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COMPARABLE DIFFERENTIABILITY CHARACTERISATIONS
OF TWO CLASSES OF BANACH SPACES

J.R. GILES

We characterise Banach spaces not containing £i by a differentiability property of
each equivalent norm and show that a slightly stronger differentiability property
characterises Asplund spaces.

A continuous convex function <j> on an open convex subset A of a normed linear
space X is Gateaux differentiable at x € A in the direction y £ X if

exists, and is Gateaux differentiable at x if (j>'(x){y) exists for all y e X. Further <j> is
Frechet differentiable at x if the limit <f>'(x)(y) is approached uniformly for all y e X,

An Asplund space is a Banach space X where every continuous convex function <p

on an open convex subset A of X is Frechet differentiable on a dense Gs subset of A.

The theory of Asplund spaces is by now well established, (see [6]). Our first interest is

in the following characterisations.

PROPOSITION 1 . For a Banach space X, the following are equivalent.

(i) X is an Asplund space,
(ii) every nonempty bounded subset K of X* has weak* slices of arbitrarily

small diameter, [6, p.31],
(iii) every continuous weak* lower semi-continuous convex function <j> on an

open convex subset A of X** is Frechet differentiable at the points of a

dense G$ subset of A, [6, p.94],
(iv) every equivalent norm p on X is Frechet differentiable at some point of

X, [6, p.33].

We note that given a nonempty bounded subset K of X*, a weak* slice of if is a
nonempty subset of K of the form

S{K, x,S) = {f eK :f(x)> sup x(K) - 6}

Received 13th November, 1996

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 SA2.00+0.00.

263

https://doi.org/10.1017/S0004972700031002 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031002


264 J.R. Giles [2]

for some i £ l \ { 0 } and 5 > 0.

The study of Banach spaces not containing t\ is also well established, (see [8]).
However, a fascinating characterisation for such spaces was given in [7, p.422].

PROPOSITION 2 . A Banach space X does not contain a subspace topologically
isomorphic to £i if and only if, given F G X**, every nonempty bounded subset K of
X* has weak* slices over which the oscillation of F is arbitrarily small.

We recall that, given F G X** and a nonempty bounded set K in X*, the
oscillation of F over K is

Lo(F(K)) = snp{\F(f-g)\:f,geK}.
Because the characterisation in Proposition 2 is comparable to that given in Propo-

sition 1 (i) 4=> (ii), it suggests that we investigate a differentiability characterisation
comparable to Proposition 1 (i) 4=5- (iii) <=> (iv).

A set-valued mapping $ from a topological space A into subsets of the dual X*
of a Banach space X is said to be minimal if given any open set U C A and a weak*
open half-space W in X* such that <£>(£/) D W ^ 0 there exists a nonempty open set
V CU such that $(V) C W. Further $ is said to be locally bounded if for every x G A
there exists a neighbourhood U of x such that $(£/) is bounded in X*.

Given a continuous convex function <j) o n a n open convex subset A of a Banach
space X, the subdifferential of cf> at x G A is the set

d<f>(x) = {/ € X* : f(y) ^ cf>+(x)(y) for all y £ X) .

Given a separated locally convex topology r on the dual X*, the subdifferential mapping
x >-» d<j)(x) is r-upper semi-continuous at a; € .A if given W a r-open subset of X*
such that d(f>(x) C W there exists a <5 > 0 such that d(j)(y) C W for all y G A,
\\x — y\\ < 6. The subdifferential mapping x K* d(j>(x) is a minimal weak* cusco on J4;
that is, given a; G ̂ 4, d<f){x) is nonempty, weak* compact and convex and the mapping
is weak* upper semi-continuous and minimal on A. It is also locally bounded. Now
4> is Gateaux differentiable at x G A if and only if d<p(x) is singleton and is Frechet
differentiable at x if and only if d<j>(x) is singleton and the subdifferential mapping
x 1-4- d(j)(x) is norm upper semi-continuous at x, [6, p.19].

Given a continuous convex function <f> on an open convex subset A of a Banach
space X we can extend (j) as a lower semi-continuous convex function <j> on X by
defining

_ f lim inf <f>(y) for a; € A

y +oo otherwise.

The subdifferential of (/> at x € yl is the set d<fr(x). The lower semi-continuous convex
function <̂* on X*, the Fenchel conjugate of 0 on 4̂ is defined by

https://doi.org/10.1017/S0004972700031002 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031002


[3] Two classes of Banach spaces 265

Now / G d(j>{x) if and only if x £ d<t>*{f). Also <£**|;j- = <£- [6- P-42]

THEOREM 1 . For a Banach space X, the following are equivalent.

(i) X does not contain a subspace topologically isomorphic to t\,
(ii) for every nonempty bounded subset K of X*, given e > 0 and F G X**

there exists a; € X\{0} and <J(e, F, x) > 0 such that

u(F(S{K,x,8)))<£

(iii) for every continuous convex function 4> on an open convex subset A of
X, given F G X** the reai set-valued mapping x i-> F{d(f>{x)) is single-
vaJued and upper semi-continuous at the points of a dense Gs subset Dp
of A.

(iv) for every continuous convex function <fi on an open convex subset A of
X, given F £ X**\{Q}, <f>**, the second Fenchel conjugate of $ on X**,
is Gateaux differentiate in the direction F at the points of a dense G$
subset Dp of A.

(v) for every equivalent norm p on X, given F € X**\{0} the norm p** on
X** induced by p is Gateaux differentia We in the direction F at some
point of X.

PROOF:

(i) <=> (ii) is Proposition 2.

(ii) = > (iii) Given F G X** and e > 0 consider the set

OE = ( J { open UCA:u {F{d(j>(U))) < e} .

Now Oe is open in A\ we show that it is dense in A. Consider open U <Z A such that
d<j)(U) is bounded. By (ii) there exists a weak* slice S of d(f>(U) such that w (F(S)) < e.
Since the subdifferential mapping x \-> d<j>(x) is a minimal weak* cusco on A, there
exists a nonempty open set V C U such that d<f>(V) C S. But then w {F(d(p{V))) < e.
We conclude that DF = f] Oe, the set where the mapping x i-» F (dcf)(x)) is single-

£>0

valued and upper semi-continuous, is a dense G$ subset of A.

(iii) =:> (iv) Suppose that <j>** is not Gateaux differentiable in the direction F at

x0 e A.

Then there exist fo,J G d<p**{x0), J ^ /o and r > 0 such that ( ? - /o) (F) > r .

Since B ( X * J is weak* dense in B(X***), for each n G N there exists <?„ 6 X*,

||gn|| ^ ||5-|| such that
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\(?-gn)(F)\ < I and \(J-gn)(x0)\ < i .

Since J(F) - J(x0) < <fr**(F) - <p**(x0) for all F £ 1
2

then 5n(a;) ~ ̂ nC ô) ^ 4>{x) - </>(zo) + - for all x € A.

By the Br0ndsted-Rockafeller Theorem, [6, p.48] there exists xn £ A and fn £ d<f>{xn)
such that

2 1
Hso-Znll < -7= and ||pn - / n | | < —=.

Now \F(gn-f0)\ > r - l / n s o ||ar0 — ar»|| < 2/y^ but | F ( / n - / 0 ) | > r - l / n - 1 / 0 1 .
We conclude that the mapping a; i-> F(d<j)(x)) cannot be both singleton and upper
semi-continuous at x$.

(iv) => (v) is obvious.
(v) => (ii) Suppose that there exists a nonempty bounded set A in X* and

F e X** and r > 0 such that every weak* slice 5 of A has ui(F(S)) > r. Write C =
co(4U (-4)) and A" = C + B(X*). Now every weak* slice 5 of K has u{F(S)) > r.
The functional p on X defined by

p(x) = sup{f(x):feK}

is an equivalent norm on X. Given x € X\{0}, for all n £ N

to (F ({/ G X* : f{x) > p(x) - r/3n})) > r

so there exist fn,gn £ if such that

fn(x) > p(x) - ^- , gn(x) > p{x) - ^ and \F(fn - gn)\ > r - -.

Therefore for p** on X** where p**(F) = sup {F(f) : / £ K} we have

p " f 1 + - F) + p** (x - - F) - 2p" (x)

r 1
> 3n ~~ r^'

Then n {p**(£+ (1/n) F ) +p**(x - (1/n) F) - 2p**(£)} > r / 3 - 1/n
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[5] Two classes of Banach spaces 267

and so p** is not Gateaux differentiate at x in the direction F. We conclude tha t if,

given F e X** \{0} , p** is Gateaux differentiate at some x e X in the direction F,

then (ii) holds. D

We note that a similar characterisation was proved by Gilles Godefroy [3, p.8]

It is clear that the proof of Theorem 1 (i) «=> (iii) can be generalised.

COROLLARY 1 . A Banach space X does not contain a subspace topologically
isomorphic to l\, if and only if for every locally bounded minimal set-valued mapping
$ from a Baire space A into subsets of the dual X* with its weak* topology, given
F S X" the mapping t*-^F ($(£)) is single^valued and upper semi-continuous at the
points of a dense G$ subset Dp of A.

Proposition 1 (i) <=$• (iv) implies that a Banach space which is not an Asplund
space has an equivalent norm which is nowhere Frechet differentiable. Similarly, Theo-
rem 1 (i) •£> (v) implies that a Banach space which contains a subspace topologically
isomorphic to £i has an equivalent norm and F G X**\{0} such that the norm on X**
is nowhere Gateaux differentiable in the direction F. On (-^I, ||*|li) > the norm H-^ is
nowhere Frechet differentiable, [6, p.8], but also the norm on £\* exhibits this other
property.

PROOF: The norm H-^ is Gateaux differentiable only at those points / =
{Aj, A2,... , An, . . . } where An / 0 for all n € N, [6, p.3]. So it is sufficient to consider
the differentiability of the norm ||-|| on l\* at such points / in t\. The norm ||-|| on
t\* is

= ||g|| + \\x II where 3r='g + x € *̂* and x € Co and 3 £

Now

|| /+ AJ||-11/11 _ ||/ + A(ff + ^ ) | | - | | ^ |

11/ + ̂ i-11/11

So we conclude that for any x1- € CQ \ {0} the norm on l\* is nowhere Gateaux

differentiable on l\ in the direction x1-. U

We should note that Theorem 1 (i) <=*> (v) implies that ôo has an equivalent
norm which is nowhere Gateaux differentiable. For if every equivalent norm on t^ had
a point of Gateaux differentiability then the fact that weak* convergent sequences are
weakly convergent in l*x would imply that Theorem l(v) would be satisfied. But that
would contradict the fact that 0̂0 contains a subspace isometrically isomorphic to £1.
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268 J.R. Giles [6]

It is known that any Banach space X which contains a subspace topologically
isomorphic to £i has the property that there exists F G X** \ {0} and an equivalent
norm p on X such that

p** (x + F) = p** (x) + p" (F) for all x e X,

[1, p.107]. So Theorem 1 (v) =>• (i) could be deduced from this renorming property.
Using the Bishop-Phelps Theorem, [6, p.49], it is not difficult to show that given

F G X** and an equivalent norm p on X with closed unit ball Bp(X), the mapping
x \-t F (dp(x)) is single-valued and upper semi-continuous at x G X,p(x) = 1 if and
only if given e > 0 there exists a S(s,F) > 0 such that u (F (S(B*(X), x, 6))) < e.
So using this and the previous comment we can deduce a result similar to that given in
[1, p.112].

COROLLARY 2 . A Banach space X does not contain a subspace topologically
isomorphic to t\ if and only if given F € X** and an equivalent norm p on X there
exists a point in B*(X) where F restricted to B*(X) is weak* continuous.

It is interesting to compare the characterisations given in Theorem 1 with a gen-
eralisation of the characterisations given in Proposition 1.

THEOREM 2 . For a Banach space X the following are equivalent.

(i) X is an Asplund space,
(ii) for every nonempty bounded subset K of X*, there exists x G -^\{0}

such that, given e > 0 and F € X** there exists S(E, F) > 0 such that

w(F(S(K,x,5)))<s.

(iii) for every continuous convex function <j> on an open convex subset A of X,
the subdifferential mapping x *-¥ dcj)(x) is single-valued and weak upper
semi-continuous at t ie points of a dense G& subset of A,

(iv) for every continuous convex function <f> on on an open convex subset
A of X, <j>**, the second Fenchel conjugate of (j> on X**, is Gateaux
differentiable at the points of a dense G$ subset of A.

(v) for every equivalent norm p on X, the norm p** on X** induced by p
is Gateaux differentiable at some point of X.

PROOF:

(i) =$• (ii) follows from Proposition 1 (i) =>• (ii).

(i) = > (iii) and (iv) =>• (v) are obvious.

(iii) =>• (iv) follows as in Theorem 1 (iii) = > (iv).

(v) ==>• (ii). Suppose that there exists a nonempty bounded set A in X* such that
given x G X\{0} there exists F G X** and r > 0 such that every weak* slice S of A
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[7] Two classes of Banach spaces 269

generated by x has u (F{S)) > r. Writing C = co (A U {-A)) and K = C + B{X*)

and considering the equivalent norm p on X defined by p{x) — sup {f{x):f£ K}, we
have as in Theorem 1 (v) = > (ii) that p** on X** where p**(F) = sup { F ( / ) : / G K},

is not Gateaux differentiable at x in the direction F. We conclude that if p** is Gateaux
differentiable at some point of X, then (ii) holds.

(ii) = • (i). Consider a nonempty closed bounded convex set K in X* . From (ii)
there exists x € X\{0} such that given e > 0 and F £ X** there exists 5(e,F) > 0

such that u(F(S(7T\x,5))) < e. So for C = { / e f ' : f(x) = sup£(iT*)} =

D S ( i f *,2,<5) we have u>{F{C)) = 0 for all F e l " . But this implies that C is a

singleton and an extreme point of K . Write C = {/o}- However, (ii) implies that
given e > 0 and F € X** there exists S(e,F) > 0 such that

\F(f~fo)\<£ w h e n / e S ( i T ,£,<$).

But S(K^*,x,5) n if / 0 for all 6 > 0 and we deduce that f0 € TC = if. Therefore
/o is an extreme point of if. This is sufficient to prove that X* has the Krein-Milman
property, [2, p.190], which in turn implies that X is an Asplund space, [4]. u

We note that the proof (ii) => (i) is due to Isaac Namioka, [private communica-
tion].

We are able to use Theorem 2 to deduce the following condition for a Banach space
to be Asplund.

COROLLARY 3 . [5, p.501]. A Banach space X where X**/X is separable is an
Asplund space.

PROOF: If X D l\ then (\*/(-i is topologically isomorphic to a subspace of
X**IX, but then X**/X is not separable. So I 2 ^i- Given an equivalent norm
p on X and x € X, p*+ (x)(F) is continuous in F so from Theorem 1 we have that
p** is Gateaux differentiable at the points of a dense G$ subset D of X in all directions
X**\X and since X**\X is dense in X** we deduce that p** is Gateaux differentiable
at each point of D. We conclude that X is an Asplund space. D

An Asplund space is also characterised by the structure of the weak* compact
convex subsets in its dual, [6, p.86].

Given a nonempty weak* closed convex subset K of the dual X* of a Banach space
X, we say that / € K is a weak* exposed point of K if there exists an x G X \ {0}
such that

f{x) = sup x{K) > g{x) for all g G K, f ^ g.
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We say that x weak* exposes K at / . If, when gn(x) -> f(x) as n —> oo for {gn} C K
we have that {#„} is norm convergent to / , then we say that / is a weak* strongly
exposed point of K.

PROPOSITION 3 . For a Banach space X the following are equivalent.

(i) X is an Asplund space,
(ii) every nonempty weak* closed convex subset of X* is the weak* closed

convex hull of its weak* strongly exposed points,
(iii) every nonempty weak* closed convex subset of X* has at least one weak*

strongly exposed point.

A comparable characterisation can be given for a Banach space which does not
contain a subspace topologically isomorphic to t\.

For a nonempty subset A of the dual X* of a Banach space X we say that, given
F e X**\{0}, an element x € X weak* F-exposes A if given e > 0 there exists 8 > 0
such that ui(F(S(A,x,6))) < e and in this case if f] S(A,x,6) is nonempty we call
this set a weak* F-exposed face of A. >

LEMMA . Consider a continuous positive sublinear functional p on a Banach space
X and the set C = {x € X : p{x) sC 1}. Given F e X**\{0}, the real set-valued
mapping x i—> F (dp(x)) is single-valued and upper semi-continuous at XQ G X if and
only if dp(x0) is a weak* F-exposed face of C° = {/ 6 X* : f(x) ^ 1 for all x 6 C}.

PROOF: Suppose that given e > 0 there exists 6 > 0 such that u (F (S(C°, x0,6)))

< e. Recall that dp(x) C C° for all x € X. Now

dp(x0) CW={feXf: /(*„) > P(xo) - 6} .

Since the subdifferential mapping x i-» dp(x) is weak* upper semi-continuous at XQ
there exists a neighbourhood TV of xo such that

dp(x) CWDC° = S(C°, xo, 8) for all x e N.

So then UJ (F (dp(N)}) < e implying that the mapping x i-> F (dp(xo)) is single-valued
and upper semi-continuous at xo •

For the converse, we may assume that \\F\\ = 1. Consider the mapping x i->
F (dp(x)) single-valued at XQ. Suppose that there exists a sequence {/„} in C° and
r > 0 such that

fn(x0) -» dp(xo)(xo) = p(x0) as n -> oo

but F (/„ - dp(x0)) > r for all n € N.
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[9] Two classes of Banach spaces 271

Then there exists a subsequence {fnk} such that

fnk (x - XQ) ^ p(x) - p(x0) + 73 for all x £ X and k £ N.

Then by the Br0ndsted-Rockafeller Theorem, [6, p.48], for each k £ N there exist
xk £ X and fk £ dp(xk) such that Hzfc-Zoll ^ l//c and \\fnk - fk\\ < l/k. So
xk —> XQ as k —> 00 but

F (fk - dp(x0)) > T- for all k > -
2 r

and we conclude that the mapping x >-¥ F (dp(x)) is not upper semi-continuous at

so- Q

THEOREM 3 . For a Banach space X, the following are equivalent.

(i) X does not contain a subspace topologically isomorphic to l\,
(ii) given F € X**\{0}, every nonempty weak* compact convex subset of

X* is the weak* closed convex hull of its weak* F-exposed faces,
(iii) given F 6 X**\{0}, every nonempty weak* compact convex subset of

X* has at least one weak* F-exposed face.

PROOF:

(iii) => (i). Given any nonempty bounded set K in X*, the weak* closed convex
hull of K has weak* F-exposed faces. So K has weak* slices over which the oscillation
of F is arbitrarily small. By Proposition 2 we have that X does not contain a subspace
topologically isomorphic to t\.

(i) => (ii). Consider A a nonempty weak* compact convex subset of X* . We may
assume that 0 € A and we define

p(x) = sup {f(x) : x € A} = M(x, A).

Then p is a continuous positive sublinear functional on X and is the gauge of C =
{x £ X : p(x) ^ 1 } and C° = A. Consider K, the weak* closed convex hull of the
weak* F-exposed faces of A, and suppose that K / A. Then there exists x € X such
that M{x,K) < M(x,A). Since both M(x,K) and M(x,A) are continuous on X
then {x £ X : M(x, K) < M(x,A)} is open in X. By Theorem 1 (i) •$=>• (iii), this set
contains a point x0 where the real set-valued mapping I H F (dp(x)) is single-valued
and upper semi-continuous. Then by the Lemma, dp(xQ) is a weak* F-exposed face
of C° = A. Then dp(xo)(xo) = M(xo,A). But this contradicts our supposition about
K.

(ii) => (iii) is obvious. u
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Again it is interesting to compare the characterisation given in Theorem 3 with a
generalisation of the characterisation given in Proposition 3.

For a nonempty weak* closed convex subset K of the dual X* of a Banach space
X and x € X where x weak* exposes K at / G K, we say that / is a weak* weak
exposed point of K if given e > 0 and F 6 X**\{0} there exists a S(e,F) > 0 such
that u> (F (S(A, x, 5))) < e. Clearly / € K is a weak* weak exposed point of K if and
only if x weak* F exposes K at / for every F £ X**.

From Theorem 2 and the Lemma we have the following characterisation.

THEOREM 4 . For a Banach space X the following are equivalent.

(i) X is an Asplund space,
(ii) every nonempty weak* compact convex subset of X* is the weak* closed

convex hull of its weak* weak exposed points,
(iii) every nonempty weak* compact convex subset of X* has at least one

weak* weak exposed point.
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