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COMPARABLE DIFFERENTIABILITY CHARACTERISATIONS
OF TWO CLASSES OF BANACH SPACES

J.R. GILEs

We characterise Banach spaces not containing £; by a differentiability property of
each equivalent norm and show that a slightly stronger differentiability property
characterises Asplund spaces.

A continuous convex function ¢ on an open convex subset A of a normed linear
space X is Gateauz differentiable at x € A in the direction y € X if
. P+ Ay) — oz
#(@)(y) = lim 22— )

A0 A

exists, and is Gdteauz differentiable at z if ¢'(z)(y) exists for all y € X . Further ¢ is
Fréchet differentiable at z if the limit ¢'(z)(y) is approached uniformly for all y € X,
lyll =1
An Asplund space is a Banach space X where every continuous convex function ¢
on an open convex subset A of X is Fréchet differentiable on a dense G5 subset of A.
The theory of Asplund spaces is by now well established, (see [6]). Our first interest is
in the following characterisations.
ProrPosITION 1. For a Banach space X, the following are equivalent.
(i) X is an Asplund space,
(i1) every nonempty bounded subset K of X* has weak* slices of arbitrarily
small diameter, [6, p.31],
(iii) every continuous weak* lower semi-continuous convex function ¢ on an
open convex subset A of X** is Fréchet differentiable at the points of a
dense G5 subset of A, [6, p.94],
(iv) every equivalent norm p on X Is Fréchet differentiable at some point of
X, [6, p.33].

We note that given a nonempty bounded subset K of X* a weak* slice of K is a
nonempty subset of K of the form

S(K,Z,8) = {f € K: f(z) >supZ(K) — ¢}
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264 J.R. Giles 2]

for some z € X \ {0} and 4 > 0.

The study of Banach spaces not containing £; is also well established, (see [8]).
However, a fascinating characterisation for such spaces was given in {7, p.422].

PROPOSITION 2. A Banach space X does not contain a subspace topologically
isomorphic to ¢, if and only if, given F € X**, every nonempty bounded subset K of
X* has weak* slices over which the oscillation of F is arbitrarily small.

We recall that, given FF € X** and a nonempty bounded set K in X*, the

oscillation of F over K is
w (F(K)) =sup{|F(f - g)|: f.g € K}.

Because the characterisation in Proposition 2 is comparable to that given in Propo-
sition 1 (i) <= (ii), it suggests that we investigate a differentiability characterisation
comparable to Proposition 1 (i) <= (iii) <= (iv).

A set-valued mapping @ from a topological space A into subsets of the dual X*
of a Banach space X is said to be minimal if given any open set U C A and a weak*
open half-space W in X* such that ®(U)NW # 0 there exists a nonempty open set
V C U such that &(V) C W. Further ® is said to be locally bounded if for every z € A
there exists a neighbourhood U of z such that ®(U) is bounded in X*.

Given a continuous convex function ¢ on an open convex subset A of a Banach
space X, the subdifferential of ¢ at = € A is the set

0¢(z) = {f € X*: fly) < ¢ (zx){y) forallye X}.

Given a separated locally convex topology 7 on the dual X*, the subdifferential mapping
z — OP(z) is T-upper semi-continuous at x € A if given W a 7-open subset of X*
such that d¢(z) C W there exists a § > 0 such that 9¢(y) C W for all y € A4,
lz — yl| < 8. The subdifferential mapping z + 9¢(z) is a minimal weak* cusco on A:
that is, given z € A, 9¢(z) is nonempty, weak* compact and convex and the mapping
is weak* upper semi-continuous and minimal on A. It is also locally bounded. Now
¢ is Gateaux differentiable at = € A if and only if d¢(x) is singleton and is Fréchet
differentiable at z if and only if d¢(z) is singleton and the subdifferential mapping
z — d¢(z) is norm upper semi—-continuous at z, 6, p.19].

Given a continuous convex function ¢ on an open convex subset A of a Banach
space X we can extend ¢ as a lower semi-continuous convex function ¢ on X by
defining _

_ liminfg(y) forze A
$(z) = { v
+00 otherwise.

The subdifferential of ¢ at z € A is the set d¢(x). The lower semi-continuous convex
function ¢* on X*, the Fenchel conjugate of ¢ on A is defined by

¢*(f) = sup {f(z‘) —¢(z):z EZ}.
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3] Two classes of Banach spaces 265

Now f € 04(z) if and only if Z € 0¢*(f). Also ¢**|; = ¢, [6. p.42].
THEOREM 1. For a Banach space X, the following are equivalent.

(i) X does nat contain a subspace topologically isomorphic to £,
(ii) for every nonempty bounded subset K of X*, given € > 0 and F € X**
there exists z € X\{0} and §(e, F,z) > 0 such that

w(F (S(K,%,8))) < ¢

(iii) for every continuous convex function ¢ on an open convex subset A of
X, given F € X** the real set-valued mapping z — F(8¢(z)) is single~
valued and upper semi—continuous at the points of a dense G5 subset Dp
of A,

(iv) for every continuous convex function ¢ on an open convex subset A of
X, given F € X**\{0}, ¢**, the second Fenchel conjugate of ¢ on X,
is Géteaux differentiable in the direction F at the points of a dense G
subset Dg of A.

(v) for every equivalent norm p on X, given F € X**\{0} the norm p** on
X** induced by p is Gateaux differentiable in the direction F at some
point of X .

PROOF:
(i) <= (ii) is Proposition 2.
(ii) == (ili) Given F € X** and € > 0 consider the set

O, = U{ open U C A:w(F(8¢(U))) <¢}.

Now O, is open in A; we show that it is dense in A. Consider open U C 4 such that
3¢(U) is bounded. By (ii) there exists a weak* slice S of d¢(U) such that w (F(S)) < ¢.
Since the subdifferential mapping z — 8¢(zx) is a minimal weak* cusco on A, there
exists a nonempty open set V' C U such that 9¢(V) C S. But then w (F(8¢(V))) <¢.

We conclude that Dp = [) O,, the set where the mapping z — F (8¢(z)) is single-
e>0
valued and upper semi—continuous, is a dense G subset of A.

(iii) = (iv) Suppose that ¢** is not Gateaux differentiable in the direction F' at
Zp € Z
Then there exist fo,F € 0¢**(%o), F# fo and r > 0 such that (3'— ]’B)(F) >7.

Since B()?*) 1s weak* dense in B(X"*), for each n € N there exists gn € X*’
lgnl] < [1F|} such that
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(& = Ga)(F)| < - and |(F - G)(F)] < -
Since F(F) — F(Fo) < ¢*(F) — ¢**(3,) for all F € A
then In(z) — gn(z0) < ¢(z) — P{z0) + % for all z € A.

By the Brendsted-Rockafeller Theorem, [6, p.48] there exists z,, € A and f,, € 9¢(z,,)
such that
oo~ zall < = and g~ full < o=
ovn SR/
Now [F(gn — fo)l > r—1/n s0 [[zo — znl < 2/y/n but [F(fn — fo)| > r—1/n-1/Vn.
We conclude that the mapping ¢ — F(d¢(z)) cannot be both singleton and upper
semi—continuous at zg.
(iv) = (v) is obvious.
(v) = (ii) Suppose that there exists a nonempty bounded set 4 in X* and
F € X** and r > 0 such that every weak* slice S of A has w(F(S)) > r. Write C =
co(AU(—A)) and K = C+ B(X*). Now every weak® slice S of K has w(F(S)) > r.
The functional p on X defined by

p(z) =sup{f(z): f € K}
is an equivalent norm on X. Given z € X\{0}, forall n e N
w(F({feX": f(z)>p(x)—r/3n})) >
so there exist f,,gn, € K such that
Fal@) > p(@) = 5=, 9a@) > p(@) ~ = and |F(f— ga)] > 7 .
3n 3n n

Therefore for p** on X** where p**(F) = sup {F(f): f € K} we have

p**(£+ % F) +p**(5— % F) — 2p**(3)
> (B4 o F) +80(F— = F) = Ut aa)(o) - o
= F(n )~ o
T 1
3n n?

Then n{p*™* @+ (1/n) F)+p**(Z - (1/n) F) - 2p™* (&)} >r/3 - 1/n
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and so p** is not Giteaux differentiable at T in the direction F. We conclude that if,
given F € X**\{0}, p** is Gateaux differentiable at some Z € X in the direction F,
then (ii) holds. 0

We note that a similar characterisation was proved by Gilles Godefroy (3, p.8]
It is clear that the proof of Theorem 1 (i) <= (iii) can be generalised.

COROLLARY 1. A Banach space X does not contain a subspace topologically
isomorphic to £y, if and only if for every locally bounded minimal set—valued mapping
® from a Baire space A into subsets of the dual X* with its weak* topology, given
F € X** the mapping t — F (®(t)) is single-valued and upper semi-continuous at the
points of a dense G5 subset D of A.

Proposition 1 (i) <= (iv) implies that a Banach space which is not an Asplund
space has an equivalent norm which is nowhere Fréchet differentiable. Similarly, Theo-
rem 1 (i) & (v) implies that a Banach space which contains a subspace topologically
isomorphic to £; has an equivalent norm and F € X**\{0} such that the norm on X**
is nowhere Gateaux differentiable in the direction F'. On (£1,]|-||,), the norm |||, is
nowhere Fréchet differentiable, [6, p.8], but also the norm on £}* exhibits this other
property.

PrOOF: The norm |||; is Géteaux differentiable only at those points f =
{M, A2, ..., An, ...} where A, # 0 for all n € N, [6, p.3]. So it is sufficient to consider
the differentiability of the norm ||-|] on £}* at such points f in Z;. The norm ||-|| on
o s

IF| = 1]l + ||z*|| where F=g+az" € £5* andz € ¢o and g € 4.

Now

17+ 231 = [1F] _ 1F+ 2@+ =) - Il
A A

gl = A =]
= ) X

=1l (9) £ ||z*|| as A — 0.

L € ¢t \ {0} the norm on £}* is nowhere Gateaux

differentiable on Z; in the direction z*. 1]

So we conclude that for any z

We should note that Theorem 1 (i) <= (v) implies that £, has an equivalent
norm which is nowhere Gateaux differentiable. For if every equivalent norm on £,, had
a point of Gateaux differentiability then the fact that weak* convergent sequences are
weakly convergent in £%, would imply that Theorem 1(v) would be satisfied. But that
would contradict the fact that ¢, contains a subspace isometrically isomorphic to ¢;.
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It is known that any Banach space X which contains a subspace topologically
isomorphic to £, has the property that there exists F € X**\ {0} and an equivalent
norm p on X such that

p*(ET+ F)=p(Z)+p™(F) forallr € X,

[1, p.107]. So Theorem 1 (v) = (i) could be deduced from this renorming property.

Using the Bishop—Phelps Theorem, [6, p.49], it is not difficult to show that given
F € X** and an equivalent norm p on X with closed unit ball B,(X), the mapping
z — F (8p(z)) is single-valued and upper semi-continuous at = € X,p(z) = 1 if and
only if given & > 0 there exists a (¢, F) > 0 such that w (F (S(B}(X),%,6))) < e.
So using this and the previous comment we can deduce a result similar to that given in
1, p.112}.

COROLLARY 2. A Banach space X does not contain a subspace topologically
isomorphic to £, if and only if given F € X** and an equivalent norm p on X there
exists a point in By(X) where F restricted to B,(X) is weak* continuous.

It is interesting to compare the characterisations given in Theorem 1 with a gen-
eralisation of the characterisations given in Proposition 1.

THEOREM 2. For a Banach space X the following are equivalent.
(i) X Is an Asplund space,

(ii) for every nonempty bounded subset K of X*, there exists x € X\{0}
such that, given € > 0 and F € X** there exists §(g, F) > 0 such that

w(F(S(K,Z,0))) <e.

(iii) for every continuous convex function ¢ on an open convex subset A of X,
the subdifferential mapping x — 0¢(z) is single-valued and weak upper
semi-continuous at the points of a dense Gy subset of A,

(iv) for every continuous convex function ¢ on on an open convex subset
A of X, ¢**, the second Fenchel conjugate of ¢ on X**, is Giteaux
differentiable at the points of a dense G5 subset of A.

(v) for every equivalent norm p on X, the norm p** on X** induced by p
is Gateaux differentiable at some point of X.

PROOF:

(i) = (ii) follows from Proposition 1 (i) == (ii).

(i) = (iii) and (iv) = (v) are obvious.

(iil) = (iv) follows as in Theorem 1 (iii) = (iv).

(v) = (ii). Suppose that there exists a nonempty bounded set A in X* such that
given z € X\{0} there exists F € X** and r > 0 such that every weak* slice S of A
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generated by z has w (F(S)) > r. Writing C = co (AU(—A)) and K =C + B(X™*)
and considering the equivalent norm p on X defined by p(z) = sup{f(z): f € K}, we
have as in Theorem 1 (v) = (ii) that p** on X** where p**(F) =sup {F(f) : f € K},
is not Gateaux differentiable at Z in the direction F'. We conclude that if p** is Gateaux
differentiable at some point of X, then (ii) holds.

(ii) = (i). Consider a nonempty closed bounded convex set K in X*. From (ii)
there exists z € X\ {0} such that given ¢ > 0 and F € X** there exists é(¢, F) > 0
such that w(F(S’(_I?w‘,E,J))) <e. Sofor C={fe . flz) = supf(—ﬁw‘)} =
N S(E*",2,8) we have w(F(C)) = 0 for all F € X**. But this implies that C is a
6>0
singleton and an extreme point of K" . Write C = {fo}. However, (ii) implies that
given € > 0 and F € X** there exists d(e, F') > 0 such that

*

|F(f - fo)l<e when feS(K" ,%,¢).

But S(fw.,fz?, 8)NK # 0 for all 5 >0 and we deduce that fo € K" = K. Therefore
fo 1s an extreme point of K. This is sufficient to prove that X* has the Krein-Milman
property, [2, p.190], which in turn implies that X is an Asplund space, [4]. i

We note that the proof (ii) = (i) is due to Isaac Namioka, [private communica-
tion).

We are able to use Theorem 2 to deduce the following condition for a Banach space
to be Asplund.

CoROLLARY 3. [5, p.501]. A Banach space X where X**/X is separable is an
Asplund space.

Proor: If X 2 ¢, then 6{*/[1 is topologically isomorphic to a subspace of
X**/)?, but then X**/)? is not separable. So X 2 ¢;. Given an equivalent norm
pon X and z € X, pf(_*,(fc‘)(F) is continuous in F so from Theorem 1 we have that
p** is Gateaux differentiable at the points of a dense G5 subset D of X in all directions
X** \)? and since X** \)? is dense in X™** we deduce that p** is Gateaux differentiable
at each point of D. We conclude that X is an Asplund space. 1

An Asplund space is also characterised by the structure of the weak* compact
convex subsets in its dual, [6, p.86].

Given a nonempty weak* closed convex subset K of the dual X* of a Banach space
X, we say that f € K is a weak* ezposed point of K if there exists an z € X \ {0}
such that

f(z) =supZ(K) > g(z) forallge K, f #g.
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We say that z weak* ezposes K at f. If, when gn(z) — f(z) as n — oo for {g,} C K
we have that {g,} is norm convergent to f, then we say that f is a weak* strongly
exposed point of K.

PROPOSITION 3. For a Banach space X the following are equivalent.

(i) X is an Asplund space,
(ii) every nonempty weak* closed convex subset of X* is the weak* closed
convex hull of its weak* strongly exposed points,
(i) every nonempty weak* closed convex subset of X* has at least one weak*
strongly exposed point.

A comparable characterisation can be given for a Banach space which does not
contain a subspace topologically isomorphic to £;.

For a nonempty subset A of the dual X* of a Banach space X we say that, given
F € X**\{0}, an element z € X weak* F-exposes A if given € > 0 there exists § > 0
such that w (F (S(A4,Z,4))) < € and in this case if [ S(A,Z,d) is nonempty we call

this set a weak* F-exposed face of A. >0

LEMMA. Consider a continuous positive sublinear functional p on a Banach space
X and the set C = {z € X :p(z) <1}. Given F € X**\{0}, the real set-valued
mapping x — F (0p(x)) is single-valued and upper semi-continuous at zo € X if and
only if Op(xo) is a weak* F—-exposed face of CO = {f € X*: f(z) <1 forallz € C}.

PROOF: Suppose that given e > 0 there exists § > 0 such that w (F (S(C°, Zo, 8)))
< €. Recall that dp(z) C C° for all z € X. Now

Ip(zo) CW = {f € X" : f(zo) > p(z0) - 6}.

Since the subdifferential mapping z — dp(z) is weak™ upper semi-continuous at zg
there exists a neighbourhood N of zy such that

Op(z) CWNC® = S(CO,EEOJ) for all z € NV.

So then w {F (8p(N))) < ¢ implying that the mapping z — F (Op(zg)) is single—valued
and upper semi—continuous at zg.

For the converse, we may assume that ||F|| = 1. Consider the mapping z —
F (9p(z)) single—valued at 2. Suppose that there exists a sequence {f,} in C° and
r > 0 such that

Fn(zo) = 0p(x0)(z0) = p(xo) as n — oo
but F(fn—0p(zo)) >r forallneN.
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Then there exists a subsequence {fn,} such that

1
Jnp (2 — o) < p(z) — pzo) + w2 forallz€e X and k€ N.
Then by the Brondsted-Rockafeller Theorem, [6, p.48], for each k¥ € N there exist
zr € X and fy € Op(zx) such that [lzx — zoll < 1/k and ||fn, — fi| < 1/k. So
T — To as k — oo but

F (fx — 0p(z0)) > % for all k > %

and we conclude that the mapping = — F (9p(z)) is not upper semi-continuous at

Zo. I]

THEOREM 3. For a Banach space X, the following are equivalent.

(i) X does not contain a subspace topologically isomorphic to £;,
(i) given F € X**\{0}, every nonempty weak* compact convex subset of
X* is the weak* closed convex hull of its weak* F-exposed faces,
(i) given F € X**\{0}, every nonempty weak* compact convex subset of
X* has at least one weak* F—exposed face.

PROOF:

(i) = (i). Given any nonempty bounded set K in X*, the weak* closed convex
hull of K has weak* F-exposed faces. So K has weak* slices over which the oscillation
of F is arbitrarily small. By Proposition 2 we have that X does not contain a subspace
topologically isomorphic to ¢;.

(i) = (ii). Consider A a nonempty weak* compact convex subset of X*. We may
assume that 0 € A and we define

p(z) =sup{f(z): z € A} = M(z, A).

Then p is a continuous positive sublinear functional on X and is the gauge of C =
{r€ X :p(x) <1} and C° = A. Consider K, the weak* closed convex hull of the
weak™ F-exposed faces of A, and suppose that K # A. Then there exists z € X such
that M(z,K) < M(zx,A). Since both M(z,K) and M(z, A) are continuous on X
then {r € X : M(z,K) < M(z,A)} is open in X. By Theorem 1 (i) « (iii), this set
contains a point xo where the real set—valued mapping z — F (9p(z)) is single-valued
and upper semi-continuous. Then by the Lemma, dp(zo) is a weak* F-exposed face
of C9 = A. Then Op(zo)(zo) = M(xo, A). But this contradicts our supposition about
K.

(i) = (iii) is obvious. 0
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Again it is interesting to compare the characterisation given in Theorem 3 with a
generalisation of the characterisation given in Proposition 3.

For a nonempty weak* closed convex subset K of the dual X* of a Banach space
X and z € X where z weak™* exposes K at f € K, we say that f is a weak* weak
exposed point of K if given € > 0 and F € X**\{0} there exists a d(¢, F') > 0 such
that w (F (S(A,%,9))) < e. Clearly f € K is a weak* weak exposed point of K if and
only if x weak* F exposes K at f for every F € X**.

From Theorem 2 and the Lemma we have the following characterisation.
THEGREM 4. For a Banach space X the following are equivalent.

(i) X is an Asplund space,
(ii) every nonempty weak* compact convex subset of X* is the weak* closed
convex hull of its weak* weak exposed points,
(ili) every nonempty weak* compact convex subset of X* has at least one
weak* weak exposed point.
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