
A THEOREM ON DIVISION RINGS 

IRVING KAPLANSKY 

T H E object of this note is to prove the following theorem. 

THEOREM. Let A be a division ring with centre Z, and suppose that for every 
xin Af some power (depending on x) is in Z: xn(x) £ Z. Then A is commutative. 

This theorem contains as special cases three previously known results. 

1. It includes Wedderburn's theorem that any finite division ring is com­
mutative, and the generalization by Jacobson [3, Theorem 8] asserting that 
any algebraic division algebra over a finite field is commutative; for in such 
an algebra every non-zero element has some power equal to 1. 

2. It includes a theorem of Emmy Noether, as generalized by Jacobson 
[3, Lemma 2], stating that any non-commutative algebraic division algebra 
contains an element separable over the centre; for otherwise a suitable pmth 
power of every element would lie in the centre. 

3. Hua [1, Theorem 7] has proved the special case of the theorem where the 
power n is independent of x, and the characteristic is at least n. 

Although our theorem generalizes the two cited theorems of Jacobson, we 
are not giving a new proof of these theorems. In fact, we shall prove a pre­
liminary lemma on fields which reduces the problem precisely to these two 
theorems. 

LEMMA. Let K be afield and L an extension of K, L 9^ K, with the property 
that for every x in L, some power (the power depending on x) lies in K. Then L 
has prime characteristic, and it is either purely inseparable over K, or algebraic 
over its prime subfield. 

Proof. If L is indeed purely inseparable over K, there is of course nothing 
to prove. So suppose L contains an element y, y non £ K, which is separable over 
K. By a suitable isomorphism leaving K elementwise fixed, y can be sent into 
an element z ^ y (of course z need not be in L). We have, say, yT Ç K and 
and so zT = yr, whence z = ey with er = 1. Suppose (1 + y)8 £ K\ then 
similarly 1 + z = rj(l + y) with rjs = 1. We cannot have € = 77, for then 
e = 1, z = y. So we may solve for y: 

(l) y = (1 - 1?) (v - €)-*. 

We see that y is algebraic over the prime subfield P of K. If k is any element 
of K, we can repeat this argument with k + y instead of y, and thus deduce 
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that k + y, and hence k, is algebraic over P . In short, K is algebraic over P . 
If P has prime characteristic, we have reached the other possibility stated in 
the conclusion of the lemma, so it remains only to exclude the possibility that 
P has characteristic 0 (which means that it is the field of rational numbers). 
This we do as follows. For any integer i we have an expression like (1) for 
y + i: 

(2) y + i = (1 - rji) (Vi ~ €i)'K 

Moreover, the definition of rji and €»• shows that they lie in the normal field, 
say Q, generated by y over P . But Q, being a finite-dimensional extension of 
P , contains only a finite number of roots of unity. This leaves us powerless to 
account for the infinite number of elements in (2). 

Proof of the theorem. If A ^ Z, choose any element x not in Z, and let L 
be the field generated by Z and x. Then the hypothesis of the lemma is ful­
filled (with Z playing the role of K). The possibility that Z has prime charac­
teristic and is algebraic over its prime subfield is ruled out by the first theorem 
of Jacobson cited above. So it must be true that L is purely inseparable over 
Z. This is the case for every x, and we contradict the second theorem of 
Jacobson. 

Theorem 7 of [1] actually states that a non-commutative division ring is 
generated by its nth powers. Our theorem can be given a corresponding 
extension as follows. For every x of a non-commutative division ring A, let 
there be given a positive integer n(x) such that n(x) = n(a~lxa) for all a ^ 0; 
let B be the division subring generated by the elements xn(x); then B = A. 
For B is invariant under all inner automorphisms, and if B ^ A then by the 
theorem of Cartan-Brauer-Hua [1, Theorem 2] B is contained in the centre of 
A, contradicting the above theorem. 

In conclusion we discuss two possibilities of generalization. In the first 
place we might consider relaxing the requirement that A be a division ring. 
In fact, our theorem remains correct if we merely assume that A is semi-
simple in the sense of Jacobson [2]. The manoeuvre for proving this has 
become fairly standard since the appearance of Jacobson's paper. If P is a 
primitive ideal in A, our hypothesis is inherited by A/P; if we prove that each 
A/P is commutative we will know that A is commutative, and so we need only 
consider the case where A is primitive. We represent A as a dense ring of 
linear transformations in a vector space V over a division ring. We now in 
effect check our theorem for two-by-two matrices. In detail: if Vis more than 
one-dimensional, let a and ft be linearly independent vectors, and let x be an 
element of A sending a into itself and annihilating j8. It is impossible for any 
power of x to be in the centre. So V is one-dimensional, and we are back to the 
division ring case of the theorem. 

Another path along which to proceed is to have a polynomial more general 
than xn. We shall not attempt more than the case where n is independent of 
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x, although it would be interesting to invent plausible "one-parameter families" 
generalizing {xn}. We assume then that there exists a polynomial/ with 
coefficients in Z (we can suppose it has no constant term) such that f(x) 6 Z 
for every x. Since A then satisfies the identity f(x)y — yf(x) = 0, it follows 
forthwith from [4, Theorem 1] that A is finite-dimensional over Z. But as a 
matter of fact it is again true that A is commutative. For suppose / has 
smallest possible degree among polynomials with f(x) € Z. We can suppose 
there is an element u in Z no power of which is 1 (otherwise Z would be of 
prime characteristic and algebraic over its prime field, etc.). Consider the 
polynomial g{x) = f{x) — unf(xu~l)1 n being the degree of / ; the degree of g 
is less than w, and it again has the property g(x) 6 Z for every x. The only 
way out is for g to be identically zero, which means f(x) = xn, and we are back 
to the old case. 

One must step cautiously in attempting to generalize this last result beyond 
division rings: observe that the ring of two-by-two matrices over GF{2) 
satisfies the identity x8 = x2. 
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