
definitions. The total amount of data communicated to the worker processors by the
farmer processor is thus the number of Hough portions times the size of a Hough
portion definition 16 x (4 x 4) = 256 bytes.

The output from the function is a list of tuples of 5 ints. The length of this list is
one element for each pixel in the Hough portion, less those elements that have been
filtered out. The total amount of output from this phase, however, has to be multi-
plied by the number of Hough portions, i.e. over the entire image. Assuming 10% of
pixels survive thresholding, this gives 0.1 x (256 x 256) x (4 x 5) = 131,072 bytes.

Note that once the centre of parallelism has been decided (mapping the partially
applied transform2 over the image), there is nothing in the above calculation that
cannot be automated by normal profiling of representative data sets. This is in fact
carried out by SkelML.

2.2.8 Parallel implementation selection

For the linear pipeline processor farms we use to implement the map skeleton, a
rough rule of thumb is that if the time taken to communicate the data to and from
the workers is of the same order as the time taken to process the data, then the
speedup will very quickly run out of steam as the length of the pipeline increases.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

362 G. Michaelson and N. Scaife

For the transformation phase analysis above, the total communications load of 128k
can be processed by a transputer link, running at 10 Mbit/s in about 0.1 s, ignoring
latencies and other communications overheads. This is much less than the 30 s that
it takes to process the data.

This means that processor farming is viable for the transformation phase. Though
we do not prove it formally, there is not enough computation in the accumulation
and post-processing phases, relative to the transformation phase, to warrant separate
farms or to implement them in a pipeline (which would be difficult to balance). A
way of visualising this is to consider different computations competing with each
other for limited processing resources.

Given the additional programmer workload associated with hand coding separate
farms as opposed to a single farm, the best candidate for our application is a single
farm with each worker processing a complete pipeline.

2.3 The Occam? implementation

The work on the SML prototype suggests that the best implementation for the
parallel system is a farm of single processor pipelines. The input image should
be pre-distributed to the workers along with the program parameters. Definitions
of Hough space portions are then sent asynchronously to the workers, which can
be arranged in a linear pipeline giving a simple communications setup but with
primitive inherent load balancing,

The Occam?2 implementation was strongly influenced by the SML code. Large
sections of SML code were converted into Occam2 by hand giving a close corre-
spondence between the two programs. SML can be compiled into Occam?2 (Busvine,
1991), but in this instance the conversion process was carried out by hand to ensure
that the prototype and implementation have as similar characteristics as possible to
aid the validity of the prototyping method, and to appreciate the problems associated
with the conversion process.

The single processor farm was implemented using a simple scheduling strategy,
without buffering, whereby the transputer channel in characteristics are used to
create a queue of tasks down the pipeline (this actually requires an emulated out
guard (Burns, 1988)).

The Occam?2 implementation was run using values for the parameters that were
indicated by the SML prototype. The processor farm was timed using from 1 up
to 24 processors, and the speedup and efficiency were calculated at each processor
count. These are defined as follows:

sequential run time
parallel run time

2)

Speedup =

speedup 3)
number of workers

Note that our definition of sequential run time is the actual sequential calculation

time for the algorithm, not the parallel run time for one processor. This means

Efficiency =

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 363

Parallel Run Time (secs)
160 T T

16 Eough portions -s—
64 Hough portions +—

256 Hough portions © -

uo R
120 ¢
100

80

]

Number of Processors

Fig. 10. Parallel execution time for the Occam2 Hough implementation

Speedup Efficiency

] T T e T o 0.8 T T T v
] 16 Hough portions o= 16 Hough portions ——
; 64 Hough portions - 64 Hough portions ——
It N 256 Hough portiens © - s 256 Hough portions 0 -

] 5 10 15 20 25 o s 10 15 20 2%
Number of Processors Number of Processors

Fig. 11. Performance of the Occam2 Hough implementation

that, in general, speedup will be less than one for one parallel processor due to the
influence of communications overheads.

The parallel run times for tests on the phwidg image are presented in figure 10,
speedup and efficiency values are presented in figure 11, The same experiments were
carried out using variable numbers of Hough portions (16, 64 and 256) for the farm
task descriptions: it became apparent when the Occam?2 code was run that the data
was very unevenly distributed throughout Hough space, as shown in the uneven
plots of speedup and efficiency.

The primitive load balancing provided by the farm implementation is not sufficient
to even out the workload for the data being analysed. A more sophisticated load
distribution is needed to take into account the amount of data that is distributed
with each task rather than naively subdividing Hough space into equal portions.

A simple and easily implemented improvement is to divide Hough space up more
finely; however, there is a trade-off involved. The more finely Hough space is divided
between processors, the more likely two portions of the same line are to end up
on separate processors, which places an added burden on the global merge process.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

364 G. Michaelson and N. Scaife

The assumption is made in the parallel implementation that this phase is much less
computationally intensive than the parallel components, but experiments with more
dense images would suggest that this assumption can break down.

For the values studied (up to 256 portions of Hough space) there was no significant
increase in the global component, and the results were stable with respect to the
program output (i.e. lines detected). Given the advantages of speedup and efficiency
that are gained, this is a worthwhile consideration.

Note, however, that the problems of load balancing were not highlighted by
prototyping. The prototype, as implemented here, deals with simple averages, and
does not pinpoint problems with unusual distributions of data. Perhaps a clue is the
high standard deviations for the user timings over a wide range of test runs.

3 Translating SML to Occam2
3.1 Source language translation

Programming languages are characterised by their data and control base constructs
and abstraction mechanisms. In converting from one language to another, corre-
spondences must be established between source and target language characteristics.
Within a paradigm, this is relatively straightforward as there are often direct equiv-
alences. Across paradigms, however, the target language must be used to model
explicitly source language characteristics.

Ideally, to translate from one language to another, semantics for both should
be defined, the translation process should be formalised and it should be proved
that translation preserves semantics, for example, as in Stepney’s approach to high
integrity compilation (Stepney, 1993) or Hammond’s DACTL implementation of
SML (Hammond, 1991). However, this is a substantial undertaking even for small
languages from the same paradigm. Formalisation of translation from a full func-
tional language to a parallel imperative language is a major research activity and
beyond the time and resources of our project. While our work is strongly influenced
by such formalisation, in particular Busvine (1993), here we present an informal
overview of our SML to Occam2 conversion.

It is well known that the central issue in constructing imperative implementations
of functional languages is the efficient management of name/value associations. In
the graph reduction approach (Peyton Jones, 1987), such associations are elided
through compilation techniques which identify directly in program graphs the ab-
straction points requiring specialisation with values. This leads to overheads in
graph copying as abstraction points may be specialised with different values in
different contexts. Cunning compilation and optimisation techniques are required to
minimise such copying. While graph reduction is the natural model for functional
language implementation, it corresponds poorly to classic von Neumann architec-
tures and hence to imperative languages. In contrast, the SECD machine approach
(Landin, 1964) is based on von Neumann architectures. Here, name/value associ-
ations are held explicitly in environments with attendant problems of access and
storage management, particularly for closures. However, the SECD machine’s close

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 365

correspondence to the von Neumann architecture suits it well as a basis for the
imperative implementation of functional languages, particularly for strict languages.
Consequently, we use an SECD like approach in translating SML to Occam?2 in
that name/value associations are held explicitly in Occam?2 variables.

SML is well described elsewhere (Milner et al., 1990): here we will only refer to
salient features. We are using a pure functional subset of SML, ie. we do not use
any imperative constructs such as assignment, sequencing or iteration, nor do we
use SML arrays. However, we do use imperative I/O to interface our programs to
the host system. Consequently, we are primarily concerned with the conversion of
the boolean, integer, real and string base types, tuples, lists and concrete datatypes
to Occam?2 equivalents. Similarly, we must find Occam?2 equivalences for pattern
matching, case structuring, composition and recursion. Finally, abstractions are
introduced through global and local definitions, and bound variables in function
values.

Occam?2 is also well described elsewhere (Inmos Ltd., 1988): once again, we
will only refer to salient features here. Occam2 provides base types for bytes (ie
characters), 16, 32 and 64 bit integers, 32 and 64 bit reals, and booleans. Arrays of
base types are the sole data structuring construct. Programs are structured through
command sequences, deterministic and non deterministic conditional commands,
bounded and unbounded iteration, and parallelism. Abstractions are introduced
through global definitions, formal parameters to procedure and function processes,
and local definitions at the top level of process bodies. Processes may be composed
through explicit calling sequences or coordinated through channel communication.
Hence, a sequence of values on a channel is a form of data structuring without
explicitly storing the entire sequence.

We translate SML base types to their Occam? equivalents. Individual tuples are
held as separate elements in Occam?2 variables. Lists of base types are held as arrays,
lists of tuples are held as multiple arrays with one array for each element and lists
of lists are held as multi-dimensional arrays. Elements of datatype values are also
held as separate variables and lists of datatypes as arrays.

SML pattern matching and case structuring are translated to explicit Occam?2
selection and testing in deterministic conditional commands. Function composition
is translated to either explicit nested process calling through parameter passing,
or inter-process communication through channels, depending on whether or not
the granularity of the composition is appropriate for single or multiple processor
implementation. Recursion outside identifiable skeletons is translated to iteration
with an explicit stack to hold intermediate values where necessary. Skeleton recursion
is used to instantiate the equivalent Occam?2 harnesses if prototype instrumentation
suggests useful parallelism is present. Otherwise, iteration with stacks is used. We
avoid functional constructs that require closure manipulation.

As suggested above, where function composition is translated to channel based
inter-process communication, lists may be transmitted element by element between
processes without being held locally in their entirety. However, where a process deals
with list elements asynchronously, for example, a process farm for map, and where
the order of elements is important then the process may need to store substantial

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

366 G. Michaelson and N. Scaife

let
val ri = real rinc
in
let
val theta = real angleval * 360.0 / 255.0
in
let
val beta = (90.0 - theta) * pi / 180.0
in
let
val rho = real x * cos beta + real yy * sin beta
in
let
val thetastep = floor(theta * real tinc / 360.0 + 0.5)
in
let
val rhostep = floor(rho * ri / 720.0 + ri / 2.0 + 0.5)
in
(x,yy,thetastep,rhostep,angleval)
end
end
end
end
end
end

Fig. 12. SML: Hough transformation code

INT thetastep, rhostep:

REAL32 theta, beta, rho, ri:

SEQ
ri := REAL32 ROUND Rholnc
theta := ((REAL32 ROUND frame[1][y] [x]) * 360.0(REAL32)) / 255.0(REAL32)
beta := ((90.0(REAL32) - theta) * pi) / 180.0(REAL32)
rho := ((REAL32 ROUND x) * COS(beta)) + ((REAL32 ROUND yy) * SIN(beta))
thetastep := INT ROUND ((theta * (REAL32 ROUND Thetalnc)) / 360.0(REAL32)
rhostep := INT ROUND (((rho * ri) / 720.0(REAL32)) + (ri / 2.0(REAL32)))

Fig. 13. Occam?2: Hough transformation code

portions of the list for output in the required order. Alternatively, list elements may
be tagged with order information for asynchronous transmission.

3.2 Conversion of the Hough transform prototype

Linear, sequential sections of code can be translated at the syntactic level. Consider
the section of SML code in figure 12 which can be directly converted into the
Occam?2 code shown in figure 13.

There are a few pitfalls in this process, however. This sequence of let constructs
in SML can be transformed into a single expression by a process of substitution,
but it is important to maintain the same pattern of single/multiple evaluation in
the translation process. For instance, if the ri expression were substituted into the
rhostep expression, this would result in a double evaluation, which would have to
be duplicated between the prototype and implementation.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 367

Another problem is that there are two real number representations in Occam?2,
whereas only one is provided by New Jersey SML. In terms of precision, REAL64 is
identical to the New Jersey SML reals, although in terms of processing time, REAL32
runs (very approximately) 25-30% faster than REAL64 for arithmetic operations on
T800 transputers. Due to the influence of iteration using residuals as convergents,
the transcendental functions run about twice as fast for REAL32 (although this is
highly data dependent).

This represents a thorny problem, since we would like to use the space efficiency
of the REAL32 representation (vision algorithms generally do not need the precision
of 64-bit real numbers) but are constrained by the 64-bit representation in New
Jersey SML. We adopt the 32-bit representation in the Hough transform due to the
large amount of intermediate data which limits the size of image we can process.
We estimate a discrepancy of 49% in the time to process the core of the Hough
transformation in 32-bit as opposed to 64-bit real numbers, and make the assumption
that this does not affect the validity of our prototype.

Minor differences between the prototype and implementation are tolerable, how-
ever, since it is the ratio of computation between different parts of the program that
is important, not absolute processing times. Provided both prototype and implemen-
tation are consistent within themselves, these ratios should be preserved to within
acceptable limits.

This is an important observation, since there will inevitably be differences of
one kind or another between two equivalent programs in different paradigms, for
instance, the angleval value in the SML version is provided as a function argument
by mapping over a list whereas the Occam?2 version has to explicitly index an array
within an iterative loop. The code implementing the map function is the logical
equivalent of array indexing, but they occur at different points in the computation.

Note, however, that it is often the case that the amount of computation in the
differences is outweighed by the processing in equivalent code sections, for instance,
in the above code, the time to index an array is far smaller than the time to process
the floating point operations.

The direct equivalence between sequential code segments can be extended by
preserving function (PROC) boundaries. This does not apply to recursive functions
in SML which translate into iteration over suitable variables, but programmers will
generally use function abstraction as a mechanism for structuring code and this
can be carried across directly from the prototype to the implementation. A modest
example is illustrated in SML in figure 14 and its Occam?2 conversion in figure 15.
In this example, the rshdst function contains a nested function shproj, which in
turn contains within.

The external function calls are not important, this code is given to exhibit how
structure is preserved in translation. Here, tuples are translated into separate vari-
ables, resulting in unwieldy syntax in the implementation and conditionals are trans-
lated across directly, due to the identical semantics of conditionals in each language.

The conversion from recursion to iteration is again illustrated with a simple
example. figures 16 and 17 show how a summation over a set of 2D coordinates (part
of a least squares routine) can be implemented by foldl with a suitable function

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

368 G. Michaelson and N. Scaife

fun rshdst ((11 as (11p1,11p2)):rline) ((12 as (12p1,12p2)):rline) =

let
fun shproj
((11 as (11p1 as (11x1,11y1),11p2 as (11x2,11y2))):rline)
((12 as (12p1 as (12x1,12y1),12p2 as (12x2,12y2))):rline) =
let
fun within t = t >= 0.0 andalso t <= 1.0
val omcl = romc 11
val ppl = proj_pt_to_line omcl 12pi
val pp2 = proj_pt_to_line omcl 12p2
val wil = rptwithinln ppl 1t
val wi2 = rptwithinln pp2 11
in
if within wil
then
let
val dpl = rdistfn ppl 12p1
in
if within wi2
then rmin dpl (rdistfn pp2 12p2)
else dpl
end
else
if within wi2
then (rdistfn pp2 12p2)
else mmd
end (* shproj *)
val mdl = rmin (rdistfn 11p1 12p1) (rdistfn 1lipl 12p2)
val md2 = rmin (rdistfn 11p2 12p1) (rdistfn 11p2 12p2)
val mmd = rmin mdl md2
in

rmin (shproj 11 12) (shproj 12 11)
end (* rshdst *)

Fig. 14. SML: Shortest distance function

in SML and using iteration in Occam2. Although this is a trivial example, the
conversion is quite general in that complex nested recursive functions are converted
into similarly nested iteration. The only complication, as shown in the example, is
that default values for recursion have to be replaced by explicit initialisation of
variables. Mutually recursive functions are more problematical, however, but could
be handled by additional control variables in the iteration.

The conversion of higher order functions into parallel constructs has been ex-
plained in more detail elsewhere (Wallace et al., 1992). Summarising this work, we
convert the map function into a processor farm with one master processor and a
linear pipeline of worker processors. This construct is simple to implement and
has primitive load balancing, but there is a practical limit to the length of the
pipeline that can be used, which is much smaller than the limitations of more dense
arrangements of processors such as 2D grids or toroids.

The map function is translated into this construct by implementing the map function
argument on the workers and decomposing the list over these workers. There are a
number of design decisions that have to be taken at this point, however.

For low-level operations such as convolving a filter with an image, where com-
munication dominates over computation, geometric decomposition generally works

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 369

{{{ PROC rshdst(11x1,11y1,11x2,11y2,12x1,12y1,12x2,12y2,dist)
PROC rshdst(VAL REAL32 11x1,11y1,11x2,11y2,12x1,12y1,12x2,12y2,
REAL32 dist)

REAL32 sh1112,shl1211,mdi,md2,mmd:

{{{ PROC shproj(1ix1,11y1,11x2,11y2,12x1,12y1,12x2,12y2,shdst)

PROC shproj (VAL REAL32 11x1,11y1,11x2,11y2,12x1,12y1,12x2,12y2,
REAL32 shdst)

REAL32 gradl,interl,ppix,pply,pp2x,pp2y,wil,wi2,dpl:
BOOL HV1:

{{{ BOOL FUNCTION within(t)

BOOL FUNCTION within(VAL REAL32 t)

VALOF
SKIP
RESULT (t >= 0.0(REAL32)) AND (t <= 1.0(REAL32))

}}}

SEQ
romc(11x1,11y1,11x2,11y2,HV1,grad1,inter1)
ProjPtToLine(12x1,12y1,HV1,gradl, interl,ppix,pply)
ProjPtToLine(12x2,12y2,HV1,gradl,interl,pp2x,pp2y)

wil := rptwithinln(pplx,pply,l1x1,11y1,11x2,11y2)
wi2 := rptwithinln(pp2x,pp2y,11x1,11y1,11x2,11y2)
IF
within(wil)
SEQ
dpl := rdist(pplx,pply,12x1,12y1)
IF
within(wi2)
shdst := rmin(dpl,rdist(pp2x,pp2y,12x2,12y2))
TRUE
shdst := dpl
TRUE
IF
within(wi2)
shdst := rdist(pp2x,pp2y,12x2,12y2)
TRUE
shdst := mmd
13}
SEQ
mdl := rmin(rdist(11x1,11y1,12x1,12y1),rdist(11x1,11y1,12x2,12y2))
md2 := rmin(rdist(11x2,11y2,12x1,12y1),rdist(11x2,11y2,12x2,12y2))
mmd := rmin(mdl,md2)

shproj(11x1,11y1,11x2,11y2,12x1,12y1,12x2,12y2,sh1112)
shproj(12x1,12y1,12x2,12y2,11x1,11y1,11x2,11y2,sh1211)
dist := rmin(sh1112,sh1211)

1353
Fig. 15. Occam?2: Shortest distance function

better than processor farming. For higher level operations, such as scanning a list
of features and calculating transforms between pairs of features, computation dom-
inates over communication and the load balancing inherent in processor farming
becomes more effective relative to naive geometric decomposition.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

370 G. Michaelson and N. Scaife

fun xysums (Sx,Sy,Sxy,Sxx,Syy) ((x,y):rpnt) =
(Sx + x,8y + y,Sxy + (x * y),Sxx + (x * x),Syy + (y * y))

val (Sx,Sy,Sxy,Sxx,Syy) =
foldl xysums (0.0,0.0,0.0,0.0,0.0) coords

Fig. 16. SML: Summations

{{{ PROC RCalcXYsums(X,Y,N,Sx,Sy,Sxx,Sxy,Syy)
PROC RCalcXYsums (VAL [JREAL32 X,Y,VAL INT N,REAL32 Sx, 8y, Sxx,Sxy,Syy)

REAL32 x,y:
SEQ
SEQ n = O FOR N
SEQ
x,y := X[nl,Y¥[n]
Sx,8y :=Sx + x,Sy +y
Sxx,Sxy,Syy := Sxx + (x * x),Sxy + (x * y),Syy + (y * y)

1

Sx,Sy := 0.0(REAL32),0.0(REAL32)
Sxx,Sxy,Syy := 0.0(REAL32),0.0(REAL32),0.0(REAL32)
RCalcXYsums(xpts,ypts,pts,Sx,Sy, Sxx,Sxy,Syy)

Fig. 17. Occam?2: Summations

Another issue is preloading of data. The list to be decomposed can be built into
the work definition sent from the farmer to the workers, or it can be distributed
among the workers prior to beginning the computation. If communications times are
a substantial fraction of the overall processing time, preloading of the list data may
prove effective. This is partly because saturated communications can cause remote
workers to be starved of work by workers physically nearer the farmer, and also
because optimisations can be made during initialisation, such as image compression,
which is more effective when applied to a complete image.

Note also that preloading of data can be controlled at the source code level by
program transformation, thus the following SML construct:

let

f1 =f x
in

map f1 1
end

corresponds to preloading, whereas the following equivalent section of code:
map (f x) 1

corresponds to distribution of program data during computation. The idea here is
that if the function’s argument is applied in the skeleton instantiation (f x) then
the implication is that the argument should be distributed with the list data whereas
in the first version the function and data are bound together £1 = £ x implying
both should be present on the worker processor when map is evaluated.

In the absence of an accurate performance model for the map skeleton, we base

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 371

PAR

-- Farmer processor
SEQ
. Broadcast program parameters and images to workers
. Split Hough space up into rectangular portioms
PAR
SEQ ¢ = 0 FOR ColPortions
SEQ r = 0 FOR RowPortions
. Send work request for Hough portion [c]I[r]
WHILE PortionsProcessed < NumberHoughPortioms
SEQ
... Read message back from workers
IF
. Detected line returned: add to global line list
. Portion processed: increment PortionsProcessed

-- Worker processor
SEQ
. Read message from farmer processor
IF
. Program parameters and images: update local copy
. Work request: return lines then portion processed message

Fig. 18. Occam2: Processor farm implementation

our implementations on the predicted ratio of communications to computation.
Very roughly, if the predicted communications time is anywhere near the order
of magnitude of the processing time, then geometric decomposition is used in
conjunction with preloading of data.

The extensions to map such as map2 and mapll are currently implemented using
exactly the same parallel code, since multiple argument lists can be ziped up into a
list of tuples and nested lists can be flattened into a single indexed list. There are
opportunities, however, for the additional structure in these functions to be exploited
in the parallel code, for instance mapll could be implemented as a farm of farms
on a 2D grid of processors.

We instantiate our central Hough transform implementation, ie. mapping the
transform?2 function shown in Section 2.2.7 over the list of Hough portion defini-
tions, with the Occam2, illustrated in pseudo-code, in figure 18. This also illustrates
partial application and preloading of data.

3.3 Validity of the conversion process

We have shown by example that SML can be converted into Occam?2 in such
a way that the overall characteristics of the prototype are retained in the imple-
mentation. Note, however, that this process is not perfect and that, although the
previous examples flatter the conversion process, the original SML and the resulting
Occam2 do have significant differences, for instance, modelling lists with arrays
presents some problems due to the different time complexities of some of the basic
operations.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

372 G. Michaelson and N. Scaife

Intensity Image

Canny Edge Detector

Edge Map (Strength, Orientation)

Hough Transform

Line Segments (End Points)

Junction Grouping

Junctions (Central and Radial Points)

Perspective Inversion Algorithm

Rotation/Translation Matrix

Fig. 19. Block diagram of the complete system

An exact correspondence between the two is not necessary, however. Provided
the major components perform the same calculations in the same order, there
is considerable latitude in the details of the computation. In fact, during hand
conversion of code, it is difficult to resist performing the obvious optimisations that
become apparent, for instance, folding multiply nested function calls into a single
iteration loop. This is perfectly acceptable and, indeed, desirable, since in the context
of an automated parallelising compiler it is possible that an optimiser could be
applied to the output code, although the optimisations would have to be defined so
as not to affect the validity of the prototyping.

4 Combining prototypes into a complete system
4.1 Existing software components

The three existing components are the Canny edge detector (Koutsakis, 1993), the
Hough straight line detection process described earlier, and the perspective inversion
(PIA) model matching program (Waugh et al., 1990). These three items together com-
prise the backbone of a complete visual recognition system, albeit with rather naive
and simple algorithms. A block diagram of such a system is presented in figure 19.

Originally, the Canny edge detector was studied in comparison with the more
primitive Laplacian and Sobel edge detectors (Koutsakis, 1993). For our system, the
Canny method (Canny, 1986) is the only realistic choice, since it gives the best results
in the presence of noise and has other desirable properties for later processing of
images: for example, non-maximal suppression ensures that there are no multiple
responses to single lines in an image. The convolution operations that are the core
of all the edge detectors studied were themselves subjected to analysis. They involve
passing a square window over the image performing various calculations that lead
to a value for a single pixel. Several different ways of decomposing this problem
into concurrent tasks were studied.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 373

As with the Hough implementation there are multiple phases; smoothing, edge
detection and non-maximal suppression. There is a complication in this instance
since these operations are maps over regions rather than pixels. This opens up the
possibility of processor factories (i.e. farming farmer processors), but the best imple-
mentation produced by the Canny study uses a single processor farm with preloading
of the input image. This is probably due to the dominance of communication in
low-level processing.

The perspective inversion algorithm was analysed in detail on sequential systems
(McAndrew and Wallace, 1989), but was subsequently implemented in a simpler
form as an SML prototype and Occam2 implementation (Waugh et al., 1990). The
SML prototype enabled the identification of four major components suitable for
implementation on processor farms:

1. generate.triples: generation of point triples, the PIA algorithm matches
vertices defined by three connected points, taken from the lines detected in the
scene and from the model description.

2. RT.calc: calculation of the rotation/translation matrix from the model into
the scene based on a pair of vertices, one from the scene and one from the
model. This is the eponymous perspective transformation.

3. score: calculating a score for each match calculated by the RT.calc function,
based on distances between nearly matching points (within 10 pixels).

4. data.capture: comparing the scores for all the generated triples to determine
the match with the highest score.

The exact function of each of these phases is not important; they represent a
similar decomposition of the overall algorithm to that decribed for the Hough
transform in this paper. The generate.triples and data. capture operations did
not contain enough calculation to be worth implementing in parallel. The RT.calc
and score operations were found from the SML prototype (and subsequently the
Occam?2 implementation) to require processing times in the ratio of about 1:5 for
efficient implementation. Combining this with static data type analysis led to an
implementation as a pipeline of two farms, one for the RT.calc operation and one
for the score operation with worker processors in the ratio of 1:5.

4.2 Combining the three cormmponents

Merging different components that have been developed using the SML prototyp-
ing and Occam?2 implementation method has not previously been attempted. The
approach here was from the point of view that each software component represents
a black box which could have been developed within an overarching abstraction
mechanism, for instance abstract data types. This causes problems in that perform-
ing a global optimisation may require breaking open the abstraction boundary to
gain the necessary information (Bastani et al., 1987).

The number of architectural choices available is also restricted. Here, the only real-
istic option is to connect the software components in a pipeline. However, global op-
timisation is simplified and can be performed by re-allocation of processing elements.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

374 G. Michaelson and N. Scaife

Note that there is actually a missing component (figure 19). The Hough program
outputs end point specified line subsegments whereas the PIA program requires
junctions in the form of point triples. The methods required to perform the conver-
sion are already available and have been well studied. The junctions can be formed
by an approach developed by McAndrew (1990), which is designed to give less
weight to co-linear lines. The conversion to point triples had already been written
as part of the perspective inversion program (Waugh et al., 1990) to allow input
from model description files. The junction grouping phase was implemented as a
sequential component in the initialisation of the PIA process, and thus appears as a
communications overhead in the overall performance of the system.

It is interesting to note that this missing phase could be spotted by considering
the type information from the program modules: the output type from the Hough
straight line detection algorithm did not match the input type of the perspective
inversion program. This is not significant in a simple system with only three compo-
nents, but illustrates the importance of strong typing in the development of larger
systems where type analysis can be used as a means of defining the interface between
software components.

The SML implementations were very quickly merged into a single program. This
process is not of any great utility in terms of providing predictive instrumentation for
the parallel version of the complete system: such information was already available
from the discrete prototypes. The combined SML code would be of greater value in
an environment where it can be directly converted into parallel implementations by
automated software tools.

The Occam? code took considerably longer to assemble, but was aided by the work
carried out combining the prototypes. The hardware architecture of the parallel sys-
tem is presented in figure 20. Each of the major components implemented in parallel
are serviced by a single, dedicated farmer processor. The farmers each control linear
pipelines of processors and are themselves connected in a pipeline. The first farmer
in the pipeline reads its data from a central monitor processor and the last farmer
reports the final results back to this processor. The monitor processor is also respon-
sible for reading the raw image and model description data from disc files, writing
the final results to a disc file and transmitting any initialisation data to the farmers.

The main effort required to combine the Occam2 implementations was in writing
the code to monitor and control the farmer processors arranged in a pipeline. This
was aided by direct communication between the individual farmers.

5 Performance of the combined system
5.1 Optimising the Occam?2 implementation

Note that we are not trying to optimise the performance of the system for any
particular image. We are interested in studying the effect of combining existing
implementations, with their architecture intact, on the overall performance of the
system. Since the top level of parallelism consists of a pipeline, and as we are unable
to reallocate processing resources during processing, we are thus looking for the best

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 375

Canny farm workers

Raw image
—
Canny
Farmer
Detected edges
Hough farm workers
= Hough >
Monitor
Farmer —~———————
Detected lines
RTcalc farm workers
Model data
Pia
Farmer
fe———————
Pose estimation
P—=
f——————

Score farm workers

Fig. 20. The architecture of the object recognition system

ratio of processors between the components of the pipeline. As we can only do this
as an average over a wide range of images, this ratio of processors will therefore
merely be an informed guess as to the optimal performance of the system.

The optimisation was attempted for one particular image, the ‘phwidg’ image,
which was chosen as being the most typical image for real applications using the
image processing methods employed. The speedup and efficiency figures for the
Canny and Pia farms are presented in figures 21 and 22. The results for the Hough
farm have already been presented in figure 11.

The peaks for speedup and efficiency for each of the three farms (deduced directly
from the graphs) are presented in Table 3, along with the measured sequential
processing time for each phase.

As an approximation to an optimised processor placement, the processors could
be allocated in ratio to the number of processors for optimal speedup (or efficiency)
or in proportion to the sequential workload. Assuming 26 processors are available
for farm workers, this gives approximate proportions of 4:7:15 (Canny:Hough:Pia)
for maximum speedup in the individual farms, 4:3:19 for maximum efficiency and
1:2:23 based on sequential workload. The distribution of workers between the two
farms in the PIA phase was fixed as close as possible to 1:5 (RTcalc:Score), since

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

376 G. Michaelson and N. Scaife

Speedup Efficiency

2.5 T T T T .35 T T
Specdip +— Efficiency +—

0.3

0.2

9 5 10 15 20 25 0 5 10 15 20 25
Number of Processors Number of Processors

Fig. 21. Performance of the Occam2 Canny implementation

Speedup Efficiency

18 T T T T 0.65 T
Speedup <+~ clency +—

16 |

ur

12r

Q s 10 15 20 25 o S 10 15 20 25
Number of Processors Number of Processors

Fig. 22. Performance of the Occam2 Pia implementation

this has already been established (Waugh et al., 1990) as the most efficient balance
for these farms.

Table 4 shows that there is a local maximum in speedup with processor allocations
of 2:4:3:17 (Canny:Hough:RTcalc:Score) inasmuch as moving one processor from
one farm to any other farm lowers the overall speedup. This figure was arrived at by
a simple hill-climb search and converged to the maximum in ten iterations. There

Table 3. Optimum speedup and efficiency for individual farms

Maximum speedup Maximum efliciency

Phase No.procs Sp Ef No.procs Sp Ef Seq. Time (secs)

Canny 5 1.8 03 7 25 03 38
Hough 4 36 0.7 12 8 0.6 129
Pia 24 16 0.65 24 16 0.65 2119

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 377

Table 4. Optimum speedup by processor reallocation

Canny Hough Score RTcalc Speedup Efficiency Parallel time (s)

2 4 3 17 10.54 0.35 217.0
3 3 3 17 9.81 0.33 171.3
3 4 2 17 9.42 0.31 1843
3 4 3 16 9.99 0.33 174.1
1 5 3 17 9.20 031 189.3
2 5 2 17 9.94 0.33 229.7
2 5 3 16 9.83 033 1770
1 4 4 17 9.29 0.31 187.6
2 3 4 17 9.65 0.32 180.6
2 4 4 16 10.04 033 173.5
1 4 3 18 9.16 0.30 190.1
2 3 3 18 9.51 0.32 183.0
2 4 2 18 9.33 0.31 186.1

is no guarantee that this is a global maximum, bearing in mind the instability of
the Hough farm’s speedup with respect to processor count. The problem of false
maxima might be alleviated if the Hough phase had better load balancing. Note
that these results were all found from the same image, and it is likely that different
processor placements would be optimal for different images.

Of the three theoretical values, the one based on sequential workload is closest
to the actual maximum, although there are too few processors in the system for an
accurate prediction based on such simple measures. However, all three predictions
are close enough to the actual optimum to allow quick convergence in the simple
heuristic search applied here, starting from one of the calculated optima.

More generally, a speedup of 10.5 for a system with 30 processing elements (26
farm workers, 3 farmers and 1 monitor processor) is very poor: the individual farms
are operating sub-optimally in the optimal configuration. This is probably due to
the influence of the global communications and computations phases interspersed
between the farms, but a more detailed analysis would be required to corroborate this.

5.2 Comparison of prototype and implementation

Very roughly, the SML Hough transform prototype took 15 programmer days to
write. This includes basic research plus investigations into existing Hough trans-
forms written in C. The Occam2 Hough implementation was written in about 24
programmer days, but this was based strongly upon the SML prototype. Combin-
ing the three SML prototypes into a single system took 10 programmer days, but
again, this included some preliminary familiarisation with the existing implementa-
tions (approximately two days), plus writing the missing junction grouping module
(approximately four days). Combining the Occam2 implementations took 19 pro-

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

378 G. Michaelson and N. Scaife

grammer days, of which around half was spent modifying the existing top-level code
in each implementation to allow meshing together of the components.

Note that the above programmer times all relate to the same programmer, familiar
with both SML and Occam2. The author was also well-versed in both functional lan-
guages and image processing. No equivalent figures are available for the Canny and
PIA work, although both authors can be assumed to be familiar with functional lan-
guages and had access to image processing experts throughout program development.

The SML implementation comprises approximately 1700 lines of code, excluding
comments, and the Occam2 implementation comprises about 3900 lines of code,
excluding comments but including configuration data.

Although it takes much less time to develop a system in SML than in Occam2, in
the absence of experience in developing equivalent code in native Occam2 without
benefit of prototyping, little can be said about whether the combined time to
develop both the prototype and the implementation is less than the time required
to develop the final system from scratch without prototyping. Bearing in mind that
experimentation with different architectures is much easier in SML than in Occam?2,
where there are no abstraction facilities at all, and from experience on this and
similar projects, a rough impression by the authors is that the two take a similar
amount of time, to within say 30% of each other.

Development time is not the main advantage of the prototyping method, how-
ever, this is more about the reliability of the parallel performance and the potential
for ongoing development, for instance to cope with new data sets. In testing a
modification on the SML prototype, if it can be shown that there are no perfor-
mance improvements or other benefits then the Occam?2 implementation will be
left unchanged. The same process carried out on the implementation would take
considerably longer. More generally, the recognised benefits of functional languages
are being made available in a parallel context.

As a brief check on the validity of the prototype as a predictor for implementation
performance, we consider the ratios of sequential processing times between the
different phases, in the same language. This ratio for the ‘phwidg’ image, between
the Hough and PIA phases is 1:16.3 for both the SML and Occam?2 versions. The
fact that these two ratios are so similar is a coincidence, however, one would expect
and tolerate significant differences in this ratio without questioning the validity of
the prototyping method.

The ratio between the Canny and Hough phases is 4.74:1 for the SML version
and 0.30:1 for the Occam?2 equivalent. This discrepancy is because the edge detector
operates extensively upon 2D array structures modelled as lists of lists, and the
mode of access is not regular enough to iron out the difference in element selection
time for lists and arrays. This, perhaps, points out the need for special considerations
where prototype language constructs have completely different characteristics from
the implementation architecture. More sophisticated modelling methods might com-
pensate for this discrepancy or alternatively, for our application, functional purism
could be abandoned and SML arrays used in prototyping.

This problem does not arise for the Hough or PIA implementations. Output parti-
tioning enables representation of Hough space as a sparse linear list of accumulators

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 379

so different access times become less significant. The PIA operates within the SML
to Occam? conversion outlined in section 3.2, data is accessed in a way that allows
identical processing in SML lists and Occam?2 arrays.

Note that the sequential processing times were based on SML user times with
garbage collection and system time removed, and the Occam2 times have no com-
munications overheads. The SML code was timed on a Sun SPARC 10 system
running New Jersey SML Version 0.93, and the Occam2 code was run on a Meiko
Computing Surface with T800 transputers.

6 Conclusions

We have successfully constructed a primitive but fully functional object recognition
system in Occam? through SML prototyping. The parallel implementation was based
closely on the functional prototype, and the prototypes’ behaviour was the primary
source of guidance for parallelisation. The system was formed through the integration
of existing components: the performance of the combined system is acceptable,
though not as good as might be expected from a uniformly developed system.

Functional prototyping proved a valuable design approach. In particular, the ease
of program transformation enabled experimentation with different but mutually
consistent designs. Prototype instrumentation was found to be a strong indicator
for the behaviour of the equivalent parallel system. Extant prototyping information
for individual modules was reused successfully without the need to instrument the
combined prototype.

The employment of a purely functional style was found to be extremely important
in making the prototyping process work. The speed and reliability of programming
in a declarative style allowed all the algorithmic design decisions to be made at the
prototype stage where mistakes could easily be corrected and alternatives explored.
This allowed work during the implementation phase to concentrate on optimising
the parallel performance.

The main problem in prototyping was caused by the representation of two di-
mensional images as nested lists. In general, there is no simple relationship between
nested list and array behaviour for arbitrary algorithms. This was overcome for the
Hough transform prototype by organising the algorithm so that normal list process-
ing style functions could be used, giving a good correspondence to the equivalent
Occam? array behaviour.

Combining SML components proved substantially easier than combining the
equivalent Occam? processes. Two SML components may be integrated through
function composition provided they are type consistent. However, combining Occam?2
processes involves the explicit construction of a linking harness. Although in our case
the individual components’ instrumentations were used as the basis for the combined
system, in general a better optimisation might be achieved by re-instrumenting the
combined prototype.

It is difficult to say whether it takes less time to develop both a prototype and
implementation than to implement the final system directly in Occam2, but we
are convinced that there is no significant development time increase when using

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

380 G. Michaelson and N. Scaife

the prototyping method. Combining the prototypes is a worthwhile exercise in
any case. Apart from the benefits of functional prototyping already described, any
additional code to glue the existing components together may be identified at this
stage. An example of this is the use of SML’s strong typing system in defining
the linkages between different modules where type mismatches highlight missing
code.

This work is being followed by the development of a much larger system which
will identify 3D objects from depth, intensity and fused images. The new system will
be more sophisticated, using robust statistical methods for image processing, and
dynamically controlled so that resources will be reallocated during the course of
processing. It is being developed from a uniform abstract specification (Austin and
Scaife, 1994).

In conjunction with the development of the new system, investigations are under
way into the use of Abstract Data Types (ADT) in managing the complexity of
large functional prototypes. Instrumentation will help determine the appropriate
placement of ADT methods relative to the components that initiate them, in parallel
realisations of ADT-based prototypes. The construction of the three stage vision
system discussed above enabled preliminary experimentation with this approach.

Finally, a skeleton based compiler from SML to parallel Occam? is under develop-
ment (Bratvold, 1993). A direct comparison is planned between hand coded Occam?2
implementations and the results of automatically converting the corresponding SML
prototypes.

The code for both the SML prototype and Occam? implementations are available
by ftp from ftp.cee.hw.ac.uk in the directory pub/vision/jfp.95. The PIA section of the
SML has already been used in benchmarking a garbage collector for the Standard
ML of New Jersey (Tarditi and Diwan, 1993).

Acknowledgements

This work is supported by EPSRC grant GR/J07884. We would also like to thank
our colleagues in the Heriot-Watt Vision Group for advice and suggestions.

References

Amini, A. A, Weymouth, T. E. and Anderson, D. J. (1989) A parallel algorithm for
determining two dimensional object positions using incomplete information about their
boundaries. Pattern Recognition 22(1): 21-28.

Austin, W. J., Wallace, A. M. and Fraitot, V. (1991) Parallel Algorithms for Plane Detection
using an Adaptive Hough Transform. Image & Vision Computing 9(6): 372-384.

Austin, W. J. and Scaife, N. R. (1994) Reconfigurable Parallel Vision System: Informal
Specification. Technical Report RM/94/4, Dept. of Computing and Electrical Engineering,
Heriot-Watt University, April.

Bailey, P. R. and Newey, M. C. (1994) An Extension of ML for Distributed Memory
Multicomputers. Technical report, Department of Compuuter Science, Australian National
University.

Ballard, D. H. (1981) Generalising the Hough Transform to Detect Arbitrary Shapes. Pattern
Recognition 13: 111-122.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

Prototyping a parallel vision system in Standard ML 381

Bastani, F,, Hilal, W. and Sithrama Iyengar, S. (1987) Efficient Abstract Data Type Compo-
nents for Distributed and Parallel Systems. IEEE Computer: 33-44.

Bhanu, B. and Nuttall, L. A. (1989) Recognition of 3D objects in range images using a
butterfly processor. Pattern Recognition 22(1): 49-64.

Bratvold, T. (1993) A Skeleton-Based Parallelising Compiler for ML. In: R. Plasmeijer and
M. van Eekelen, eds., Proc. 5th International Workshop on Implementation of Functional
Languages, Nijmegen, The Netherlands, pp. 23-33, September.

Bratvold, T. (1994) Skeleton-based Parallelisation of Functional Programs. PhD thesis, De-
partment of Computing and Electrical Engineering, Heriot-Watt University.

Burns, A. (1988) Programming in Occam2. Addison-Wesley.

Busvine, D. (1991) Translation of SML to Sequential Occam2. Technical Report TR91/7,
Department of Computing and Electrical Engineering, Heriot-Watt University.

Busvine, D. (1993) Detecting Parallel Structures in Functional Programs. PhD thesis, Heriot-
Watt University.

Canny, J. (1986) A Computational Approach to Edge Detection. IEEE Trans. Pattern
Analysis and Machine Intelligence 8: 679-698.

Cohen, V., Landy, S., Pavel, M. and Sperling, G. (1982) HIPS: Image Processing Under Unix
Software and Applications. Human Information Processing Laboratory, Department of
Psychology, New York University.

Cole, M. 1. (1989) Algorithmic Skeletons: Structured Management of Parallel Computation.
Pitman/MIT.

Cripps, M. D., Darlington, J., Field, A. J., Harrison, P. G. and Reeve, M. J. (1987) The Design
and Implementation of ALICE: a Parallel Graph Reduction Machine, pp. 300-326.

Darlington, J,, Field, A. J., Harrison, P. G., Kelly, P. H. J.,, Sharp, D. W. N. and Wu, Q. (1993)
Parallel Programming Using Skeleton Functions. In: A. Bode, M. Reeve and G. Wolf, eds.,
PARLE 93 Parallel Architectures and Languages Europe, Munich, Germany, pp. 146-160.
Lecture Notes in Computer Science Vol 694. Springer-Verlag.

Dudani, S. A. and Luk, A. L. (1978) Locating straight-line edge segments on outdoor scenes.
Pattern Recognition 10: 145-147.

Hammond, K. (1991} Parallel SML: a Functional Language and its Implementation in Dactl.
Pitman.

Hammond, K. (1994) Parallel Functional Programming: An Introduction (invited paper). In:
Proc. PaSCo094, Linz, Austria. World Scientific, September.

Hough, P. V. C. (1962) Method and Means for Recognising Complex Patterns. U.S. Patent
No. 3069654.

Illingworth, J. and Kittler, J. (1988) SURVEY: A Survey of the Hough Transform. CVGIP
44: 87-116.
Inmos Ltd. (1988) Occam2 Reference Manual.

Peyton Jones, S. L., Clack, C., Salkild, J. and Hardie, M. (1987) GRIP — A High-Performance
Architecture for Parallel Graph Reduction. In: G. Kahn, ed., Functional Programming
Languages and Computer Architecture, pp 98-112. Springer-Verlag.

Kelly, P. H. J. (1987) Functional Languages for Loosely Coupled Microprocessors. PhD
thesis, Imperial College, University of London,

Kittler, J. and Duff, M. J. B. (1985) Image Processing System Architectures. Research Studies
Press.

Koutsakis, G. (1993) Parallel Low Level Vision from Functional Prototypes. Master’s thesis,
Department of Computing and Electrical Engineering, Heriot-Watt University.

Kozato, Y. (1994) Lazy Image Processing: An Investigation into Applications of Lazy
Functional Languages in Image Processing. PhD thesis, University of London.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

382 G. Michaelson and N. Scaife

Landin, P. J. (1964) The Mechanical Evaluation of Expressions. Computer J. 6(4): 308-320.

Leavers, V. F. (1993) Survey: Which Hough Transform? CVGIP: Image Understanding 58(2):
250-264.

Lotufo, R. A, Dagless, E. L., Milford, D. J., Morgan, A. D., Morrissey, J. F. and Thomas, B.
T. (1989) Hough transform for transputer arrays. In: Proc. 3rd International Conference on
Image Processing and its Applications, Warwick, UK, pp. 122-130.

May, M. D. and Shepherd, R. (1987) Communicating Process Computers. Technical Note
22, Inmos Ltd, UK.

McAndrew, P. (1990) Recognising and Locating Objects in Two Dimensional Perspective
Views. PhD thesis, Department of Computing and Electrical Engineering, Heriot-Watt
University.

McAndrew, P. and Wallace, A. M. (1989) Rapid invocation and matching of 2d images to 3d
models using curvilinear data. In: Proc. 3rd International Conference on Image Processing
and its Applications, Warwick, UK, pp. 83-87.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. MIT Press.

Peyton Jones, S. (1987) The Implementation of Functional Languages. Prentice-Hall.

Rosenfeld, A., Ornelas, J. and Hung, Y. (1988) Hough transform algorithms for mesh-
connected SIMD parallel processors. Computer Vision, Graphics and Image Processing 41:
293-305.

Stepney, S. (1993) High Integrity Compilation: A Case Study. Prentice-Hall.

Tarditi, D. and Diwan, A. (1993) The Full Cost of a Generational Copying Garbage
Collection Implementation. Technical report, School of Computer Science, Carnegie Mellon
University.

Wallace, A. M., Michaelson, G. J., McAndrews, P., Waugh, K. G. and Austin, W. J. (1992)
Dynamic Control and Prototyping of Parallel Algorithms for Intermediate- and High-Leve!
Vision. IEEE Computer 25(2).

Waugh, K., McAndrew, P. A. and Michaelson, G. J. (1990) Parallel Implementations from
Functional Prototypes: A Case Study. Technical Report TR90/4, Heriot-Watt University.

https://doi.org/10.1017/50956796800001398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001398

