NOTE ON p-GROUPS

NOBORU ITO

In connection with the class field theory a problem concerning p-groups was
proposed by W. Magnus?: Is there any infinite tower of p-groups G,,G.,. . .,
Gn, Gns1, . . . such that G; is abelian and each G,, is isomorphic to Guy:/04(Gns+1),
0,(Gns1) 1, n=1,2,..., where 60,(Gn+:) denotes the n-th commutator sub-
group of G,.:? The present note?® is, firstly, to construct indeed such a tower,
to settle the problem, and also to refine an inequality for p-groups of P. Hall.»

1. Let p be an odd prime number and let M; be the principal congruence
subgroup of “stufe” (#*) of the homogeneous modular group in the rational p-
adic number field Rp, that is, the totality of matrices (Z'; Z') such that ai,
Qy2, @21, 80 E Rp, a1 = ax =1 (mod. p°), and a;; = @z = 0 (mod. »). Let 4,(M;)
denote the 7-th commutator subgroup of Af;.

Lemma 1. 0,(M;) € M for s =0,1,2,. . ..

Proof. The case s =0 is trivial. Assume s >0 and that 8s-,(M;) = M_,.
Then 6s(M;) < 0,(Ms-1). We shall prove 6,(Ms_;) € M.

Let A = (a“ a”) , B= (Z” z’:) be any two elements of M,s_,. Then
21 2.

Qg Qo2
A-'B-'AB = |A|-1.|B|-!
( (@osb2s + @uobor) (@ubu + Giobo) — (@osbse + @sobi) (@21bit + Guebar)
— (@21bee + @ubay) (@uby + @iebe;) + (@b -+ @1bu) (@o1biy + Gasber)
(@22D22 + @robar) (@usbiz + @yobae) — (@osbiz + @iebyr) (@2ubiz + anbzc))

— (@a1bez + @ubey) (@nbiz + @ibsx) + (@2ibiz + anbu) (@bss + @zobse)
where |A|, |B| are the determinants of A, B respectively, and therefore |A|-7ana:
= |B|" b = 1 (mod. p%). Now ai = @ = by = b = 1 (mod. ), a2 = ax
= by = by = 0 (mod. 7). Then (1,1)- and (2, 2)-elements of A-'B~'AB are
obviously = 1 (mod. »*°). Since

@s2b2 (@1ybre + Qiebag) — (@2bis + Grobyy) Gosbie = Gb{bpz(@n — @22) + @12(b2e — bur) },
— (@uber + anbn)anby + anbu(andy + @ubo) = andn{an (by « bx) + by (az — an)},
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(1,2)- and (2,1)-elements of A-!B-1AB are also = 0 (mod. p*).
Thus induction proves the lemma.

Remark. More gencrally it can easily be seen that (M, M) = My, we
shall use this fact later.

LEMMA 2.

1+p° 0y (1 "y (1 0y (1 O
MS = {[ ) J> [ )) ( s ]’ [ 3]9 szs.;.t}
0 1 01 1 0 1+ p°

for s,t=0,1,2,. ...

Proof. The case t = 0 is trivial. Assume £ >0 and

( 1+p° 0 1 % 1 0 1 0
MQS B [ ]’ ( ]’ [ 2 ]’ [ "]’ ]‘/Ii’s+t-l }.
Wo 1)l 1)l 1) lo 14

We shall prove

14+p° 0 1 p¥ 1 0 1 0
L A TR T P (O )
0 1 0 1) {p* 1 0 1+ p

1+a :
Let [ +a;,  an ] be any element of M4¢-;. Then

Qs 1+a,
[1+a{, 0][1 0 (1 0][1 als]
0 1J 0 1+ agg] a; 1)L0 1
_ [1 + aj, ays + aj\a: ] - [1 +4ad; a ] mod. M= .
an + ahan I+ aly + anae + al.anar as 1+ al,

1+d, 0) (1 0 1 0y (1 ae
And [ s [ s [ ], [ are respectively contained
0 1 0 1+al, ay 1 01

: {(1+p‘~"’ 0] I {1 0 u 1 0] i
m O 1 » oS +1 }’ [O 1+p23]9 Qs+t}’ {[pzs 1 ’ gs-).t},

1 p”
{[ 0 1 ], M, }, because p >>2. Now the lemma is proved by induction.

Remark. More generally it can again easily be seen that

1+ 0 1 ™) 1 0 1 0
Mﬂ:{[ ]’[ J’ [ ]’ [ ]9 Mn+l1}
0 1 01 1 0 14"

forn=12,...; ¢=0,1,2,....
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1+a O
LEMMA 3. The centrum C\(M,) of M, is {{ ], a =0 (mod. p)} .
0 1+a
1
0

Proof. Let A= (3" ") be in C,(Mp), and let B= (%) or = (1 9).

90

Then B 'AB = A = ( @iy = Pan, Pan — P'axy + aw - Pas )
as, Dasy + ax
ay + pay, G2
or = , Therefore a;; = ay =
( = Py + Aoy ~ P*ays + P, = Daye + A ) ¢ dn=an=0, au
= Q22.

Lemma 4. 0s(M) e Misy o Ci(My) = My Cy (M) for s, ¢ =0,1,2,. . ..

Proof. The case s = 0 is trivial. Assume s > 0 and 0s-; (M) s Miys-1.42+C, (M)
= Mgs-)’cl(Mj) for t=0,1,2,. ...

rat =t e e (100 ) (305,000 = (4 9.

1
and (é “'1‘3’)( fq 2)(5 3)(; (1)) = ( 1 +32qj qdm q“~’13+ 1) are elements of

05(M,) s Mysit+Cy (M), because 0:{0s-1(My)s Miys_y.-Ci(My))
2
S 0s(M)» Missr-Ci(My) . Now (1 ") is contained in 0s(M.)+Mise-Ci(M).

01
2 4
Symmetrically the same is the case for ( ;2 (; ) . Next ( 1 +_qu q L qg(_)*_ o )
; : ; 1+¢*+ ¢ 0
is contained in 0s(M,) My, :-Ci(M)), because ( “F l-gt .. )
2 g a4 3

=(1HELT ) mod 0.0 M, Gi(M). Similarly
(1 +0q2 + q*l B ; o ) is contained in 0s(M)) » Misys-Ci(M)).
Finally

1+ ¢+ ¢ 0 _ (1 0 M) e Mocr s Co (M,
0 er. ) =0 1oy, ) mod 0600 Mo GO,

1 0 . . . 1 0
, M, b e 2.

and(0 ‘14 (1’-’) is contained in {(O 1—2g+... ) _s+;} ecause p >
Hence ((1) . _(: q?) and, symmetrically, (1 g @ (1)) are contained in

0s(My) « M,s,:+C(M,). Our induction argument is completed.
Remark. More generally it can be seen that
Om(My) s Mo Ci (M) = Mym+Ci(M,) for m=2"2"+1,....
Besides it can be seen analogously that
Hu (M) My Cy(My) = MpoCi(M)) form=m,m+1,...,

where H denotes the lower central series.
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M, M-Ci(My) _
Lemma 5. s (Ms+t'él(M)) for t=0,1,2,....

= Mgs+t.C](M)
M, _ 0s(M)'Mvs+t'CJ(M) — M9'01(M)
Proof. 0s (MgsuC;(Mn)) =T Muyeo (M)~ MesrCi(M) from

Lemma 4.
Now we can construct actually in the following manner an infinite tower of

p-groups satisfying the condition proposed by W. Magnus :

: M, . . Gn ... :
Designate Mo C: (M) by G». Then G, %1 is abelien, I (G is isomor:

phic to G»-; by Lemma 5, and 8,-:(G») =% 1. Therefore {G,G:,...,Gn,...}
gives surely an infinite tower fulfilling the condition.

Remark. 1t is very likely that also for p = 2 we may start with M: to ob-
tain a similar series in a little bit more complicated form.
For non p-groups such a construction is easier than for p-groups.

2. In his celebrated paper P. Hall® gave the following theorem: “Let G
be a p-group (p > 2) of the smallest order " such that 6,(G) be different from
1. Then

1M — N =n=2"4+m
Now we can refine the upper bound of this inequallity to be 3.2 To this we
consider the group G = M- CiO0) which was constructed above. Then
0m(G) is obviously different from 1. The order of G is »**" because
(M;: Momyy) = (M2 MamyyoC (M), (Memy o Ci{(My) : Mewy,) and (M, : Momy,)
= P4'2m, (Mgm+,-(C;(M) . Mz’"+1) =P2m.

Nagoya University

® P. Hall, A contribution to the theory of groups of prime power order, Proc. London
Math. Soc. 36 (1934).
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