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ON UPCROSSING PROBABILITIES
DAVID R. McDONALD

1. Introduction. In [1] a simple but ingenious technique was developed for
calculating hitting probabilities for submartingales (or martingales or super-
martingales) subject to various constraints. This technique is extended here
in order to find sharp bounds on upcrossing probabilities for submartingales
subject to constraints. The general results in Section 2 are applied to submartin-
gales {X,}om1 such that E[(X, — ¢)*]? < L (a constant) for all #, p = 1 and
we find the probability of at least k upcrossings of [a, b] is at most

L—[m—a)7T -1
(b —a) (m — a)+_ _ 1\ _ 1y-1
(r+5=—@-D-1y+@-1
wherem = EX,. For p = 1 this bound collapses to (L — (m — a)t)/((b — a)k)
(taking (p — 1)»7! = 1 when p = 1). A simple corollary is that Doob’s up-
crossing inequality is sharp. A second example gives Dubins’ sharp bounds on
upcrossing probabilities for bounded martingales.

)

2. General Results. Keeping the notation established in [1] let R be the set
of real numbers; B be the Borel subsets of R; R” = R X R X ...;and B* =
B X B X ....Let {X,}s1 be the coordinate process on R®. A submartingale
(or martingale or supermartingale) may be regarded as a probability measure
P on B®. {X,}5. defined on {R®, B®, P} is a submartingale in the usual sense.

Let u be a probability measure on (R, B); we define the following classifica-
tion:

Definition 1a.) u satisfies a condition of type (¢, r, 7) if there is a family ¢ of

convex, increasing, Borel functions from R to R and mappings 7 and 7 of ¢
to R\U {—0, 0} such that for all 6 € ¢,

£0) = [ o6t <70,

((¢, 7) means 7(f) = —oo for all § € ¢.)
1.b) u satisfies a condition of type (L, U) if there exist two constants L < U
such that p{[L, U]} = 1.

Definition 2.2) A probability measure Q on (R”, B®) satisfies a condition of
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type (¢, r,7) if for all 6 € ¢ and all n,

1) = [ 06000 = 70).
2.b) Q satisfies a condition of type (L, U) if QL £ X, £ U} = 1 for all n.

LEMMA 1. Let M be the collection of all submartingales satisfying conditions of
type (¢, r, 7) and/or type (L, U) (that 1s certain conditions of these types are
satisfied). If 11 = 79 S ... £ 1, are bounded stopping times and P € M, then
the measure Q on B” defined by

(1) Q{X:1€B1,X2€ By, X0 € Bpy X1 € Buity o« o, Xni € By}
P{Xrl 6 Bly )(-r2 6 B2y LA YXTm € er X'rm 6 Bm+h A yXTm E Bm—{—l}
belongs to M.

Proof. Q is well defined since the stopping times are bounded. Next consider
any cylinder set measurable with respect to X, Xo, ..., X;; say

C=1{X16€ By, X2€ By, ...,X; € Bl
(2) fCEQ{XkH!X,C, o, X4jdQ = fCXk+1dQ = fC/XTkH aP by (1),
where C' = {X, € By, X., € By, ..., X, € B,}. Since P is a submartingale,
CIX,MdPé fC,X,de= fCXde.

Since the g-algebra of sets measurable with respect to X1, Xo, ..., Xi
(¢(X4, ..., X)) is generated by sets of the form C, we have

fAEQ{Xk+1{Xk, oL X4jdQ = fAXde,

where 4 € ¢(X,, ..., X;). Therefore Q is a submartingale. If 6§ € ¢ then
{60(X, )}, defined on {R®, B®, P} is a submartingale. Hence

r(9) = f0(X1)dP = f@(X,k)dP = fG(Xk)dQ for all &.

Moreover if / is an integer such that r,, = [ then

f{)(Xk)dQ = fO(XTk)dP = fO(X,)dP < 7(9).

Therefore Q satisfies condition (¢, 7, 7). Condition (L, U) follows trivially.

Therefore Q € M. This completes the proof.
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808
Let By, Bo, .. ., B, be Borel sets. Let
= ST

T = {X,, € B, for some n;, X,, € B, for some #n,
X, € Py for some n, = N1} .

TuEOREM 1. Let M be the collection of all submartingales satisfying certain

conditions of type (¢, r, 7) and/or type (L, U). Then

sup P{X1€ By, ..., X, € By}.
PeEM

sup P{T}
PeEM
Proof. For w = (%1, %2, ...) € R, let
. {least 71 (if any) such that %, € B,
e if there is no such 7;;

0
. {Ieast ny = my (if any) such that X, € By,
T2 oo if there is no such #,;

#m_1 (if any) such that x,, € Bn,

_ {leastnm =

Tm oo if there is no such #,,.

Therefore 1 £ 7 £ ... £ 7, and
P{T} = P{r, < 0} = lim P{r, < n}
= 11m P{XTI An 6 Bly “ e wX-"m/\n E Bm~
However, by Lemma 1.a),

-P{XTI/\n E Bl, P ,er/\n E Bm} = Q{X] E Bl, P me E Bm}

. er E ]37”})

for some Q € M. Hence
lim P{X,l,\,, € By ..., X1 p € By} < sup P{X1€ By, ..
PEM

and we have
sup P{T} = sup P{X1€ By,...,Xn € Bnl}.
PEM

PeM
The reverse inequality is immediate, completing the proof.
Theorem 1 provides a prescription for obtaining sharp bounds for upcrossing
probabilities. Essentially it says stopping times are unnecessary.
For any pair of real numbers ¢« < b and any w = (x;, x3, . ..) € R define
Ya» to be the number of upcrossings of the interval [a, b]. Define
and
PN ,Xgn_l é a, in g b}

S,L= {X1é(l,XQéZ),...,in_léa}
Tn= {X1§a,ngb,

for all n.
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LeMMA 2.a. Let a, ¢, r and W be reals such that a < ¢ and W € [0, 1); let
I € R be defined by Wa + (1 — W)l = ¢ and let B be the lwo point probability
B = Wb, + (1 — W)d, (5, and &, are point probabilities at a and I respectively).
Then among all probabilities w on R such that u((—0, a]) = Wandf xu(dx) =
¢, B minimizes

0(r) - u(—o0, 7] + f> 0(x) p(dx) = ff?(f) V 0(x) p(dx)
whatever convex, tncreasing funclion 6 may be.

Proof. Let € be the class of convex, increasing polygonal functions with a
finite number of vertices. It is clear that for any convex increasing function 8,

f&(r) V 6(dx) = sup f0(r) V g(x) uldx).
Thus to showf 6(r) V 6(x) u(dx) = f 6(r) V 8(x) B(dx) it suffices to show
o) Vv glx) uldx) = [6(r) vV gx) B(dx) forall g € €. Now if g € ¥, then
6(r) V g may be represented in the following form:

0(r) Vgkx)=00)+dixVr—r)+(ds—di)(xVxi—x1)+...
+ (dn - dn—l)(x \% Xn — xn)y
where { (7, (7)), (x1, g(x1)), ..., (x,, g(x,))} are the vertices of 6(r) V g and
0<di <dy...<d, By linearity then, to show f()(r) Voglx) w(dx) =
f()(r) V g(x) B(dx) it is enough to showf YV xuldx) 2 f v V x B(dx) for all

y € R.
When y € [a, 1],

fx V oy p(dy) 2 fxu(dx) + (v = a) u((~o0,al)

Zct+ @—a)W
=yW+l(1—W)=foyﬁ(dy)-
When y < a,
foyu(dx)é fxu(dx)26= foyﬁ(dx).
When y = /,

foyp(dx) gy;l=foyB(dx).

LemMA 2.b. With a, ¢, W, I, u and 8 as in Lemma 2.a we have

fa " o) wan) 2 f " 0(x) B(a)

for all convex, increasing functions 6.
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Proof. Let u((—o0, a]) = W. Define [ by Wa + (1 — W)l = ¢ and let
B=Ws + (1 — W)é; = c. By Lemma 2.a, taking r = a

0(a) n(—e0, a] + fc” 0(x) w(d) 2 0(0) B(—e0,al + | 0) Bl

at

for all convex, increasing functions 8. However u(—00, a] = f(—0, a], hence

[ u@ = [ ow sas) = 00ya - )

— —a
=(1-— W)G(—*l—__-ﬁ/—) = (1 — W)B( W + (Z) .
However, (1 — s)8 ((¢ — a)/(1 — s) + a) is an increasing function in s €

[0, 1] (by a supporting hyperplane argument), and W = W by Lemma 2.a.
Therefore,

j:: 0(x) u(dx) = (1 — W)(?(*——— + a)

> (1 — W)e({f% + a>

- f:e@c) B(dx).

THEOREM 2. Let P be a submartingale satisfying a condition of type (¢, 7)
and such that

Let the submartingale Q" on (R”, B”) be defined by:

Xi=m}=1—q
Xi=a}l=q —q
X1=]1}=91
Xo=Xy|X:15#a} =1
Xo=blXi=a} =1

{Q" X; = Xo|X2 # b} =

B3
s
i

{
0 alX, = b} =1 — ¢
QX5 = L|X, =0} = ¢
{
{

oH{X —b{X3=a} =1
and so on repeating (A) and (B) for X5, Xe, X1, Xs, . . ., Xop—1, Xow. Xsp1 = X
for k = 2n. There exist 0 = qo, q1, - .., G =1 and b <1y, ..., I, such that
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(@) 1 = ifm < a
gh+ A —=gle=mqg=1 ifm>a
Gl + (1 — qr)a =D ifl <k = omg
(b) O satisfies (¢, 7);
(c)ledQ = m;and
(d) P{T,} = Q{T.}.

(We remark that the trajectories are a.s. —Q of the form (if m = a):

Il

(hydy by, . 0)  wap. qu;

(a,b,a,b,...a,b, L, liy...) wp. (I —qg)(1 —q2)... (0 — g1
forl £k < n;and

(a,b,a,b,...a,bya,b,b,...) wp. (I —q)...0 — q).
If m < a, the trajectory (I, /1, . ..) is replaced by the trajectory (m, m, ...)
having probability 1 — ¢q).

Proof. We proceed by induction. Suppose the theorem is true for £k < n — 1.
Then there exists a submartingale Q"' of the above form (along with g, ¢1, . .

L

Guaand Iy, I, . .., 1,_1) such that [ 0(X,)dQ"' < [ 8(X,)dPfor1 <k < 2n —
2, and QY 71T,,} = P{T,_1}. Now define 1 — ¢, = P{T,|T,-1} and [, by
Gy + (1 — gq)a = b. Define Q" using qq, q1, . . . ¢, and Iy, Iy, . . ., [,. Now con-

sider the probability u(dx) = P{Xs,—1 € dx|T,-1}. By Lemma 2.a taking r =
—0, the two point probability 8 = ¢, 68, + (1 — ¢,)8, satisfies

s ),

Hence

(1) an_l 0(Xop—1)dP = fT
Next,
I,

n—

X zn)dP = fﬂ(x)#(dX) = fG(X) B(dx)

“5r ),

n

0(X 20—1)dQ".

n

0 (XQn—l)dQn‘

n—

0(X on_2)dP = f . 0(X 20_2)dQ"

Tn—1

0(Xon1)dP = f
1 Th—

)
= f . 0(X2,-1)dQ".

n—1

So

fH(X2n_1)dP = fT

n—

0(X 2 1)dP + f . B(X5)dP
1 Tn-1

; fa(X%L—I)dQn
by (1) and (2).
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Next,

[ octuir = [ _sccuap+ |,

@) 4 f 6(X2)dP = bP{T,) + f 0(Xa)iP + f 6(Xsn_2)dP.
TS—1 Tn—1—Sn ThH-1

n—Tn n—1—Sn

Again defining u(dx) = P{X2,_1 € dx|T,-1},

fT L 0(X2n1)dP = P{T, 1} foj 0(x) p(dx)

a

= P{T,_1} (j:: 0(x) B(dx)) = an__l—S"o(XQn_l)dQn (by Lemma 2.b).

Hence from (3),

fo(XZn)dP = bP{T,} + 0(X20-1)dQ" + fc 0 (X on_2)dQ"

Tpn—1—Sn

= f 8(X2)d Q"

Therefore, f()(Xk)dQ" §f0(Xk)dP for 1 £ k < 2n; QYT,} = P{T,}, and
by construction, Q" is a submartingale.

3. Applications. Theorems 1 and 2 provide an algorithm for obtaining
sharp upcrossing probabilities. Denote (x*)? by [x].,?.

Prorosition 1. If M s the collection of submartingales such that

f (X, —aldP = L foralln,and

ledP = m, wherep = 1, and if

L — [m — al)’ (p — 1)"!
Bab(k) = - ? ¢ — N 7
CmO L B - 1) + -1y
Gf p =1, set (p — 1)~ = 1), then
sup P{vaw = k} < Buy(k) for all k, and

PeM

Sup P{'yab g k} NBab(k).
PeEM
Proof. Let 0,(x) = [x — al,?, 7(6;) = L and 7(6;) = —0. Let 0(x) = x —
m, r(62) = 0 and 7(6;) = o0. Let ¢ = {61, 0,} and M be the collection of all
submartingales satisyfing condition (¢, 7, 7). We check that M = M. Setting
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Bl = (_OO (Z] = [b OO) rB2n—1 = (—Oo)a]yB%z = [b,OO) and apply—
ing Theorem 1, we have

sup Qfvay = n} = sup Q{X1 = a,..., X = b}.

QeM Qen

Next, by Theorem 2,
sup Q{X1=¢a,..., X, 2b} =sup Q{X1=Z4qa,...,Xs = b},

QeM QeMm

where M is the collection of submartingales in M also having the form given
in Theorem 2. Let Q ¢ M. Let

Q{X1=m} =1 — po

Q{Sk}=p]ey k=1,...,ﬂ
Therefore, by the submartingale property, m < (1 — po)m + pra + (po — p1)bs.
Clearly equality is best (for satisfying (¢, 7)) so

I = pom — pua

1= .

pPo— P/

Similarly p;b = pr+10 + (Pk - P1~+1)l](+1, k= ]., R (e 1, sO

bib = prna
pk - pk—l—l '

lk+l =

Next

Lz f (X2 — al,?dQ

> (1 — po)fm — al? + (po — pu )[Pom ;711(1 ajL

+ (p1 — Pz)ljplb bat a] + ...
Do

n
4
O VI, S
_ p
= (1= polm — al? + B Py
Gn— Pt —)p—f (b — a)’ + pu(b — a).
Let
y_L—1[m—al _ _D _ Dn
L= (b_a),, , ao——Po,al—pO,‘..,an—Pn—l.
Therefore
7 —Ol(][m - a]f ao[m (L]+p (6711231
L= =07 to=oy G-ar 1+< a>"—‘+"‘
(1)
- On—1_
(1 )p—l + aq.
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We must now maximize $, = aq . . . a, subject to the constraint (1) and 0 <
ag, . .., a, =< 1. Clearly the maximum occurs when (1) is an equality. Solving
for a¢ we must maximize

Loay...op
(2) —[m —al® [m — al? o1 ... Qp
b=ay THC Uy T Sy T

Equivalently, we can minimize

1J  [m—aly ( 1 _) 1
i{(b—a)pal...an (1 — )" 1 +(1—a2)p—1a2...ak+“'

1}
O w T
Set
_ Im —al? ( 1 )
= (l) - a)”al (1 - al)p_l ).
Form = 2 set
_ [Im—al/ ( 1 ) 1
Tm = (b - a)pal e Oy (]. — O[])pﬁl 1 + (1 - Olg)p—lag e Oy + Y
1
. (1 - am)p_lamA
Therefore for & = 2,
. YE=1 __;__
(3) Ye = - (1 — Olk)p-lak .
We wish to minimize v, by choosing &;, ..., &, However, v,_1 depends only
onay, ..., a,; therefore, at the minimum,
7 e P 1 p—1

0= day, |2, @ (1 — &) &) + 1 — &,)a, "

Substituting back into (3) also gives v, = (p — 1)/(1 — &,)?. Now at the
minimum,

0= Wzt _ Wn1 - ¥
do—1  dop—s T day ’

so the above relations hold for each level. Hence, (henceforth v, represents the
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minimum value)

_ pax—1
@) 7= 1 — a)’ and

— __L—__‘_l__ >
(G = a)? fork = 2.
We remark that
L Al
Yi | @1reeyak

yields the maximum probability of k2 upcrossings under our constraints for all
k = 1. With our recurrence relations we now examine the asymptotic be-
havior of v;.

Yr—1 — - =1 -8

Yk __1 P_l—.

Also from (5), (1 — &) = (p — 1)/7~,~1/7; hence

pay — 1 (1 — a)
P

©) :Y;T_,l =1- v_‘%ﬁfm v, or
M) Y= ve1=Cv % C= F%WE-

Now consider the equation dy(¢)/dt = Cy(t)'~'/?. Solutions are of the form
v(t) = ((Ct)/p) + C1)? where C; is a constant. Also

vy(k) — v(k — 1) = 4(s) forsomek —1 =X s Z &,
C’y(s)l‘””
C',y(k)l—l/PY

If

IIA

since solutions are increasing. Therefore y (k) increases slower than ;.

Next from, (6) we have lim; ., vi_1/v+ = 1, so for all § > 1 there exists an
no such that for k& = n,,

Yl 7P < Sy 1P (8 — 1 is small).
Hence, vx — v5—1 < 6Cyi—1'"1?. Now let dy(¢)/dt = 6§Cy(¢+)~1/?. Hence

() — 7k —1) = 4(s) forsomek —1=<s=k
5CF (s)1-17
> 6Ci(k — 1)1,

It

Therefore ¥ (k) increases faster than v,. Also as before 7(t) = ((6Ct)/p) + C2)?,
where C. is a positive constant. Hence v, is 0(k?). Moreover, we can solve
explicitly for yi.

"= [7(111) - Z]); o ((1 —1al)ﬂ—1 - 1)
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is increasing in 0 < «; = 1. Hence the minimum is
¥4
m u—
lim 71 = =1 (p — 1).
a150 b —a)’
If we set v(1) = v; we have

(g + cl)p e T )

and after substitution

_ 1 (m—a . P
Hence

L < L _L—[m—a]+p
w+H1=yE& +1 (b —a)

»— 1" .
X = a) :
(e @m0ty 1) 4 o1y

Since the probability of k upcrossings is at most L/ (v, -+ 1) we have our bound.
We now set y(n9) = v,,, thereby determining C,. Hence

Y& ’ng)
*V(k) =< _(—k) for B = n,
S5Ck
(—p* + C2)

=Tk z
(75 + Cl)

Therefore

<&,
k00 ’Y(k> -

but 6 — 1 is arbitrarily small. Therefore
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SO

sup P{yaw = k} ~ By, (k).

PEM
~ For p =1 it is easiest to maximize the expression (2). The maximum is
L/k. This completes the proof.

We could generalize Proposition 1 by supposing £X, = m and E6(X, — a)
< L for all » where 6 is an increasing convex function with derivative 6.
The above proof goes through and (7) becomes v, — v,_1 = 8’ o a(y;) where
ao (0 (x)x — 6(x)) = x. In a particular case we may be able to proceed (as
above) from here.

COROLLARY 1. Doob’s upcrossing inequality 1s sharp.

Proof. For any submartingale P such that f(Xn — a)tdP = L for all »n
and le = m, Doob’s inequality says

L— (m—a)
f’Yade =< h—a .

Applying Chebyschev’s inequality, we have

"
Plun 2 4 5 B

which is precisely the bound given in Proposition 1 for p = 1 (Prof. David

Heath pointed this out). Proposition 1 provides the construction of a sub-

martingale (almost) attaining this bound (in fact as = a3 = ... =q;, =1

means /y = [p = ... = [, = o0 so at best by taking /;, ..., /; large we may

almost attain the bound). Hence Doob’s inequality must also be sharp.

It is in fact possible to obtain Doob’s upcrossing inequality directly by these
methods (see [2]).

Example 2. (Dubins’ inequality—see [3, p. 27]).

ProrositionN 2. If P is a submartingale such that P{L < X, < U} =1 for
constants L, U (L < U) for all n, and le dP = m, then

U—mVa U—b)"“1
> Bl <
Plya 2 & =( U—a )(U—a
for L £a<b= U, wherem V a = max {m, a}.
Proof. Define 6(x) = x, r(6) = m, 7(6) = o0 and ¢ = {6}. Let M be the
class of all submartingales satisfying conditions (¢, 7, 7) and (L, U). [t is clear

that M consists of exactly those submartingales satisfying our hypotheses.
Therefore by Theorem 1,

sup P{v. = k} = sup P{T%}.
PEM

PeM
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For any P € M,

f sz—zdpéf X?k—ld—P=f X2k—1dP+ X?k——ldp-
Thk-1 Tk-1 Sk Tk—1 N Sk¢

So bP{T -1} £ P{Si}a + (P{T_1} — P{S:})U. Hence

‘ U-—1b
P{Ty} = P{Sy) < =) PITeal,
Nextm < [X,dP =[5, X,1dP + [ 5,¢ X1dP,som < P{Si}a + (1 — P{S:i})U.

Hence
U—m
< < |z=——=
P{T,} = P{Si} = (U— a) A L
By iteration we have
U~m\/a) (U——b)"‘_1
<
P{Tk}z( U—a U —a/

Again this bound is sharp. A martingale with precisely these upcrossing
probabilities is given as an Exercise I11-2 in [3].

I thank Prof. Harry Kesten for his help with the asymptotic analysis in
Proposition 1. Thanks also to the referee for the current improved version of
Lemma 2.a.b.
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