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Abstract

The class of A-synchronizing subshifts generalizes the class of irreducible sofic shifts. A A-synchronizing
subshift can be presented by a certain A-graph system, called the A-synchronizing A-graph system. The A-
synchronizing A-graph system of a A-synchronizing subshift can be regarded as an analogue of the Fischer
cover of an irreducible sofic shift. We will study algebraic structure of the C*-algebra associated with a
A-synchronizing A-graph system and prove that the stable isomorphism class of the C*-algebra with its
Cartan subalgebra is invariant under flow equivalence of A-synchronizing subshifts.
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1. Introduction

Let £ be a finite set with its discrete topology. We call it an alphabet and each
member of it a symbol or a label. Let X%, I respectively be the infinite product
spaces [];>_. X [12, Z; where Z; =X, endowed with the product topology. The
transformation o on X% given by o((xi)icz) = (Xi+1)icz for (x;)icz € £ is called the
full shift. Let A be a shift invariant closed subset of £Z, that is, oc(A) = A. The
topological dynamical system (A, o) is called a subshift or a symbolic dynamical
system, and written simply as A. The theory of symbolic dynamical systems forms a
basic ingredient in the theory of topological dynamical systems (see [16, 24]).

The author has introduced the notion of the A-graph system, that is, a labeled
Bratteli diagram with an additional structure called an t-map [27]. A A-graph system
£ presents a subshift and yields a C*-algebra O¢ [30]. For a subshift A, one may
construct a A-graph system " called the canonical A-graph system for A in a canonical
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way. It is a left Krieger cover version for a subshift. The C*-algebra Ogx for €
coincides with the C*-algebra O, associated with subshift A ([25]; see [6]). It has been
proved that the stable isomorphism class of the C*-algebra O, is invariant under not
only the topological conjugacy class of A but also the flow equivalence class of A, so
that the K-groups K;(Oy), i =0, 1, and the Ext-groups Ext'(O4), i =0, 1, are invariant
under flow equivalence of subshifts [8, 28, 29]. The latter groups Ext'(O4),i=0, 1,
have been defined as the Bowen—Franks groups for A [28, 29] (see [4, 10]). For an
irreducible sofic shift, there is another important cover called the (left or right) Fischer
cover. The (left) Fischer cover is an irreducible labeled graph, that is, a minimal
(left)-resolving presentation, whereas the (left) Krieger cover is not necessarily
irreducible.

In [23], a certain synchronizing property for subshifts called A-synchronization was
introduced. The A-synchronizing property is weaker than the usual synchronizing
property, so that irreducible sofic shifts are A-synchronizing just as Dyck shifts, 8-
shifts, Morse shifts, etc. are A-synchronizing. Many irreducible subshifts have this
property. For a A-synchronizing subshift A there exists a A-graph system called the
A-synchronizing A-graph system 2'™ . The A-synchronizing A-graph system for an
irreducible sofic shift is the A-graph system associated with the left Fischer cover.
Hence the A-synchronizing A-graph system of a A-synchronizing subshift can be
regarded as an analogue of the left Fischer cover of an irreducible sofic shift.

In [36], it was proved that the K-groups Kf(A), i=0,1, and the Bowen—Franks
groups BFi(A),i=0,1, for the A-synchronizing A-graph system L% of a A-
synchronizing subshift A are invariant under not only the topological conjugacy class
but also the flow equivalence class of A. The groups are called the A-synchronizing
K-groups and the A-synchronizing Bowen—Franks groups, respectively. Hence they
yield flow equivalence invariants of A-synchronizing subshifts.

In this paper, we will study the algebraic structure of the C*-algebra Ogun
associated with the A-synchronizing A-graph system £*® for A. The algebra is
denoted by O,x). We will first show the following theorem.

TueorEM 1.1 (Theorem 3.8). Suppose that the right one-sided subshift of a A-
synchronizing subshift A is homeomorphic to the Cantor set. If A is A-synchronizingly
transitive, the C*-algebra O ) is simple.

For an irreducible sofic shift A, the C*-algebra O, is always simple (Section 5),
whereas the C*-algebra O (= Oga) is not simple in many cases unless the sofic shift
A is a shift of finite type (see [1]). The A-synchronization is invariant under not only
topological conjugacy but also flow equivalence [23, 36]. We will next prove the
following theorem.

TueoreM 1.2 (Theorem 4.17). The stable isomorphism class of the C*-algebra Oy,
with its Cartan subalgebra D,y is invariant under flow equivalence of A-
synchronizing subshifts.
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Therefore the stable isomorphism class of the pair (Oaa), Daa)) is a new invariant
for flow equivalence of A-synchronizing subshifts. Since

K!(A) = Ki(Oxn), BFY(A)=Exti(O,n), i=0,1,

we have a C*-algebraic proof for the above-mentioned fact as its corollary.

Cororrary 1.3 (Corollary 4.18). The A-synchronizing K-groups Kf(A), i=0,1, and
the A-synchronizing Bowen—Franks groups BF fl(A), i=0,1, for a A-synchronizing
subshift A are invariant under flow equivalence.

Throughout the paper, we denote by N the set of positive integers and by Z, the set
of nonnegative integers.

2. A-synchronizing A-graph systems

Let A be a subshift over . We denote by X, (cZM) the set of all right one-sided
sequences appearing in A,

Xa = {(Xp)neaw € 2 | (X )nez € A},

which is called the right one-sided subshift for A. For a natural number /€ N, we
denote by B;(A) the set of all words appearing in A with length equal to /. Put B.(A) =
U Bi(A) where By(A) = {0} the empty word. For a word u = p; - - - g € B.(A), a
right infinite sequence x = (x;);en € XA and [ € Z,, put

L) ={vi---vieB(A)|vi---vjuy - i € B.(A)},
L) =i vieBAN) | (i, ..., v, X1, X2, ..) € XA,
L) ={w; - - w € B(A) |y - - - iy - - - wy € Bu(A)),

i =Jriw.
=0

A word u=pu; -y € BJ(A) for I[€Z, is said to be [-synchronizing if for all
w €T (u) the equality I';(u) =T, (uw) holds. Denote by S;(A) the set of all
[-synchronizing words of A. We say that an irreducible subshift A is A-synchronizing if
for any n7 € Bj(A) and k > [ there exists v € S, (A) such that v € S;_;(A). Irreducible
sofic shifts are A-synchronizing. More generally, synchronizing subshifts are
A-synchronizing (see [3] for synchronizing subshifts). Many irreducible subshifts
including Dyck shifts, S-shifts and Morse shifts are A-synchronizing. There exists
a concrete example of an irreducible subshift that is not A-synchronizing (see [23]).

Prorosition 2.1 ([36, Theorem 4.4]; see [20, 23]). A-synchronization is invariant un-
der not only topological conjugacy but also flow equivalence of subshifts.

For u, v € B.(A), we say that u is [-past equivalent to v if I'; (u) = I, (v). We write
this as p e The following lemma is straightforward.

https://doi.org/10.1017/51446788713000219 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788713000219

244 K. Matsumoto [4]

Lemma 2.2 [23, 36]. Let A be a A-synchronizing subshift. Then:
(1) forueS(A), there exists i’ € S11(N\) such that u ” w
(1) forueS(A), there exist e X and v € S ,1(A) such that u 7ﬁv.

A A-graph system is a graphical object presenting a subshift [27]. It is a
generalization of a finite labeled graph and yields a C*-algebra [30]. Let & = (V, E, 4, 1)
be a A-graph system over X with vertex set V = J,ez, V; and edge set E = ez, Eji41
with a labeling map A : E — X, and supplied with surjective maps t«(=t;;+1) : Vie1 = Vi
for [ € Z,. Here the vertex sets V;, [ € Z,, are finite disjoint sets. Also Ej;,1, [ € Z,, are
finite disjoint sets. Each edge e in E; . has its source vertex s(e) in V; and its terminal
vertex f(e) in V.1, respectively. Every vertex in V has a successor and every vertex in
Vi for [ € N has a predecessor. It is then required that there exists an edge in E;;,; with
label @ and its terminal vertex is v € Vy,; if and only if there exists an edge in E;_;
with label @ and its terminal vertex is «(v) € V;. Foru € V;_; and v € V1, put

Ej(u,v) ={e € Epppr | t(e) = v, u(s(e)) = ul,
E M, v) ={e € Eiy | s(e) = u, t(e) = (v)}.

Then we require a bijective correspondence preserving their labels between E; | (u, v)

and Ef_l’l(u, v) for each pair of vertices u, v. We call this property the local property
of a A-graph system. We call an edge in E a labeled edge and a finite sequence of
connecting labeled edges a labeled path. If a labeled path y labeled v starts at a
vertex v € V; and ends at a vertex u € Vy,,, we say that v leaves v and write s(y) =
v, H(y) = u, A(y) = v. We henceforth assume that £ is left-resolving, which means that
1(e) # 1(f) whenever A(e) = A(f) for e, f € E. For a vertex v € V; denote by I'; (v) the
predecessor set of v which is defined by the set of words with length [ appearing as
labeled paths from a vertex in Vj to the vertex v. ¥ is said to be predecessor-separated
if I'; (v) # I'; () whenever u, v € V; are distinct. Two A-graph systems £ = (V, E, 4, ¢)
over Zand &' = (V’, E’, ', ') over X are said to be isomorphic if there exist bijections
@y :V— V' and @ : E—> E’ satistying &y(V)) = V] and Pg(Ej41) = E;,1+1 such
that they give rise to a labeled graph isomorphism compatible to ¢ and ¢’. We note that
any essential finite directed labeled graph G = (V, &, 1) over £ with vertex set V, edge
set & and labeling map A : & — X gives rise to a A-graph system &g = (V, E, 4, 1) by
setting V; =V, E; ;11 =&, v =id for all [ € Z, (see [30]).
For a A-synchronizing subshift A over X, we have introduced a A-graph system

QAN — (AN EAN) QAN )

defined by A-synchronization of A as follows [23, 36]. Let Vf(A) be the [-past
equivalence classes of S;(A). We denote by [u]; the equivalence class of u € S;(A).

For v € S141(A) and a € I'; (v), define a labeled edge from [av]; € V'™ to [v], € V)

labeled @. Such labeled edges are denoted by E,"). Denote by 1'™: E'Y — ¥
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the labeling map. Since S;1(A) C S;(A), we have a natural map [u];;; € Vﬁfi\) —

[u); € Vf(A) that we denote by L?Ei\l) Then @' = (VAW EAN QAN ANy defines a
predecessor-separated, left-resolving A-graph system that presents A. We call 4™
the canonical A-synchronizing A-graph system of A. The canonical A-synchronizing
A-graph system may be characterized in an intrinsic way. Let £ =(V, E, 4,¢) be a
predecessor-separated, left-resolving A-graph system over X that presents a subshift A.
Denote by (v}, ..., v () the vertex set V; at level /. For an admissible word v € B, (A)
and a vertex vﬁ € V), we say that vf launches v if the following two conditions hold.

(i) There exists a path labeled v in £ leaving the vertex vf and ending at a vertex in
Vl+n-
(ii) The word v does not leave any other vertex in V; than vf .

We call the vertex vf the launching vertex for v. We set
S i(A) = {v € B.(A) | v! launches v}.

DEerINITION 2.3. A A-graph system £ is said to be A-synchronizing if for any / € N and
any vertex vf € V), there exists a word v € B,(A) such that vﬁ launches v.

In the following lemma we retain the above notation.

Lemma 2.4 [36, Lemma 3.4]. Assume that & = (V, E, A, 1) is A-synchronizing. Then:
@) UMD S (A) = Si(A);

i=1
(ii) the l-past equivalence classes of Si|(A) are S «(A),i=1,...,m(]);
(iii) for any l-synchronizing word w € S (M), there exists a vertex vi(w) € V; such that

vﬁ(w) launches w and T'; (w) =T (Vf(w))-

DeriniTION 2.5. A A-graph system £ = (V, E, A, 1) is said to be t-irreducible if for any
two vertices v, u € V; and a labeled path vy starting at u, there exist a labeled path from
vto a vertex u’ € Vi, such that (") = u , and a labeled path ' starting at #” such that
(t(y")) = t(y) and A(y") = A(y), where t(y’), t(y) denote the terminal vertices of v,y
respectively and A(y’), A(y) the words labeled by y’, y respectively.

We denote by A the subshift presented by a A-graph system £. It has been proved
that if € is ¢-irreducible, then A is irreducible [36, Lemma 3.5]. If, in particular, ¥
is A-synchronizing, the subshift A is irreducible if and only if € is ¢-irreducible [36,
Proposition 3.7]. We then have the following proposition.

ProrosiTioN 2.6 [36, Proposition 3.8]. A subshift A is A-synchronizing if and only if
there exists a left-resolving, predecessor-separated, t-irreducible, A-synchronizing A-
graph system that presents A.

Tueorem 2.7 [36, Theorem 3.9]. For a A-synchronizing subshift A, there exists a
unique left-resolving, predecessor-separated, t-irreducible, A-synchronizing A-graph
system that presents A. The unique A-synchronizing A-graph system is the canonical
A-synchronizing A-graph system 8N for A.
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As in Theorem 2.7, the canonical A-synchronizing A-graph system £Y™ has a
unique property. We henceforth call £Y™ the A-synchronizing A-graph system for A.
We say that a A-graph system L is minimal if there is no proper A-graph subsystem of
£ that presents A. This means that if £’ is a A-graph subsystem of £ and presents
the same subshift as the subshift presented by £, then &’ coincides with £. The
A-synchronizing A-graph system £Y™ of a A-synchronizing subshift A is minimal
[36, Proposition 3.10].

3. A-synchronizing C*-algebras

Let L =(V, E, A,1) be a left-resolving predecessor-separated A-graph system over
T and A the presented subshift by ¢. We denote by {v{,..., v, ,} the vertex set
Vi. Define the transition matrices A;;.1, I;;+1 of £ by setting, for i=1,2,..., m(]),
j=1L2,....m(l+1),aeX

o 1 if s(e) = v, A(e) = a, t(e) = v/ for some e € Ej 141,
Al,l+l(l9 CU, J) = ]

0 otherwise,
Lif g O = v,
0 otherwise.

L@, j) = {

The C*-algebra Oy is realized as the universal unital C*-algebra generated by partial
isometries S,, @ €X and projections Ef, i=1,2,...,m(), l€Z,, subject to the
following operator relations called (L):

D 8pSy=1,

Bex
m(l) m(l+1)
DE=1 El= ) IumG DET,
i=1 j=1
SoSIE'=E!S,S?,
m(l+1)
SUEISe= Y Aunla, DE,
j=1

for v, i=1,2,...,m(),l€Z,. It is nuclear and belongs to the UCT class
[30, Proposition 5.6]. For a word pt = p; - - - px € Br(A), we set S, =8, ---S,,. The
algebra of all finite linear combinations of the elements of the form

SLE!S: foru,veB.(A),i=1,....m(),l€Z,

is a dense *-subalgebra of Oq¢. Let us denote by A the C*-subalgebra of O¢ generated
by the projections Ef, i=1,...,m(),leZ,, which is a commutative AF-algebra. For
a vertex vi € V;, put

F;(vﬁ) ={(@1, @2, . ..,) €= | there exists an edge e, 41 € Eppyer forn>1

1
such that Vi = S(el,lJr] ), t(en,nﬂ) = S(en+l,n+2), /l(en,nJrl) = Anoi1})s
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the set of all label sequences in ¥ starting at vf. We say that £ satisfies condition (I)
if for each vf €V, the set F:;(vf) contains at least two distinct sequences. Under
condition (I), the algebra Q¢ can be realized as the unique C*-algebra subject to
the relations (¥) [30, Theorem 4.3]. A A-graph system L is said to A-irreducible
if for an ordered pair of vertices u, v € V), there exists a number L;(u, v) € N such
that for a vertex w € Vi) with (V) (w) = u, there exists a path y in € such
that s(y) = v, #(y) = w, where (“*") means the L;(u, v)-times compositions of ¢, and
s(y), t(y) denote the source vertex and the terminal vertex of y, respectively [33]. If
L is A-irreducible with condition (I), then the C*-algebra Oy is simple ([30, Theorem
4.71, [33)).

ProposiTioN 3.1. Let A be a A-synchronizing subshift over ¥ and '™ the A-
synchronizing A-graph system for A. Then the right one-sided subshift X5 of A is
homeomorphic to the Cantor set if and only if '™ satisfies condition (I).

Proor. Assume that the right one-sided subshift X, of A is homeomorphic to the
Cantor set. For a vertex vf € Vl/l(A), take a [-synchronizing word g = g - - -y € S j(A)
such that vf launches u. Take an infinite sequence x € X such that u € I', (x). Since X,
is homeomorphic to the Cantor set, any neighborhood of px in X, contains an element
that is different from px. Hence there exists an infinite sequence x” € X, such that
ux’ € Xx and x # x’. As ¢ must leave the vertex vﬁ, both the sequences ux and ux’ are
contained in T'Y,(v!) so that ¢4™ satisfies condition (I).

Conversely, assume that 21" satisfies condition (I). Since X, is a compact,
totally disconnected metric space, it suffices to show that X, is perfect. For any
x=(x1,x,...)€Xp and a word yj - -y with yy =xy,..., up = X, consider a
cylinder set U, = {(yn)nen € XA | Y1 =1, ..., Y& = ). Take an infinite path (e,)en
in @' Jabeled x such that A(e,) = x,, t(e,) = s(ens1), n €N. Let us denote by
vf € V,f(A) the terminal vertex of the edge ¢;. Since the follower set l";(vf?) of vf
has at least two distinct sequences, there exists X' = (x;,, X;,5,---) € I“;(vf) such
that x" # (Xgs1, Xks2, ... ). As X' starts at vi.‘, the right one-sided sequence ux’ =
(M15 -+ s His X3, 15 X 4ps - - - ) 18 contained in X and hence in U,. One then sees that
x is a cluster point in X, . O

Let & =(V, E, 4,¢) be a left-resolving, predecessor-separated A-graph system over
X that presents a A-synchronizing subshift A. Let S,, @ € £ and Ef i=1,...,m(),le
Z., be the generating partial isometries and the projections in Og satisfying the
relations (2). If € is the A-synchronizing A-graph system ¢4 for A, the algebra
Oy is denoted by O,»). We will study the algebraic structure of the C*-algebra Oy,
of a A-synchronizing subshift A.

Levma 3.2. If @ is the A-synchronizing A-graph system '™, then:
(i) foravertex vf €V, there exists a word u € S (A) such that Ef >8,80
(1) foraword u € S (M), there exists a unique vertex vﬁ € VI’I(A) such that Ell EN ;
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Proor. (i) For a vertex vﬁ e V), take a word u € S;(A) such that vf launches u. Since
the word u does not leave any other vertex in V; than vf, we have § ﬂEl,S u=0forj#i

so that SﬂS;Elj =0 for j#i. Let n = |ul. It then follows that

m(l)
El= 3 S,SIEl>S,8El=>" 85,8 E\=S,8}.
VEBL(A) j=1

(i1) For a word u € S;(A), put vﬁ =[ul; € V;KA). Since vf launches u, we have
S4E'S,=0 for j#i so that S,S;E}=0 for j#i. As in the above discussions,

we have E! > SuSy. If there exists j=1,...,m(l) such that Ej >S8,S;, we have
SyE'S,>S8;S,#0 so that S;E'S, #0. Hence there exists a path in ¢'™ labeled
u that leaves vlj. Since v/ launches y, we have j = i. o

The following proposition describes a C*-algebraic characterization for A-
synchronization of a A-graph system.

ProposiTION 3.3. A A-graph system £ is A-synchronizing if and only if for every vﬁ ey,
there exists a word u € S |(A) such that Ef > SHS; in Og.

ProoF. Since the A-synchronizing A-graph system for A is unique and it is ¢4, the
only if part has been proved in the preceding lemma. We will prove the if part. For
a vertex v/ € V, there exists a word 1 =y . .. u, € S/(A) such that E! > S,S7. Hence
we have S ;EllS « # 0 so that the word u leaves the vertex vf and hence I“l‘(vg) cl(w.
For £ €T/ (1) we have S_gEfok 288,88, #0sothat £ € Fl‘(vf). This implies that
I (u) c T (v), so that

;) =T (w). (3.1)

Suppose that u leaves V. Take a path labeled x in € from v/ to vlJT” € Viyn. By the
hypothesis, there exists v € §;,,(A) for the vertex v’]T” such that EZIT” >5,5;. Bya
similar argument to the above, we know that ' '

1—‘l_+n(v?-n) = Iﬂl_+n(v)‘ (32)
One then sees that
Iy (V) =T (). (3.3)

One indeed sees that &u € l"ljr”(vif”) for £ € I“l‘(vi.). By (3.2), we have éuel, (v)
so that & € I'; (uv). Conversely, for n € I'; (uv), we have nu eI, (v) so that by (3.2)
nu € Fljrn(vlji’”). As 2 is left-resolving, we have 1 € Fl‘(v’/.). Hence we have (3.3). Now
we know that I'; (uv) =T/ (w), so that

I 0 =T (. (34)

By (3.1) and (3.4), we have
L) =T (V).
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Since ¢ is left-resolving, we obtain that vﬁ = vlj and hence vf launches u. Thus € is
A-synchronizing. O

The following lemmas are stated in terms of the C*-algebra O,,) associated with
the A-synchronizing A-graph system £4®) of a A-synchronizing subshift A.

Lemma 3.4. For &, 1 € B.(A), we have T'7(§) =TI (1)) if and only if S;S¢ = S} .

Proor. Let p = |£|, g = [n|. We may assume that p < g. Let Vf(’f) be the set of all terminal
vertices in V), of paths in ¢4 labeled ¢, that is,

Vi =1 eV, |£€T,07).

Denote by £(p) the cardinal number of Vy . We write Vi, = {V],..., VI/;(p)}' Similarly,
let us denote by Vzn) the set of all terminal vertices in V,, of paths in £1® labeled 7.
Denote by 7(g) the cardinal number of th(n)' We write Vt[in) =iV ,}- By the
n4q
relations (&), we see that
S;S§=E§71+---+E’.’ SySp=E. + - +E|

Jep’ kng)”
We set

=ryd )= (9P q9-p (14
W) =P )t (an(q))}cvp’

L”_q(szf)) =pleV, [P0 e szf)} cV,.

We then have S:S¢ =SS, if and only if "~4(Vy,)) = Vi .
Now assume that I'7(&) =T'F(n). For v{ € Vi . take v(k) € S,(A) such that v/

1(m)’
launches v(k). It is easy to see that Lq*P(vZ) launches v(k). Since v(k) e T'F(n),

we have v(k) € T} (&) so that v(k) leaves a vertex in Vt’(’f). As (97P(v) is the only

vertex which v(k) leaves, we have 1/ P(v]) e Vf(’f). Hence we have (477 (Vzn)) C ng)

so that Vzn) C LP“I(V;&)). For the other inclusion relation, take an arbitrary vertex

v, € L”"’(Vr’(’f)) and p(q) € S 4(A) such that v launches u(g). The word u(g) leaves

Lq‘P(vZ) and Lq_P(VZ) launches u(q). As u(q) € 't (&), we have u(q) € I'f () so that there

exists a vertex v{ € Vtz:z) such that u(g) leaves v! . Therefore we have v{ =v{ and

q q P—q( P q P . « _ o
hence v; €V so that /74(V ) C V; . This implies that S ;S =SS .

Conversely, assume that the equality S ;‘_,S ¢=S,S, holds so that Lp‘q(Vf(})) = VZU).
By the local property of A-graph system, we can easily see that the set of followers of

szg) coincides with the set of followers of V:{n). This implies that I’/ (¢) =T (). O

For u, v € B.(A), we write u > v if there exists a word 1 € B,(A) such that '} (v) =
I (unv). The following lemma follows from the preceding lemma.

k kn

Lemma 3.5. For u, v € B.(A), the following three conditions are equivalent.

i) u>w
(1)  There exists a word n € B.(A) such that S’,S

= S;S;‘,S;SﬂS,,SV in 0,1(/\).
(iif) There exists a word 1 € B.(A) such that §,S5, <SS S

ﬂS'] in O,{(A).
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Proor. The equivalence between (i) and (ii) follows from Lemma 3.4. It is clear
that the equality SS, =S8,5,5,5,5,S, is equivalent to the inequality S,S; <
S3S S uS y- O
DeriniTioN 3.6. A A-synchronizing subshift A is said to be synchronizingly transitive
if for any two words yu, v € B.(A), both the relations u > v and v > u hold.

We note that the A-irreduciblity for € is rephrased in terms of the algebra Oq as the
property that for any E!,i=1,...,m(l), there exists n € N such that ¥}_, A&L(E}) > 1,
where 18(X) = ¥,ep,a) S 1 XS, for X € Ag [33].

Lemma 3.7. If A is synchronizingly transitive, then 8'™ is A-irreducible.

Proor. Take an ordered pair vﬁ, vi. € V; of vertices. Since A is A-synchronizing, by
Lemma 3.2, there exists i € S ;(A) such that v} launches u so that E! > S ,,S". For the

vertex vlj, take a word v € B;(A) such that v e I“l‘(vi.) so that S}S, > Ei Now A is
synchronizingly transitive so that

SjS;S;SySnSV =SS,
for some 77 € B.(A), and hence

SySHSHESuSySy 2838, 2 E.

Put k = |unv|. Then /l’;/l(A)(El’,) > E; Thus we may find n € N such that

Z /loA(A)(E,l') > 1 O

THeOREM 3.8. Let A be a A-synchronizing subshift over X. Assume that the right one-
sided subshift X of A is homeomorphic to the Cantor set. If A is synchronizingly
transitive, then the C*-algebra O,y associated with the A-synchronizing A-graph
system LW for A is simple.

Proor. Since X, is homeomorphic to the Cantor set, the A-graph system 4%
satisfies condition (I). By the preceding proposition, the synchronizing transitivity
of A implies that ¢™ is A-irreducible so that the C*-algebra O, is simple by
[30, Theorem 4.7]. m]

4. Flow equivalence and A-synchronizing C*-algebras

It has been proved that A-synchronization is invariant under flow equivalence [36].
The proof uses Parry and Sullivan’s result [37] which says that the flow equivalence
relation on homeomorphisms of the Cantor set is generated by topological conjugacy
and expansion of symbols. Let A be a subshift over the alphabet £ ={1,2,..., N}.
A new subshift A over the alphabet s = {0,1,2,...,N} is defined as the subshift
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consisting of all bi-infinite sequences of < obtained by replacing the symbol 1 in a bi-
infinite sequence in the subshift A by the word 01. This operation is called expansion.
Parry and Sullivan’s result, stated above, is the following lemma.

Lemma 4.1 [37]. The flow equivalence relation of subshifts is generated by topological
conjugacy and expansion A — A.

In [36], it has been proved that the A-synchronizing K-groups K}(A), K{{(A) and
the A-synchronizing Bowen—Franks groups BFS(A), BFAI(A) for a A-synchronizing
subshift A are invariant under flow equivalence of subshifts. The groups KS(A),
K{(A) and the Bowen—Franks groups BF{(A), BF}(A) are realized as the K-groups
Ko(Oyny), K1(Oany) and the Ext-groups ExtO(O}(A)), Extl(O,w\)) for the C*-algebra
O, associated with the A-synchronizing A-graph system ¢4 If the algebra Ox) is
simple and purely infinite, the K-groups Ko(Oan)), K1(Oaa)) determine the stable
isomorphism class of Oy by the structure theorem of purely infinite simple C*-
algebras [14, 15, 38].

In this section, we will prove that the stable isomorphism class of the pair
Oy Dany) of Oy with its Cartan subalgebra Dy, is invariant under flow
equivalence of A-synchronizing subshifts. The outline of the proof essentially follows
the proof of [28, Theorem 9.3]. As there are many technical differences between the
proofs, we will give a complete proof. We will not assume simplicity of the algebra
O n)- As aresult, we also give a C*-algebraic proof of the above invariance of the
groups K{}(A), Kf(A) and the Bowen—Franks groups BFS(A), BF}I(A) under flow

equivalence.
Let A be a A-synchronizing subshift over £={1,2,...,N}. Let §;, i€ZXZ, and
Ef,, i=1,...,m(l), l€Z,, be the generating partial isometries and the projections in

the C*-algebra Oy, satisfying the relations (24™)). The Cartan subalgebra D) is
defined to be the C*-subalgebra of O, generated by the projections of the form
S#EfS;, i=1,...,m(),ue€ B.(A), which is a regular maximal abelian subalgebra in
O, if the A-synchronizing A-graph system 24 satisfies condition (I). Consider the
subshift A over T = {0, 1, ..., N} that is obtained from A by replacing 1 in A by O1.

It has been proved in [36] that A is A-synchronizing. Denote by O, +, the C*-algebra

associated with the A-synchronizing A-graph system €4 for A. Similarly, let S;, i € X,
and Ef, i=1,...,m(),leZ,,be the generating partial isometries and the projections

in the C*-algebra O, 7, satisfying the relations (240, We set the partial isometries

AN
S1 :§0§1, si:§i, fori=2,...,N,
and the projection
P=S0S;+8,55+8385+---+SySy=1-5,5}
in 0,3,

Lemma 4.2. §[’;§0 = §1§’l‘ and hence s, s"l‘ = §05~’(’§, s’l‘sl = §TS~’1
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Proor. We note that the set VS(A) is a singleton. There exists a unique vertex v}o in Vf(A)

such that the symbol 0 goes to v}o from V(’)I(A). The vertex v}o is the 1-past equivalence

class [1u]; foraword 1u € B*(K). It launches the symbol 1. Since 1 is the only symbol

which leaves v}o, we see that S ZE}OS « #01if and only if @ = 1. It then follows that

. . - AN
As v}u is the unique vertex in Vl( )

SoS0= E}O. The equalities 5157 =SS, s751 = 5751 are obvious. m]

such that the symbol 0 goes to v}o, we have

Lemma 4.3. (1) P= Z?’zl sjsj.
i) P> s;s,, forall ue Bi(A), leN.
(1) Xepa) SpuSu = P forall leN.

Proor. (i) Since §0§3 = 515}, the assertion is clear.

(ii) Since P =1 —E}O, it sufﬁcesjo sll?wjhat Ejl.0 L s,s, for p=p SR Bi(\).
If y; # 1, then s,, =S, so that 5,51 =5,51=0.If gy =1, then s5,, =505 so that
5,81 =2S8051S1 =0.In any case we have 5,5 = 0 so that s;sﬂE]',0 =0.

(iii) We will first prove that Zfi | 87s; > P. We know that §:f§i =s}s; for i=

1,...,Nand §8§0 = §1§’f =1 - P Since Zf\;o 5?3:1' >1in OMK), one obtains

so that Zf\i 1 8;si = P. Suppose that the inequality Y cp,(a) 5,5y = P holds for some
k € N. It then follows that

N
_ * *
5,8y = 85 Sy Su )Si
VEBi1(A) i=1 HEB(A)
N N N
* _ * o oF *
> Z s;Ps; = Z 8;8j8;8i = Z s;85; > P
i=1 i,j=1 i=1
Hence we have the desired inequalities. m|

In the A-graph system 4™, recall that the set I'; (v}) for a vertex v/ in V; denotes
the predecessor of vﬁ which is the set of words of B;(A) presented by labeled paths
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terminating at vf. Put the projections fori=1,2,...,m(l),l € Z,,
l
e; = l_[ Sy Su 1_[ (P — s,8,).
HelT () VEB(A\LT (V)

For JIAS] B*(A), [)llt
S*Sl =s's S*Sil =P-5s's
Jlag?) 750 2 ueu i’y

For vf € Vf(’\), define a function fl.l : Bi(A) — {1, —1} by setting

1 ifuel; (),

Loy =
fiw = {—1 if pe Ty (vh,

so that

[ _ * f,’(ﬂ)
e, = 1_[ Shsu

HEBI(A)
Denote by {1, —1}%™™ the set of all functions from B;(A) to {1, —1}.

Lemva 4.4. For € € {1, =115 we have [1uenin) s;s;(”) #0 if and only if € = fl.l for

somei=1,...,m(l). Inthis case [],ep,a) s;sfl(”) = ef.

Proor. Suppose that € = ff forsomei=1,...,m(l). Since A is A-synchronizing, there
exists v € §;(A) such that vﬁ launches v so that

sisu > s,y for p eIy (v,
P - SZS# >s,s, forpeBi(A)\ F,_(vﬁ).

H f SIS L
ence, [ epn) Spsy = svsy, # 0.

Conversely, suppose that [],cp,,) s;s;(”) # 0. Since [],ep,n) s;sz(”) € Ayxy there
exist k>0 and iy = 1,2,..../(k) such that [Tuepn 550" > Ef € Az, Take we
Sk(A) such that vfl launches w. Since ), cp ) 5,5 = P, there exists u € Bi(A) such

that s;,s,, > El"l . Hence we see that uw € B.(A). As the rightmost letter of y is not 0,
the leftmost letter of w is not 1. Let @ be the word in B.(A) obtained from w by putting
1 in place of 01 in w. Since Ej >5,,S,, we see that

* E(ﬂ) *
1—[ S8y Z SaSg-
ueBi(A)

As [@]; € Vf(A), we have [w]; = vﬁ for some i=1,...,m(l). The vertex vﬁ launches @
so that € = f}. o
Lemma 4.5. For u, v € Bi(A) and a, B € X, we have:

i) s;(P — S58a)Su s;s;sﬁs,, =(P- szﬂsaﬂ)sgﬂsﬁ#;
i) s - s;‘ls'u(P — 578,)Sq = s;asﬂa(P — S5y Sva)-
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Proor. (i) Since Ps;sﬁ = s;,sﬁ and hence s;Ps;sﬁsﬂ = s;,ﬂsﬁﬂ,

S (P = 85850)8, + S 855588, = S PS;sgs, — 88085453538
u aRa)du " S uPpeBdu ut PpRBu uPaPaspopOu
— * _ * *
= Psﬁﬂsﬁﬂ S S S gy SBu

=(P- szﬂsaﬂ)s;#sﬂ,,.

(i1) Since Ps, = s, and sl*msw = s;asﬂ(,P,

* % * X * *
Sq * SpSu(P = 8y8v)Sa = $,4Sua = S SuaSyaSva

= s;asﬂa(P — Sy Sva)- O
Lemma 4.6. The partial isometries s,, @ € X and the projections ef., i=1,2,...,m(),
[ € Z,, satisfy the following operator relations:
> spsp=P, (4.1)
B
m(l) m(l+1)
Diel=P = Il e, (4.2)
i=1 j=1
= 1 *
SaS,e; = €SSy,
m(l+1)
selsa= Y A, a, e, 4.3)
j=1
foraeXi=1,2,...,m(),l€Z,, where 1,1, A;1+1 denote the transition matrices

for the A-graph system '™,
Proor. Equality (4.1) has been proved in Lemma 4.3(i).

It follows that
1_[ (5 + P —sy5,) = Z l—[ shset).

HEBI(A) ee{—1,1}B1™ peBi(A)

U
By Lemma 4.4, the nonzero [[,ep,a) 5, sZ(”) is of the form [],ep,n) s;‘;sf:" ® for some
i=1,...,m() so that we have P = Zm(l) -

We w111 next show equality (4.3). It follows that

* | * * %
5,680 = sa( H S,Su 1_[ (P - svsv))sa

HET (D vEB(ANTT ()
= 1_[ sﬂas,m l_[ (P — SyySva)-
HeT7 () veB(M\TT ()
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[

Hence s,e;s, is written as a finite sum of e?’l, j=1....,m(I+1). If s:;efsa > elj“,

then
8o (8,81 Sa = eé»“ for p € l"[_(vf),
Si(P = $;5,)s0 2 €71 forve Bi(A) \ T (v).
Since

el = 1—[ S¢S 1—[ (P~ spsp)

£eTy, () NEBr (AT, (1)
and A is A- synchronlzmg, there exists () € S;+1(A) such that [£(j)];+1 = v’+1 Hence,
1 1+1
>SSy () AS shels, > ej 2 S¢(j)Sy(jy» We have el > Sat()Sys(j) F 0 Hence

ual(j) € B.(A) for ueT;(v)),
V(Z{(‘]) ¢ B*(A) forve B[(A) \ F;(vf)

so that [al())]; = v Since [£()]i+1 = v , we have A;;,1(i, @, j) = 1. Therefore the

condition s? elsCr > ej !'implies that A1J+1(l, a, j) = 1. We thus obtain

m(l+1)

w1 11
$,€;8q = Z A, a, J)e
j=1

We will next prove the second equality of (4.2). By the equalities

el = 1_[ Sy Su 1—[ (P —s,sy)

KelT(Y)  vEB(ANTT ()
m(1) m(1)
1 1
) 1 - )
pel7 (v k=1 VEB(ANTT) b=l
we know that ¢! is a finite sum of ¢/, . .. e% +1)- Suppose that ¢} > ¢!, Since V! =
'

[£())]i+1 for some £(j) € S 11 (A), we have e; Bl > S¢j)Sy 70 and hence el > S¢())S; Th1s

implies that
l_[ 5 l_[ (P = s,5v) = 50,
pel7 (vh vEB(MNT; (v)

0N

so that
* * — 0
SuSu = S¢(j)Sz;  and hence s,y # 0 for p e I (vy),

P—sys5,2> sév(j)s;i(j) and hence s,.(;) = 0 for v € Bj(A) \ l"l_(vf).
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Hence

pL(j) € Bi(A) for peT;(v),
vL(j) ¢ B.(A) forve Bi(A)\T; ().
Thus we have [£(D]; =V As [Z()]iw1 = vl]-“, we obtain that I, (i, j))=1. We

it

conclude that the second equality of (4.2) holds.
The projections ef and s)s, all belong to the commutative C*-subalgebra of

(0] &) generated by the projections S ﬂ§21 §§1 e §;§n§§n§ k€1 En € B*(K). The
commutativity between ef and s7,s, is obvious. Thus we complete the proof. |

Therefore we have the following corollary.

CoroLLARY 4.7. Suppose that the A-synchronizing A-graph system '™ of a
A-synchronizing subshift A satisfies condition (). Then the C*-subalgebra of O &)
generated by the partial isometries s,, @ € £ and the projections ef, i=1,...,m(),le
Z., is canonically isomorphic to the C*-algebra O,y associated with the A-graph
system QAN

Proor. Since the A-synchronizing A-graph system ¢4™) satisfies condition (I), the
C*-algebra Ogin, which is Oy, is the unique C*-algebra subject to the relations
(84™)) by [30, Theorem 4.3]. Therefore the assertion follows from the preceding
lemma. m|

We identify the algebra Oy, with the above C*-subalgebra of O A& generated by
the partial isometries s,, @ € ¥ and the projections eﬁ, i=1,...,m(),leZ,. We note
that the projections eﬁ, i=1,...,m(), l€Z,, and P are written by s,, s,,, @ €Z, so
that the subalgebra O, is generated by s,, a € X.

We will henceforth prove that the C*-subalgebra PO WP 1s generated by s, @ € X,
that is, PO,z P =Oxn). Let Az, be the C*-subalgebra of O,z generated by the

projections Ef, i=1,...,/m), l€Z,, similarly Ay, the C*-subalgebra of O &)
generated by the projections eﬁ, i=1,...,m(),l€Z,. The subalgebra A,y is
naturally regarded as a corresponding subalgebra of O,y through the canonical
isomorphism in the above corollary.

For a word v=v; ---v; € B)(A) satisfying v; # 1, v; #0, we define the word v €
B.(A) by putting 1 in place of 01 in v. Since s = S 051, the following lemma is
straightforward.

Lemmva 4.8. Forany =y - - g € Bk(K), the partial isometry §,, is of the form:

\n ifuy # 1, i # 0,

— | S1sma ifur =1, #0,

%]
=
I

Sgr=erS 0 ifur # 1, 4 =0,

Si18p=mSo =1, =0.
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Lemwma 4.9. Forany u=py - - i € Bk(K),

SﬁP if”lil’ﬂkios
5 po )Sismmml =1 #0,
o ifin # 1, =0,
0 ifur =1, 4 = 0.

Proor. By the preceding lemma, it suffices to show that SoP = 0 for both the third and
fourth cases. As §;S0 =557,

SoP=505S1P=5¢5,8S;(1-5,8)=0. O

Lemwma 4.10. Forany u=py -+ - uy € Bk(K),

Psl*jsﬁP ifur # 1, g #0,
— § PSZZ'WSTMSWP ifuy =1, #0,
0 ifur # 1,y =0,
0 i]c,l,l1=1,,l,tk=0.

Proor. By the preceding lemma, it suffices to show the equality for the second case.
For py =1, yi # 0, we have S, P = § | sz P so that

~*~ — * ~*~ —
PS,SyP = Ps—S\S1Sp=m P = PS8, 1 S P- O

CoroLLary 4.11. Therefore we have PA, z P = Ay).

Proor. By the previous lemma, we see that for u € B*(K), the element P§;§ P belongs
to PAya)P. As P is the unit of Ay,), we know that P§Z§ﬂP € Ayn)- Since Az,

is generated by the projections §;§,,, ue B*(K), we have PA AP € Ay The
converse inclusion relation PA, 3, P O Ay, is clear. O

Lemmva 4.12. Foranyu=py -+ -y € Bk(K),

S:S, S8 St | if i # 1,
(I_P)S;Sﬂ(l—P)z . el M i1 _ .
SISZ s SIS S* lf,Ll]:L
-

Mool

Proor. Since 1 — P = §1§*, it follows that

— — _ = = S]S WS* if g # 1,
(1-P)S;S,(1-P)=8,5/SuS;=4< H#ll _—
SIS*S Slsz yklsl 1f,u1:1.
As § 5~' s’l‘sl, the desired equalities follow. O
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CoroLLARY 4.13. Therefore we have (1 — P)ﬂﬂ(x)(l -P)C Sl ﬂA(A)S’f.

Proor. By the previous lemma, we see that for u € B*(K), the element (1 — P)S;Sﬂ(l -
P) belongs to S| Ay)S . so that (1 — PYA,z,(1 = P) € S 1 Ayn)S ;- o

ProposITION 4.14. POA(X)P C Oy

Proor. The C*-algebra PO, P is generated by the elements of the form:

AA)
PS.S;Se -+ St SeSiP wér. ... EnvEBUN.

Suppose that PS, S Sgl S* §g S*P #0. Let gu=py -+ g, v=vy---vy. Since
PS = S #0and S* P S * O we have y; # 1, v # 1. Hence the words y, v satisfy
the ﬁrst condltlon or the th1rd condition in Lemma 4.8. We have then the following
four cases in which the rightmost letters of u, v are zero or not.

Case I: pi #0, v, # 0. Since SHkSlS’]‘ =0, we have Sﬂk(l — P) =0 so that SﬂP = SH.
Hence S, commutes with P. Similarly, S, commutes with P. By Lemma 4.8, one sees
that S, = sz, S, = sy. It then follows that

P:S:#:ST%]S& te :S‘V;:S'Vgn:gvip = SpP:ST;:S:& tee S;IS(;’:”PS;.
Since S;il S, & S ;’IS& € Ayx, and PA) 3 P = Ayn), the element
PS,S;Se -+ S;:SeS,P

belongs to szAja)s% and hence to Oqa)-

Case 2: y #0,v, =0. As in the above discussion, S, commutes with P. Since
PS 350 =0, we have

PS,S;Se St SeSiP=SPStSe - S;SeSeSt 0 P
=SuPSS0S:Se -+ S: 868480 P =0,

Vi V-1
a contradiction.
Case 3: u; =0, v, # 0. This case is similar to Case 2.

Case 4: pu,=0,v,=0. Since SOP =0, we have S,, = Sﬂ(l — P) and similarly Sj‘, =
(1 = P)S7. As both words p, v satisfy the third condition in Lemma 4.8, one sees that

§;z = Smgo, S, = SW§O-
It then follows that

PS,=S,=sg=S0(1-P), S:P=S:=(1-P)Sis:__

Vi Vp-1'
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Hence
PS,S;Se -+ S;SeSP
= srSo(l = P)SESe -+ S; Se,(1- P)Spse
By the preceding lemma, one knows that (1 — P)A A A)(1 P)c S 15‘(4(/\):57’{ so that

the element So(1 — P)S} S, -+ S; ¢, (1 - P)S;, belongs to S8 1Ay)S 1S, which is
s1An)s]- Then the element PS S ]Sgl S Sg S* P belongs to 51 A a)s] and hence

to O,l(A)
Therefore in all cases PS, S aS S S gnS P belongs to Oy so that we
conclude that PO, z,P C Oy o

Let D A& be the C*-subalgebra of O A& generated by the projections S#EfS bE
ue B, (K) i=1,...,m0), I EZ+, and similarly D, ) the C*-subalgebra of O S
generated by the projections syel v VEBL.(A),i=1,...,m(l),l €Z,. The subalgebra

Dy is naturally regarded as a corresponding subalgebra of Oun) through the
canonical isomorphism in Corollary 4.7.

ProposiTioN 4.15.
1) POA(K)P =0\ n)-
(ii) OA(A)POMA) = 0/1(7\)'
(111) PD/I(A) D,i(/\)
Proor. (i) The inclusion relation PO
proposition, PO, z,P = O
(ii) Since S£So = S1S* we have S} PS¢ =S5:So=S5S". It follows that
N

Jj=0

WP 2 O, is obvious so that, by the preceding

*

~.

This means that P is a full projection in O 3.

(iii) In the proof of Proposition 4.14, the projection PS S S & 3 ér"S & S P
belongs to Dy so that PO, z)P C Dys). The other 1nclu510n relat10n PD, A)P )
Dja) is clear. ]

Let K(H) be the C*-algebra of all compact operators on a separable infinite
dimensional Hilbert space H and C(H) a maximal commutative C*-subalgebra of
K(H).

THEOREM 4.16. Assume that the right one-sided subshift of a A-synchronizing subshift
A is homeomorphic to the Cantor set. Then

(0/1(7\) ® K(H), D/I(K) ®C(H)) = (O,{(A) ® K(H), D,l(/\) ® C(H)).

https://doi.org/10.1017/51446788713000219 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788713000219

260 K. Matsumoto [20]

In particular,
OA(K) ® K(H) = O,{(A) ® K(H).

Proor. Proposition 4.15(ii) shows that the projection P is full in O, z,. By [5], we have
the desired assertions. O

Therefore we conclude the following theorem.

THeEOREM 4.17. Assume that the right one-sided subshifts of A-synchronizing subshifts
Ay and A, are both homeomorphic to the Cantor set. Suppose that Ay is flow
equivalent to A,. Then

(O @ K(H), Dya,) @ C(H)) = (Oyay) ® K(H), Daa,) ® C(H)).
In particular,
Oy ® K(H) = Oyn,) ® K(H).

Proor. The flow equivalence relation of subshifts is generated by topological
conjugacy and expansion A — A. Suppose that A-synchronizing subshifts A; and A,
are topologically conjugate. By [23, Proposition 3.5], their symbolic matrix systems
(MDD TAADY and (MDD JHAD) are strong shift equivalence. Then

Oy ® K(H), Dya,) ® C(H)) = (Oya,) ® K(H), Dia,) ® C(H))

by [31, Theorem 4.4]. Hence by the above theorem, we have the desired assertions. O

CorOLLARY 4.18 [36]. Assume that the right one-sided subshifts of A-synchronizing
subshifts Ay and A, are both homeomorphic to the Cantor set. Suppose that Ay is
Sflow equivalent to Ay. Then their A-synchronizing K-groups and their A-synchronizing
Bowen—Franks groups are isomorphic, that is,

K'A) = KYAy) and BFY(A))=BFi(Ay), i=0,1.

Proor. The A-synchronizing K-groups K f(A) and the A-synchronizing Bowen—Franks
groups BF fl(A) for a A-synchronizing subshift A are isomorphic to the K-groups and
the Ext-groups for the C*-algebra O ) respectively:

KMA) = Ki(Oyn)), BFY(A) =Exti(Oyn), i=0,1.

Hence the assertion is direct from the above theorem. ]

5. Examples

5.1. Sofic shifts. Let A be an irreducible sofic shift which is homeomorphic to the
Cantor set. Let Gr(a) be a finite directed labeled graph of the minimal left-resolving
presentation of A. Such a labeled graph is unique up to graph isomorphism and
is called the left Fischer cover [9, 18, 19, 40]. Let QQM) be the A-graph system
associated with the finite labeled graph Gr) (see [30, Proposition 8.2]). Then the
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A-synchronizing A-graph system £*™ for the sofic shift A is nothing but the A-graph
system Lg, . Let N be the number of the vertices of the graph Gr(). Let Mg, be
the N X N symbolic matrix of the graph Gr). Let Ap) be the N X N nonnegative
matrix defined from My by setting all symbols equal to 1 in each component of
Mpa. Then the C*-algebra Oy, of the A-graph system £V is simple and purely
infinite. The algebra O, is also realized as the labeled graph C*-algebra Og,,, for
the labeled graph Grx) (see [2]). It is isomorphic to the Cuntz—Krieger algebra Oy, .
The A-synchronizing K-groups and Bowen—Franks groups are as follows:

K§(N) =ZN[(Iy = Apa)ZV,  K{(A) =Ker(Iy — A, inZV

and
BFY(AN) =Z" /(Iy — Ara)ZN,  BFY(A) =Ker(Iy — Apn)) inZV.

They are all invariant under flow equivalence of A (see [11]).

5.2. Dyck shifts. Let N >1 be a fixed positive integer. We consider the Dyck
shift Dy with alphabet £ = ¥~ U £* where £~ ={ay,...,an}, 2" ={B1,...,Bn}. The
symbols «;, 8; correspond to the brackets (;, ); respectively. The Dyck inverse monoid

for X has the relations
1 ifi=j,
a;p; = 5.1
Bi {0 otherwise, SR

fori,j=1,...,N ([17, 22]; see [7]). A word w; - - w, of X is admissible for Dy
precisely if []_, wy, # 0. For a word w = w; - - - w, of Z, we denote by & its reduced
form. That is, @ is a word of X U {0, 1} obtained after the operations (5.1). Hence a
word w of X is forbidden for Dy if and only if @ = 0.

Let us describe the Cantor horizon A-graph system £"P of Dy introduced in [22].
Let Ay be the full N-shift {1, ..., N}2. We denote by B;(Dy) and by Bj(Ay) the set
of admissible words of length / of Dy and that of Ay, respectively. The vertices V; of
LQENDN) at Jevel [ are given by the words of length [ consisting of the symbols of *.
That is,

Vi={Bu - Bu € Bi(DN) [ 11 - - - i € Bi(Ay)}.

It is easy to see that each word of V; is [-synchronizing in Dy such that V; represent
the all /-past equivalence classes of Dy. Hence we know that V; = Vf(DN ). The cardinal
number of V; is N'. The mapping t(=t;11) : Vig1 = 'V deletes the rightmost symbol of
a word such as

L(ﬂﬂl o 'IB,um) =:8111 o '18/11’ IBM o 'IB/IM € Viu1. (5.2)

There exists an edge labeled a; from g, - - - B, € V; to BBy, - By, € Vis1 precisely
if uo = j, and there exists an edge labeled §; from 8,8, - -- B, , € Vito By, - - - Bu,, €
Vi;1. The resulting labeled Bratteli diagram with ¢-map is the Cantor horizon A-graph
system £ChPN) of Dy
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Prorosition 5.1. The Dyck shift Dy is A-synchronizing, and the A-synchronizing A-
graph system PN is the Cantor horizon A-graph system LN,

The Cantor horizon A-graph system £EMP¥) gives rise to a purely infinite simple
C*-algebra Ogcnoy) [22, 34]. The K-groups of the C*-algebra Ogycnoy) are realized as
the K-groups of the A-graph system 2CMPV so that [22, 34]

Ko(Oany) =ZINZ® C(R,Z), Ki(Oypy) =0

where C(R, Z) denotes the abelian group of all Z-valued continuous functions on the
Cantor set &. The Ext-groups for O,p, are computed from the universal coefficient
theorem for K-theory [39] so that we know [22] that
K}(Dy)=Z/NZ®C(R,Z), K (Dy)=0,
BFS(DN) =7/NZ, BF}(Dy)=Homz(C(R,Z),Z).

5.3. Topological Markov-Dyck shifts. We consider a generalization of the above
discussions for the Dyck shifts. Let A =[A(, j)li 1.~ be an N X N matrix with

.....

entries in {0, 1}. Consider the Dyck inverse monoid for the alphabet £ = £~ U £* where
X" =A{ay,...,ay}tand X* ={B4, ..., By} satisfy relations (5.1). Let O4 be the Cuntz—
Krieger algebra of the matrix A that is the universal C*-algebra generated by N partial
isometries 71, . . . , fy subject to the following relations:

Z =1, £h= zN:A(i, s, fori=1,...,N
=1
[8]. Define a correspondence @4 : £ — {/, ;| i = 1,..., N} by setting
pala) =1, @aB)=t;, i=1,...,N.
We denote by X* the set of all words y; - - -y, of elements of X. Define the set
Ga={y1- ¥ €X l@aly1) - - alyn) = 0in Oal.

Let D4 be the subshift over ¥ whose forbidden words are §4. The subshift is called
the topological Markov—Dyck shift defined by A [35]. These kinds of subshifts first
appeared in [21] in a semigroup setting and in [12] in a more general setting without
using C*-algebras (see [35]). If all entries of A are 1, the subshift becomes the Dyck
shift Dy with 2N brackets, because the partial isometries {@4(a;), o(B;) |i=1,..., N}
yield the Dyck inverse monoid. Consider the following subsystem of D:

Dy ={(yi)icz €Dalyi€X, i€},
which is identified with the topological Markov shift

Ax={(x)iz €41, ..., NV | A(xi, xip1) = 1,i € Z)
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defined by the matrix A. If A satisfies condition (I) in the sense of [8], the subshift
Dy is not sofic [35, Proposition 2.1]. Similarly to the Dyck shifts, one may consider
the Cantor horizon A-graph system "4 for the topological Markov—Dyck shift Dy,
as studied in [35]. We denote by By(D}) the set of admissible words of length / of
D} The vertices V;, [ € Z,, of ¢“"P4) are given by the admissible words of length /
consisting of the symbols of £*. They are [-synchronizing words of D4 such that their
[-past equivalence classes coincide with the /-past equivalence classes of the set of all
[-synchronizing words of D4. Hence V, = Vl’l(DA). Since V; is identified with B;(A,),
we may write V; as

Vi={Bu =By i1 - - - 1 € Bi(Ap)}.

The mapping «(=t;+1) : Vis1 — Vi is defined by deleting the rightmost symbol of a
corresponding word as in (5.2). There exists an edge labeled a; from g8, - -+ B, € V;
to By, By, € Vis1 precisely if po = j, and there exists an edge labeled §; from
BiBu -+ Buy, €Vi 10 By, -+ By, € Virr. It is easy to see that the resulting labeled
Bratteli diagram with (-map becomes a A-graph system written 2"P4) called the
Cantor horizon A-graph system for the topological Markov-Dyck shifts D,.

ProrosiTion 5.2. The subshift D, is A-synchronizing, and the A-synchronizing A-graph
system 8P4 s the Cantor horizon A-graph system P,

Hence the C*-algebra O,p,, coincides with the algebra Ogcuo,. By [35, Lemma
2.5], if A satisfies condition (I) in the sense of [8], the A-graph system 2" satisfies
A-condition (I) in the sense of [33]. If A is irreducible, the A-graph system £NA4) jg
A-irreducible. We have the following proposition.

ProposITION 5.3. Suppose that A is an irreducible matrix with entries in {0, 1}
satisfying condition (I). Then the C*-algebra Oyp,) associated with the A-
synchronizing A-graph system 8P4 for the topological Markov—Dyck shift D, is
simple and purely infinite.

One knows that S-shifts for 1 < €R, a synchronizing counter-shift called the
context-free shift in [24, Example 1.2.9], and Motzkin shifts are all A-synchronizing.
Their C*-algebras for the A-synchronizing A-graph systems have been studied in the
papers [13, 26, 32] respectively.
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