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1. Introduction. Let X be a Banach space (£-space). A sequence {s(i)\ 
in X is unconditionally summable if and only if every rearrangement of the 
series J^is(i) is convergent. The set of unconditionally summable sequences 
in X will be written as U(X). In this paper several classes of summable se­
quences in X will be compared with one another. Each class to be considered 
is identical with U(X) when X has finite dimension. 

The following notation will be used. The set of natural numbers will be 
denoted by N and the collection of non-null finite subsets of N by ^ A se­
quence in X will usually be denoted by the single letter 5 and its value at 
i Ç N by s(i). If 5 is a sequence in X and F Ç ^ î the sum of the terms s(i) such 
that i Ç F will be written J^Fs(i). 

A sequence 5 in X will be called weakly unconditionally summable if and only 
if £ i | / ( 5 W ) l < °° f° r every / Ç X*, the adjoint space of X. Let B{X) stand 
for the set of weakly unconditionally summable sequences in X. Gelfand (4) 
has shown that 5 <E B{X) if and only if sup[ | |XX*) | | : F Ç #] < co.With 
the usual definitions for addition of sequences and multiplication of a 
sequence by a scalar B (X) is a vector space. It is known that B (X) is a 5-space 
with the norm of each 5 Ç B(X) defined by \\s\\ = sup[ | |£ ,*( i ) | | : F Ç &~\. 
This will be the norm intended when B (X) is referred to as a i2-space in the 
sequel. As a consequence of a result of Birkhoff (2), U(X) is a closed linear 
subspace of B{X). 

Following Hadwiger (5), a sequence 5 in a I?-space X has an invariant sum 
if and only if there is an x Ç X such that x = ^2is(i) and such that x is the 
sum of each of the convergent rearrangements of J^is(i). Let IS (X) stand 
for the class of sequences in X with an invariant sum. It is known that if X 
has finite dimension then U(X) = IS (X). Hadwiger (5) has shown that if X 
is a Hilbert space with infinite dimension then U(X) is a proper subset of 
IS(X). In this paper Hadwiger's result is sharpened and extended to any 
2?-space with infinite dimension. 

If 5 is a sequence in X and there is x G X such that x = J^ts(i) then x 
will be called the sum of s. In case there is x X) X such tha t / (x ) = ^if(s(i)) 
for all / G X* then x will be called the weak sum of s. It follows easily that a 
sequence s in a B-space X can have at most one weak sum. I t can be shown that 
in any B-space X there are sequences which have a sum but are not elements 
of B(X). Conversely, in some -B-spaces, for example, in X — c0, the 2?-space 
of real sequences which converge to 0 with | |s| | = sup[|s(i)|: i Ç N] for each 
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5 G Co, there exist sequences which are elements of B(X) but which do not 
have sums. 

Two new closed linear subspaces of B(X) are introduced in this paper. 
They are 
BW(X) = [s G B(X): s has a weak sum], BS(X) = [s Ç B(X): s has a sum]. 

For any 5-space it is true that 

U(X) C BS(X) = IS(X) H 5 ( I ) C BW(X) C B(X). 

We show that if X = c0 then all of these containments are proper. 

2. Closed linear subspaces of B(X). Dunford (3) and Gelfand (4) have 
shown that a sequence 5 in a £-space X is weakly unconditionally summable 
if and only if there is a real number M such that J^i\f(s(i))\ < Af||/|| for all 
/ G X*. A norm for the vector space of weakly unconditionally summable 
sequences in X is defined by setting 

Iklli = sup[E«l/(*(*"))|: / U * and ||/| | < 1] 

for each sequence 5 of this class. Let Bf(X) denote the normed vector space of 
weakly unconditionally summable sequences in X with the norm of the 
preceding sentence. As a special case of a result of Dunford (3, Theorem 30) 
we have that B'(X) is a 5-space. 

The following lemma is essentially given by Pettis (6, Theorem 3.2.2.). 

LEMMA 2.1. If s is weakly unconditionally summable then 

s u p [ | | 2 X * ) | | : Fe&]< sup[Ei|/(*(*))|: / U * and ||/| | < 1] 

<2sup[||5>(i)l|: F e ^]. 

LEMMA 2.2. The normed vector space B(X) is complete. 

Proof. Since B(X) and B'(X) differ only in their norms and B'(X) is 
complete it is evident from the relationships between their norms given in 
Lemma 2.1 that B(X) is complete. 

THEOREM 2.3. For any B-space X the spaces BW{X) and BS{X) are closed 
linear subspaces of B{X), and the operation L defined on BW(X) to X by setting 
L(s) equal to the weak sum of s for each s Ç BW(X) is linear and has norm 1. 

Proof. To show that BW(X) is closed in B(X) suppose sn is a sequence 
in BW(X) which converges to 5 Ç B(X). For each n Ç N let xn denote the 
weak sum of sn. Since {sn} is a Cauchy sequence in B(X) there is for each 
e > 0 a natural number n€ such that \\sn — sm\\ < e/2 if n, m > n€. For 
w, m > ne and / G l * with ||/| | < 1 one has 

!/(*» - %n)\ < Hi\f(Sn(i) - Sm(l))\ < 2\\sn - 5m | | < €, 

the second inequality given by Lemma 2.1. It follows that {xn} is a Cauchy 
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sequence and therefore has a limit x. Again, suppose € > 0 is given a n d / € X* 
w i t h / non-zero. There is an ne such that 

I k - s\\ < e/(4II/H) n > »., 

and since xn converges to x, rce may be chosen large enough so 

||* - xn\\ < e/(211/11) * > » f . 
Hence, if|w > w€ then 

[/(*) - £«f(*(*))! < l/(«) - / ( * . ) ! + Lil/(*-(») - *(*'))! 

<ll/ll(«/(2|(/ | |)) +2II/H U s . - * | | < e, 

using Lemma 2.1 to get the second inequality. This proves that x is the weak 
sum of s. 

To show that BS(X) is closed in B(X) suppose {sn} is a sequence in BS(X) 
which converges to 5 G B(X). For each » G N let *n denote the sum of sn. 
Since BB(X) C J3«>P0 and BW(X) is closed, 5 has a weak sum x. Also {xn} 
converges to x. Since {xw} converges to x and {sn} converges to s, if e > 0 is 
given there isp £ N, dependent on e, such that ||x — xP\\ < e/3 and \\sp — s|| < 
e/3. Also since xp = 52iSp(i)f there is a g £ iV such that if r > g then 

Hence if r > g, then 
r 

i= l 

< II* -«,11 + 

< e/3. 

+ 

r 1 

xp - J^sp(i)\ 
*-i l 

1 r 

Z *(*) - ] 
11 i - i 

is(i)\ < €. 

This shows that x is the sum of s. 
I t remains to show that L is a linear operation with norm 1. Let 

£ = [ / : / 6 X* and | |/ | | = 1]. 

Fix 5 d BW{X) and let x = L(s). Then 

| |*| | = sup[ | / (x) | : / € £ ] - sup|lim £ / ( * ( * ) ) : / € £ 1 
Ln->oo I x = l I J 

< sup [ sup | | / ( i ; s(*)j I :« € i V | : / € Ej 

= sup [ sup | | / ( É *(*)) I } : / € E: n € i v j 

n I » M "1 
= sup Z * ( * ) : » €N\< l\s\\. 

L I I i=i II J 

Hence L, which is obviously additive, is continuous and | |L|| < 1. Since for 
any x0 € X the sequence {x0l 0, 0, . . . , 0, . . .} is in BW(X) and has x0 for its 
norm, clearly | |L|| = 1. 
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3. Extension of a theorem of Hadwiger to ^-spaces. The following 
theorem is obtained by applying a modification of Hadwiger's argument (5) 
to the general case. 

THEOREM 3.1. If X is a Bspace the following are equivalent: 

(i) X has infinite dimension. 

(ii) the difference IS(X) ~ B(X) is non-void. 

(iii) U(X) is a proper subset of IS(X). 

Proof. Because of the well-known fact that U(X) C IS(X) Pi B(X) for 
all X, it is evident that (ii) implies (iii). Since U(X) — IS(X) if X has finite 
dimension, (iii) implies (i). It will now be shown that (i) implies (ii). By a 
remark of Banach's (1, p. 238), X contains a closed infinite dimensional 
linear subspace Xo which has a basis {x(i)\ with ||#(i)|| = 1, i G N. Using a 
result of Banach (1, pp. 110-111), there is a sequence {/<} in X* such that 
fi(%(j)) = an and for each x G Xo, x = ^2ifi(x)x(i). 

Consider the sequence of finite blocks 

Bk = {x(k)/k, -x(k)/k, . . . , x(k)/k, -x(k)/k\, k = 1, 2, 3, . . . 

where Bk consists of 2k2 terms each of which is either x(k)/k or —x(k)/k 
according as it is in an odd or an even place in Bk. Note that x(k)/k occurs 
k2 times in each Bk so the sum of the odd place terms in Bk has norm k. Con­
struct a sequence s in X by adjoining the second block of terms to the first, 
the third block to this, etc. Since the norm of the sum of the odd place terms in 
each block is k, s $B{X). Clearly £*s(i) = 0. It remains to show that s has 
an invariant sum. Suppose that sf is a rearrangement of s and that y = £ ts' (i)-
Since Xo is closed, y G Xo- Express y by its biorthogonal development 
y = Hifi(y)x(ï)- For arbitrary i G N, we have ft{y) = Z*A(s'0 ')) .Take 
Wo large enough so that all terms in the block Bt occur in the sum 

s'(l) + 5'(2) + . . . + s'(«o). 
If n > «o then 

; = 1 \ jeF / jtF' 

where F = [j:j < n and s'(j) is a term of £*] and 

F' = [ / : j < « a n d J $ FJ. 

Now Z > ' ( j ) = 0, and by biorthogonality/^s'O")) = 0 if j G F', soft(y) = 0. 
Since /* (y) = 0 for all i it follows that y — 6. 

4. Comparison of subspaces of B(X). For any £-space X, U{X) CB{X) 
so clearly U(X) C B8(X). Also £S(X) C /5 (Z) for any £-space X, because if 
5 G £ s(x) and 5 has the sum x and if s' is a rearrangement of 5 with sum x' 
it follows that / (#) = fix!) for all / f I * so x = x'. With these observations 
the following lemma is obvious. 
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LEMMA 4.1. For any B-space X, U(X) CBS(X) = IS(X) f~\B(X) C 
Ba(X)CB(x). _ 

A ^-space X is weakly complete if and only if every weakly convergent 
sequence in X is weakly convergent to an element of X. 

THEOREM 4.2. If X is weakly complete then 

U(X) = BS(X) = IS(X) r\B(X) = BW(X) = B(X) C 75(X). 

The containment is proper if and only if X has infinite dimension. 

Proof. For any £-space, U(X) C IS(X) and it is well known that when X 
is weakly complete that U(X) = B{X). Hence B{X) C 75 (Z) when X is 
weakly complete. The theorem then follows by Lemma 4.1 and Theorem 3.1. 

LEMMA 4.3. If for a B-space X, U(X) is a proper subspace of B(X), then 
U(X) is a proper subspace1 of BS(X). 

Proof. Suppose 5 € B(X) ~ U(X). For each k Ç N let Bk denote a block 
of 2k terms as follows : 

Bk = {s(k)/k, -s(k)k/, . . . , *(*)/*, -s(k)/k}. 

that is, the even place terms in Bk are s(k)/k and the odd place terms are 
— s(k)/k. We construct s' € BS(X) ~ U(X) by adjoining the terms of the 
block B2 to those of B\ and then adjoining the terms of Bz to these, etc. 
Clearly 6 = X>'0 ' ) and for each / Ç X*, 

so s' G £S (X). Finally, since 5 $ 27 PQ it follows that the series £*s'(i) has a 
subseries, namely, £*s'(2i — 1) which does not converge unconditionally. 
H e n c e / i U(X). 

COROLLARY 4.4. The B-space U(c0) is a proper subspace of Bs(co). 
Proof. Consider the sequence {sn} in c0 where for each n} sn(i) = 1 if i = n 

and sn(i) = 0 if i ^ n. The sequence {sn} is an element of B(c0) but it does 
not have a sum so is not an element of U(c0). The corollary follows by 
Lemma 4.3. 

LEMMA 4.5. If for a B-space X, U(X) is a proper subspace of B8(X) then 
BS(X) is a proper subspace of BW(X). 

Proof. If 5 £ B8(X) ^ U(X) then there is a permutation / of N such that 
the sequence {s(t(i))} does not have a sum. Let x denote the sum of s. Then 
x is the weak sum of s and since s £ B (X) it follows that x is the weak sum of 

By Corollary 4.4 and Lemma 4.5 we have the next corollary. 

COROLLARY 4.6. The space Bs(c0) is a proper subspace of Bw(c0). 
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LEMMA 4.7. If for a B-space X, U(X) is a proper subset of B (X) then BW(X) 
is a proper subset of B (X). 

Proof. By hypothesis there exists an s Ç B{X) ^ U(X). Using a result of 
Orlicz (1, (3) on p. 270), there is a strictly increasing sequence t of natural 
numbers such that the sequence {s(t(i))\ does not have a weak sum. However 
it obviously inherits the property of belonging to B(X) from s. 

COROLLARY 4.8. The space Bw(c0) is a proper subspace of B(co). 

Proof. Since B(c0) ^ U(co) is non-void the conclusion follows by Lemma 
4.7. 

Putting together the preceding corollaries we have the following 

THEOREM 4.9. For the B-space c0, U(c0) C Bs(c0) C Bw(c0) C B{cQ), and 
each containment is proper. 
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