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Abstract

The class of λ-synchronizing subshifts generalizes the class of irreducible sofic shifts. A λ-synchronizing
subshift can be presented by a certain λ-graph system, called the λ-synchronizing λ-graph system. The λ-
synchronizing λ-graph system of a λ-synchronizing subshift can be regarded as an analogue of the Fischer
cover of an irreducible sofic shift. We will study algebraic structure of the C∗-algebra associated with a
λ-synchronizing λ-graph system and prove that the stable isomorphism class of the C∗-algebra with its
Cartan subalgebra is invariant under flow equivalence of λ-synchronizing subshifts.
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1. Introduction

Let Σ be a finite set with its discrete topology. We call it an alphabet and each
member of it a symbol or a label. Let ΣZ, ΣN respectively be the infinite product
spaces

∏∞
i=−∞ Σi,

∏∞
i=1 Σi where Σi = Σ, endowed with the product topology. The

transformation σ on ΣZ given by σ((xi)i∈Z) = (xi+1)i∈Z for (xi)i∈Z ∈ ΣZ is called the
full shift. Let Λ be a shift invariant closed subset of ΣZ, that is, σ(Λ) = Λ. The
topological dynamical system (Λ, σ|Λ) is called a subshift or a symbolic dynamical
system, and written simply as Λ. The theory of symbolic dynamical systems forms a
basic ingredient in the theory of topological dynamical systems (see [16, 24]).

The author has introduced the notion of the λ-graph system, that is, a labeled
Bratteli diagram with an additional structure called an ι-map [27]. A λ-graph system
L presents a subshift and yields a C∗-algebra OL [30]. For a subshift Λ, one may
construct a λ-graph system LΛ called the canonical λ-graph system for Λ in a canonical
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way. It is a left Krieger cover version for a subshift. The C∗-algebra OLΛ for LΛ

coincides with the C∗-algebraOΛ associated with subshift Λ ([25]; see [6]). It has been
proved that the stable isomorphism class of the C∗-algebra OΛ is invariant under not
only the topological conjugacy class of Λ but also the flow equivalence class of Λ, so
that the K-groups Ki(OΛ), i = 0, 1, and the Ext-groups Exti(OΛ), i = 0, 1, are invariant
under flow equivalence of subshifts [8, 28, 29]. The latter groups Exti(OΛ), i = 0, 1,
have been defined as the Bowen–Franks groups for Λ [28, 29] (see [4, 10]). For an
irreducible sofic shift, there is another important cover called the (left or right) Fischer
cover. The (left) Fischer cover is an irreducible labeled graph, that is, a minimal
(left)-resolving presentation, whereas the (left) Krieger cover is not necessarily
irreducible.

In [23], a certain synchronizing property for subshifts called λ-synchronization was
introduced. The λ-synchronizing property is weaker than the usual synchronizing
property, so that irreducible sofic shifts are λ-synchronizing just as Dyck shifts, β-
shifts, Morse shifts, etc. are λ-synchronizing. Many irreducible subshifts have this
property. For a λ-synchronizing subshift Λ there exists a λ-graph system called the
λ-synchronizing λ-graph system Lλ(Λ). The λ-synchronizing λ-graph system for an
irreducible sofic shift is the λ-graph system associated with the left Fischer cover.
Hence the λ-synchronizing λ-graph system of a λ-synchronizing subshift can be
regarded as an analogue of the left Fischer cover of an irreducible sofic shift.

In [36], it was proved that the K-groups Kλ
i (Λ), i = 0, 1, and the Bowen–Franks

groups BF i
λ(Λ), i = 0, 1, for the λ-synchronizing λ-graph system Lλ(Λ) of a λ-

synchronizing subshift Λ are invariant under not only the topological conjugacy class
but also the flow equivalence class of Λ. The groups are called the λ-synchronizing
K-groups and the λ-synchronizing Bowen–Franks groups, respectively. Hence they
yield flow equivalence invariants of λ-synchronizing subshifts.

In this paper, we will study the algebraic structure of the C∗-algebra OLλ(Λ)

associated with the λ-synchronizing λ-graph system Lλ(Λ) for Λ. The algebra is
denoted by Oλ(Λ). We will first show the following theorem.

T 1.1 (Theorem 3.8). Suppose that the right one-sided subshift of a λ-
synchronizing subshift Λ is homeomorphic to the Cantor set. If Λ is λ-synchronizingly
transitive, the C∗-algebra Oλ(Λ) is simple.

For an irreducible sofic shift Λ, the C∗-algebra Oλ(Λ) is always simple (Section 5),
whereas the C∗-algebra OΛ(= OLΛ) is not simple in many cases unless the sofic shift
Λ is a shift of finite type (see [1]). The λ-synchronization is invariant under not only
topological conjugacy but also flow equivalence [23, 36]. We will next prove the
following theorem.

T 1.2 (Theorem 4.17). The stable isomorphism class of the C∗-algebra Oλ(Λ)

with its Cartan subalgebra Dλ(Λ) is invariant under flow equivalence of λ-
synchronizing subshifts.

https://doi.org/10.1017/S1446788713000219 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000219


[3] C∗-algebras associated with lambda-synchronizing subshifts and flow equivalence 243

Therefore the stable isomorphism class of the pair (Oλ(Λ),Dλ(Λ)) is a new invariant
for flow equivalence of λ-synchronizing subshifts. Since

Kλ
i (Λ) = Ki(Oλ(Λ)), BF i

λ(Λ) = Exti(Oλ(Λ)), i = 0, 1,

we have a C∗-algebraic proof for the above-mentioned fact as its corollary.

C 1.3 (Corollary 4.18). The λ-synchronizing K-groups Kλ
i (Λ), i = 0, 1, and

the λ-synchronizing Bowen–Franks groups BF i
λ(Λ), i = 0, 1, for a λ-synchronizing

subshift Λ are invariant under flow equivalence.

Throughout the paper, we denote by N the set of positive integers and by Z+ the set
of nonnegative integers.

2. λ-synchronizing λ-graph systems

Let Λ be a subshift over Σ. We denote by XΛ(⊂ΣN) the set of all right one-sided
sequences appearing in Λ,

XΛ = {(xn)n∈N ∈ ΣN | (xn)n∈Z ∈ Λ},

which is called the right one-sided subshift for Λ. For a natural number l ∈ N, we
denote by Bl(Λ) the set of all words appearing in Λ with length equal to l. Put B∗(Λ) =⋃∞

l=0 Bl(Λ) where B0(Λ) = {∅} the empty word. For a word µ = µ1 · · · µk ∈ B∗(Λ), a
right infinite sequence x = (xi)i∈N ∈ XΛ and l ∈ Z+, put

Γ−l (µ) = {ν1 · · · νl ∈ Bl(Λ) | ν1 · · · νlµ1 · · · µk ∈ B∗(Λ)},

Γ−l (x) = {ν1 · · · νl ∈ Bl(Λ) | (ν1, . . . , νl, x1, x2, . . .) ∈ XΛ},

Γ+
l (µ) = {ω1 · · · ωl ∈ Bl(Λ) | µ1 · · · µkω1 · · · ωl ∈ B∗(Λ)},

Γ+
∗ (µ) =

∞⋃
l=0

Γ+
l (µ).

A word µ = µ1 · · · µk ∈ B∗(Λ) for l ∈ Z+ is said to be l-synchronizing if for all
ω ∈ Γ+

∗ (µ) the equality Γ−l (µ) = Γ−l (µω) holds. Denote by S l(Λ) the set of all
l-synchronizing words of Λ. We say that an irreducible subshift Λ is λ-synchronizing if
for any η ∈ Bl(Λ) and k ≥ l there exists ν ∈ S k(Λ) such that ην ∈ S k−l(Λ). Irreducible
sofic shifts are λ-synchronizing. More generally, synchronizing subshifts are
λ-synchronizing (see [3] for synchronizing subshifts). Many irreducible subshifts
including Dyck shifts, β-shifts and Morse shifts are λ-synchronizing. There exists
a concrete example of an irreducible subshift that is not λ-synchronizing (see [23]).

P 2.1 ([36, Theorem 4.4]; see [20, 23]). λ-synchronization is invariant un-
der not only topological conjugacy but also flow equivalence of subshifts.

For µ, ν ∈ B∗(Λ), we say that µ is l-past equivalent to ν if Γ−l (µ) = Γ−l (ν). We write
this as µ ∼

l
ν. The following lemma is straightforward.
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L 2.2 [23, 36]. Let Λ be a λ-synchronizing subshift. Then:

(i) for µ ∈ S l(Λ), there exists µ′ ∈ S l+1(Λ) such that µ ∼
l
µ′;

(ii) for µ ∈ S l(Λ), there exist β ∈ Σ and ν ∈ S l+1(Λ) such that µ ∼
l
βν.

A λ-graph system is a graphical object presenting a subshift [27]. It is a
generalization of a finite labeled graph and yields a C∗-algebra [30]. Let L = (V, E, λ, ι)
be a λ-graph system over Σ with vertex set V =

⋃
l∈Z+

Vl and edge set E =
⋃

l∈Z+
El,l+1

with a labeling map λ : E→ Σ, and supplied with surjective maps ι(=ιl,l+1) : Vl+1→ Vl

for l ∈ Z+. Here the vertex sets Vl, l ∈ Z+, are finite disjoint sets. Also El,l+1, l ∈ Z+, are
finite disjoint sets. Each edge e in El,l+1 has its source vertex s(e) in Vl and its terminal
vertex t(e) in Vl+1, respectively. Every vertex in V has a successor and every vertex in
Vl for l ∈ N has a predecessor. It is then required that there exists an edge in El,l+1 with
label α and its terminal vertex is v ∈ Vl+1 if and only if there exists an edge in El−1,l

with label α and its terminal vertex is ι(v) ∈ Vl. For u ∈ Vl−1 and v ∈ Vl+1, put

Eι
l,l+1(u, v) = {e ∈ El,l+1 | t(e) = v, ι(s(e)) = u},

El−1,l
ι (u, v) = {e ∈ El−1,l | s(e) = u, t(e) = ι(v)}.

Then we require a bijective correspondence preserving their labels between Eι
l,l+1(u, v)

and El−1,l
ι (u, v) for each pair of vertices u, v. We call this property the local property

of a λ-graph system. We call an edge in E a labeled edge and a finite sequence of
connecting labeled edges a labeled path. If a labeled path γ labeled ν starts at a
vertex v ∈ Vl and ends at a vertex u ∈ Vl+n, we say that ν leaves v and write s(γ) =

v, t(γ) = u, λ(γ) = ν. We henceforth assume that L is left-resolving, which means that
t(e) , t( f ) whenever λ(e) = λ( f ) for e, f ∈ E. For a vertex v ∈ Vl denote by Γ−l (v) the
predecessor set of v which is defined by the set of words with length l appearing as
labeled paths from a vertex in V0 to the vertex v. L is said to be predecessor-separated
if Γ−l (v) , Γ−l (u) whenever u, v ∈ Vl are distinct. Two λ-graph systems L = (V, E, λ, ι)
over Σ and L′ = (V ′, E′, λ′, ι′) over Σ are said to be isomorphic if there exist bijections
ΦV : V −→ V ′ and ΦE : E −→ E′ satisfying ΦV (Vl) = V ′l and ΦE(El,l+1) = E′l,l+1 such
that they give rise to a labeled graph isomorphism compatible to ι and ι′. We note that
any essential finite directed labeled graph G = (V, E, λ) over Σ with vertex setV, edge
set E and labeling map λ : E −→ Σ gives rise to a λ-graph system LG = (V, E, λ, ι) by
setting Vl =V, El,l+1 = E, ι = id for all l ∈ Z+ (see [30]).

For a λ-synchronizing subshift Λ over Σ, we have introduced a λ-graph system

L
λ(Λ) = (Vλ(Λ), Eλ(Λ), λλ(Λ), ιλ(Λ))

defined by λ-synchronization of Λ as follows [23, 36]. Let Vλ(Λ)
l be the l-past

equivalence classes of S l(Λ). We denote by [µ]l the equivalence class of µ ∈ S l(Λ).
For ν ∈ S l+1(Λ) and α ∈ Γ−1 (ν), define a labeled edge from [αν]l ∈ Vλ(Λ)

l to [ν]l ∈ Vλ(Λ)
l+1

labeled α. Such labeled edges are denoted by Eλ(Λ)
l,l+1. Denote by λλ(Λ) : Eλ(Λ)

l,l+1 −→ Σ
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the labeling map. Since S l+1(Λ) ⊂ S l(Λ), we have a natural map [µ]l+1 ∈ Vλ(Λ)
l+1 −→

[µ]l ∈ Vλ(Λ)
l that we denote by ιλ(Λ)

l,l+1. Then Lλ(Λ) = (Vλ(Λ), Eλ(Λ), λλ(Λ), ιλ(Λ)) defines a
predecessor-separated, left-resolving λ-graph system that presents Λ. We call Lλ(Λ)

the canonical λ-synchronizing λ-graph system of Λ. The canonical λ-synchronizing
λ-graph system may be characterized in an intrinsic way. Let L = (V, E, λ, ι) be a
predecessor-separated, left-resolving λ-graph system over Σ that presents a subshift Λ.
Denote by {vl

1, . . . , vl
m(l)} the vertex set Vl at level l. For an admissible word ν ∈ Bn(Λ)

and a vertex vl
i ∈ Vl, we say that vl

i launches ν if the following two conditions hold.

(i) There exists a path labeled ν in L leaving the vertex vl
i and ending at a vertex in

Vl+n.
(ii) The word ν does not leave any other vertex in Vl than vl

i.

We call the vertex vl
i the launching vertex for ν. We set

S vl
i
(Λ) = {ν ∈ B∗(Λ) | vl

i launches ν}.

D 2.3. A λ-graph system L is said to be λ-synchronizing if for any l ∈ N and
any vertex vl

i ∈ Vl, there exists a word ν ∈ B∗(Λ) such that vl
i launches ν.

In the following lemma we retain the above notation.

L 2.4 [36, Lemma 3.4]. Assume that L = (V, E, λ, ι) is λ-synchronizing. Then:

(i)
⊔m(l)

i=1 S vl
i
(Λ) = S l(Λ);

(ii) the l-past equivalence classes of S l(Λ) are S vl
i
(Λ), i = 1, . . . , m(l);

(iii) for any l-synchronizing word w ∈ S l(Λ), there exists a vertex vl
i(ω) ∈ Vl such that

vl
i(ω) launches ω and Γ−l (ω) = Γ−l (vl

i(ω)).

D 2.5. A λ-graph system L = (V, E, λ, ι) is said to be ι-irreducible if for any
two vertices v, u ∈ Vl and a labeled path γ starting at u, there exist a labeled path from
v to a vertex u′ ∈ Vl+n such that ιn(u′) = u , and a labeled path γ′ starting at u′ such that
ιn(t(γ′)) = t(γ) and λ(γ′) = λ(γ), where t(γ′), t(γ) denote the terminal vertices of γ′, γ
respectively and λ(γ′), λ(γ) the words labeled by γ′, γ respectively.

We denote by Λ the subshift presented by a λ-graph system L. It has been proved
that if L is ι-irreducible, then Λ is irreducible [36, Lemma 3.5]. If, in particular, L
is λ-synchronizing, the subshift Λ is irreducible if and only if L is ι-irreducible [36,
Proposition 3.7]. We then have the following proposition.

P 2.6 [36, Proposition 3.8]. A subshift Λ is λ-synchronizing if and only if
there exists a left-resolving, predecessor-separated, ι-irreducible, λ-synchronizing λ-
graph system that presents Λ.

T 2.7 [36, Theorem 3.9]. For a λ-synchronizing subshift Λ, there exists a
unique left-resolving, predecessor-separated, ι-irreducible, λ-synchronizing λ-graph
system that presents Λ. The unique λ-synchronizing λ-graph system is the canonical
λ-synchronizing λ-graph system Lλ(Λ) for Λ.
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As in Theorem 2.7, the canonical λ-synchronizing λ-graph system Lλ(Λ) has a
unique property. We henceforth call Lλ(Λ) the λ-synchronizing λ-graph system for Λ.
We say that a λ-graph system L is minimal if there is no proper λ-graph subsystem of
L that presents Λ. This means that if L′ is a λ-graph subsystem of L and presents
the same subshift as the subshift presented by L, then L′ coincides with L. The
λ-synchronizing λ-graph system Lλ(Λ) of a λ-synchronizing subshift Λ is minimal
[36, Proposition 3.10].

3. λ-synchronizing C∗-algebras

Let L = (V, E, λ, ι) be a left-resolving predecessor-separated λ-graph system over
Σ and Λ the presented subshift by L. We denote by {vl

1, . . . , vl
m(l)} the vertex set

Vl. Define the transition matrices Al,l+1, Il,l+1 of L by setting, for i = 1, 2, . . . , m(l),
j = 1, 2, . . . , m(l + 1), α ∈ Σ,

Al,l+1(i, α, j) =

1 if s(e) = vl
i, λ(e) = α, t(e) = vl+1

j for some e ∈ El,l+1,

0 otherwise,

Il,l+1(i, j) =

1 if ιl,l+1(vl+1
j ) = vl

i,

0 otherwise.

The C∗-algebra OL is realized as the universal unital C∗-algebra generated by partial
isometries S α, α ∈ Σ and projections El

i, i = 1, 2, . . . , m(l), l ∈ Z+, subject to the
following operator relations called (L):∑

β∈Σ

S βS
∗
β = 1,

m(l)∑
i=1

El
i = 1, El

i =

m(l+1)∑
j=1

Il,l+1(i, j)El+1
j ,

S αS ∗αEl
i = El

iS αS ∗α,

S ∗αEl
iS α =

m(l+1)∑
j=1

Al,l+1(i, α, j)El+1
j ,

for α ∈ Σ, i = 1, 2, . . . , m(l), l ∈ Z+. It is nuclear and belongs to the UCT class
[30, Proposition 5.6]. For a word µ = µ1 · · · µk ∈ Bk(Λ), we set S µ = S µ1 · · · S µk . The
algebra of all finite linear combinations of the elements of the form

S µEl
iS
∗
ν for µ, ν ∈ B∗(Λ), i = 1, . . . , m(l), l ∈ Z+

is a dense ∗-subalgebra of OL. Let us denote byAL the C∗-subalgebra of OL generated
by the projections El

i, i = 1, . . . , m(l), l ∈ Z+, which is a commutative AF-algebra. For
a vertex vl

i ∈ Vl, put

Γ+
∞(vl

i) = {(α1, α2, . . . , ) ∈ ΣN | there exists an edge en,n+1 ∈ En,n+1 for n ≥ l

such that vl
i = s(el,l+1), t(en,n+1) = s(en+1,n+2), λ(en,n+1) = αn−l+1},
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the set of all label sequences in L starting at vl
i. We say that L satisfies condition (I)

if for each vl
i ∈ V, the set Γ+

∞(vl
i) contains at least two distinct sequences. Under

condition (I), the algebra OL can be realized as the unique C∗-algebra subject to
the relations (L) [30, Theorem 4.3]. A λ-graph system L is said to λ-irreducible
if for an ordered pair of vertices u, v ∈ Vl, there exists a number Ll(u, v) ∈ N such
that for a vertex w ∈ Vl+Ll(u,v) with ιLl(u,v)(w) = u, there exists a path γ in L such
that s(γ) = v, t(γ) = w, where ιLl(u,v) means the Ll(u, v)-times compositions of ι, and
s(γ), t(γ) denote the source vertex and the terminal vertex of γ, respectively [33]. If
L is λ-irreducible with condition (I), then the C∗-algebra OL is simple ([30, Theorem
4.7], [33]).

P 3.1. Let Λ be a λ-synchronizing subshift over Σ and Lλ(Λ) the λ-
synchronizing λ-graph system for Λ. Then the right one-sided subshift XΛ of Λ is
homeomorphic to the Cantor set if and only if Lλ(Λ) satisfies condition (I).

P. Assume that the right one-sided subshift XΛ of Λ is homeomorphic to the
Cantor set. For a vertex vl

i ∈ Vλ(Λ)
l , take a l-synchronizing word µ = µ1 · · · µk ∈ S l(Λ)

such that vl
i launches µ. Take an infinite sequence x ∈ XΛ such that µ ∈ Γ−k (x). Since XΛ

is homeomorphic to the Cantor set, any neighborhood of µx in XΛ contains an element
that is different from µx. Hence there exists an infinite sequence x′ ∈ XΛ such that
µx′ ∈ XΛ and x , x′. As µ must leave the vertex vl

i, both the sequences µx and µx′ are
contained in Γ+

∞(vl
i) so that Lλ(Λ) satisfies condition (I).

Conversely, assume that Lλ(Λ) satisfies condition (I). Since XΛ is a compact,
totally disconnected metric space, it suffices to show that XΛ is perfect. For any
x = (x1, x2, . . . ) ∈ XΛ and a word µ1 · · · µk with µ1 = x1, . . . , µk = xk, consider a
cylinder set Uµ = {(yn)n∈N ∈ XΛ | y1 = µ1, . . . , yk = µk}. Take an infinite path (en)n∈N

in Lλ(Λ) labeled x such that λ(en) = xn, t(en) = s(en+1), n ∈ N. Let us denote by
vk

i ∈ Vλ(Λ)
k the terminal vertex of the edge ek. Since the follower set Γ+

∞(vk
i ) of vk

i
has at least two distinct sequences, there exists x′ = (x′k+1, x′k+2, . . . ) ∈ Γ+

∞(vk
i ) such

that x′ , (xk+1, xk+2, . . . ). As x′ starts at vk
i , the right one-sided sequence µx′ =

(µ1, . . . , µk, x′k+1, x′k+2, . . . ) is contained in XΛ and hence in Uµ. One then sees that
x is a cluster point in XΛ. �

Let L = (V, E, λ, ι) be a left-resolving, predecessor-separated λ-graph system over
Σ that presents a λ-synchronizing subshift Λ. Let S α, α ∈ Σ and El

i, i = 1, . . . , m(l), l ∈
Z+, be the generating partial isometries and the projections in OL satisfying the
relations (L). If L is the λ-synchronizing λ-graph system Lλ(Λ) for Λ, the algebra
OL is denoted by Oλ(Λ). We will study the algebraic structure of the C∗-algebra Oλ(Λ)

of a λ-synchronizing subshift Λ.

L 3.2. If L is the λ-synchronizing λ-graph system Lλ(Λ), then:

(i) for a vertex vl
i ∈ Vl, there exists a word µ ∈ S l(Λ) such that El

i ≥ S µS ∗µ;

(ii) for a word µ ∈ S l(Λ), there exists a unique vertex vl
i ∈ Vλ(Λ)

l such that El
i ≥ S µS ∗µ.
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P. (i) For a vertex vl
i ∈ Vl, take a word µ ∈ S l(Λ) such that vl

i launches µ. Since
the word µ does not leave any other vertex in Vl than vl

i, we have S ∗µEl
jS µ = 0 for j , i

so that S µS ∗µEl
j = 0 for j , i. Let n = |µ|. It then follows that

El
i =

∑
ν∈Bn(Λ)

S νS
∗
νE

l
i ≥ S µS ∗µEl

i =

m(l)∑
j=1

S µS ∗µEl
j = S µS ∗µ.

(ii) For a word µ ∈ S l(Λ), put vl
i = [µ]l ∈ Vλ(Λ)

l . Since vl
i launches µ, we have

S ∗µEl
jS µ = 0 for j , i so that S µS ∗µEl

j = 0 for j , i. As in the above discussions,
we have El

i ≥ S µS ∗µ. If there exists j = 1, . . . , m(l) such that El
j ≥ S µS ∗µ, we have

S ∗µEl
jS µ ≥ S ∗µS µ , 0 so that S ∗µEl

jS µ , 0. Hence there exists a path in Lλ(Λ) labeled
µ that leaves vl

j. Since vl
i launches µ, we have j = i. �

The following proposition describes a C∗-algebraic characterization for λ-
synchronization of a λ-graph system.

P 3.3. A λ-graph system L is λ-synchronizing if and only if for every vl
i ∈ Vl,

there exists a word µ ∈ S l(Λ) such that El
i ≥ S µS ∗µ in OL.

P. Since the λ-synchronizing λ-graph system for Λ is unique and it is Lλ(Λ), the
only if part has been proved in the preceding lemma. We will prove the if part. For
a vertex vl

i ∈ Vl, there exists a word µ = µ1 . . . µn ∈ S l(Λ) such that El
i ≥ S µS ∗µ. Hence

we have S ∗µEl
iS µ , 0 so that the word µ leaves the vertex vl

i and hence Γ−l (vl
i) ⊂ Γ−l (µ).

For ξ ∈ Γ−l (µ) we have S ξEl
iS
∗
ξ ≥ S ξS µS ∗µS ∗ξ , 0 so that ξ ∈ Γ−l (vl

i). This implies that
Γ−l (µ) ⊂ Γ−l (vl

i), so that
Γ−l (vl

i) = Γ−l (µ). (3.1)

Suppose that µ leaves vl
j. Take a path labeled µ in L from vl

j to vl+n
j′ ∈ Vl+n. By the

hypothesis, there exists ν ∈ S l+n(Λ) for the vertex vl+n
j′ such that El+n

j′ ≥ S νS ∗ν. By a
similar argument to the above, we know that

Γ−l+n(vl+n
j′ ) = Γ−l+n(ν). (3.2)

One then sees that
Γ−l (vl

j) = Γ−l (µν). (3.3)

One indeed sees that ξµ ∈ Γ−l+n(vl+n
j′ ) for ξ ∈ Γ−l (vl

j). By (3.2), we have ξµ ∈ Γ−l+n(ν)
so that ξ ∈ Γ−l (µν). Conversely, for η ∈ Γ−l (µν), we have ηµ ∈ Γ−l+n(ν) so that by (3.2)
ηµ ∈ Γ−l+n(vl+n

j′ ). As L is left-resolving, we have η ∈ Γ−l (vl
j). Hence we have (3.3). Now

we know that Γ−l (µν) = Γ−l (µ), so that

Γ−l (vl
j) = Γ−l (µ). (3.4)

By (3.1) and (3.4), we have
Γ−l (vl

i) = Γ−l (vl
j).
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Since L is left-resolving, we obtain that vl
i = vl

j and hence vl
i launches µ. Thus L is

λ-synchronizing. �

The following lemmas are stated in terms of the C∗-algebra Oλ(Λ) associated with
the λ-synchronizing λ-graph system Lλ(Λ) of a λ-synchronizing subshift Λ.

L 3.4. For ξ, η ∈ B∗(Λ), we have Γ+
∗ (ξ) = Γ+

∗ (η) if and only if S ∗ξS ξ = S ∗ηS η.

P. Let p = |ξ|, q = |η|. We may assume that p ≤ q. Let V p
t(ξ) be the set of all terminal

vertices in Vp of paths in Lλ(Λ) labeled ξ, that is,

V p
t(ξ) = {vp

j ∈ Vp | ξ ∈ Γ−p(vp
j )}.

Denote by ξ(p) the cardinal number of V p
t(ξ). We write V p

t(ξ) = {vp
j1
, . . . , vp

jξ(p)
}. Similarly,

let us denote by Vq
t(η) the set of all terminal vertices in Vq of paths in Lλ(Λ) labeled η.

Denote by η(q) the cardinal number of Vq
t(η). We write Vq

t(η) = {vq
k1
, . . . , vq

kη(q)
}. By the

relations (L), we see that

S ∗ξS ξ = Ep
j1

+ · · · + Ep
jξ(p)
, S ∗ηS η = Eq

k1
+ · · · + Eq

kη(q)
.

We set

ιq−p(Vq
t(η)) = {ιq−p(vq

k1
), . . . , ιq−p(vq

kη(q)
)} ⊂ Vp,

ιp−q(V p
t(ξ)) = {vq

k ∈ Vq | ι
q−p(vq

k) ∈ V p
t(ξ)} ⊂ Vq.

We then have S ∗ξS ξ = S ∗ηS η if and only if ιp−q(V p
t(ξ)) = Vq

t(η).
Now assume that Γ+

∗ (ξ) = Γ+
∗ (η). For vq

k ∈ Vq
t(η), take ν(k) ∈ S q(Λ) such that vq

k

launches ν(k). It is easy to see that ιq−p(vq
k) launches ν(k). Since ν(k) ∈ Γ+

∗ (η),
we have ν(k) ∈ Γ+

∗ (ξ) so that ν(k) leaves a vertex in V p
t(ξ). As ιq−p(vq

k) is the only
vertex which ν(k) leaves, we have ιq−p(vq

k) ∈ V p
t(ξ). Hence we have ιq−p(Vq

t(η)) ⊂ V p
t(ξ)

so that Vq
t(η) ⊂ ι

p−q(V p
t(ξ)). For the other inclusion relation, take an arbitrary vertex

vp
k ∈ ι

p−q(V p
t(ξ)) and µ(q) ∈ S q(Λ) such that vp

k launches µ(q). The word µ(q) leaves
ιq−p(vq

k) and ιq−p(vq
k) launches µ(q). As µ(q) ∈ Γ+

∗ (ξ), we have µ(q) ∈ Γ+
∗ (η) so that there

exists a vertex vq
kn
∈ Vq

t(η) such that µ(q) leaves vq
kn

. Therefore we have vq
k = vq

kn
and

hence vq
k ∈ Vq

t(η) so that ιp−q(V p
t(ξ)) ⊂ Vq

t(η). This implies that S ∗ξS ξ = S ∗ηS η.

Conversely, assume that the equality S ∗ξS ξ = S ∗ηS η holds so that ιp−q(V p
t(ξ)) = Vq

t(η).
By the local property of λ-graph system, we can easily see that the set of followers of
V p

t(ξ) coincides with the set of followers of Vq
t(η). This implies that Γ+

∗ (ξ) = Γ+
∗ (η). �

For µ, ν ∈ B∗(Λ), we write µ � ν if there exists a word η ∈ B∗(Λ) such that Γ+
∗ (ν) =

Γ+
∗ (µην). The following lemma follows from the preceding lemma.

L 3.5. For µ, ν ∈ B∗(Λ), the following three conditions are equivalent.

(i) µ � ν.
(i) There exists a word η ∈ B∗(Λ) such that S ∗νS ν = S ∗νS

∗
ηS
∗
µS µS ηS ν in Oλ(Λ).

(iii) There exists a word η ∈ B∗(Λ) such that S νS ∗ν ≤ S ∗ηS
∗
µS µS η in Oλ(Λ).
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P. The equivalence between (i) and (ii) follows from Lemma 3.4. It is clear
that the equality S ∗νS ν = S ∗νS

∗
ηS
∗
µS µS ηS ν is equivalent to the inequality S νS ∗ν ≤

S ∗ηS
∗
µS µS η. �

D 3.6. A λ-synchronizing subshift Λ is said to be synchronizingly transitive
if for any two words µ, ν ∈ B∗(Λ), both the relations µ � ν and ν � µ hold.

We note that the λ-irreduciblity for L is rephrased in terms of the algebra OL as the
property that for any El

i, i = 1, . . . , m(l), there exists n ∈ N such that
∑n

k=1 λ
k
L
(El

i) ≥ 1,
where λk

L
(X) =

∑
µ∈Bk(Λ) S ∗µXS µ for X ∈ AL [33].

L 3.7. If Λ is synchronizingly transitive, then Lλ(Λ) is λ-irreducible.

P. Take an ordered pair vl
i, vl

j ∈ Vl of vertices. Since Λ is λ-synchronizing, by
Lemma 3.2, there exists µ ∈ S l(Λ) such that vl

i launches µ so that El
i ≥ S µS ∗µ. For the

vertex vl
j, take a word ν ∈ Bl(Λ) such that ν ∈ Γ−l (vl

j) so that S ∗νS ν ≥ El
j. Now Λ is

synchronizingly transitive so that

S ∗νS
∗
ηS
∗
µS µS ηS ν = S ∗νS ν

for some η ∈ B∗(Λ), and hence

S ∗νS
∗
ηS
∗
µEl

iS µS ηS ν ≥ S ∗νS ν ≥ El
j.

Put k = |µην|. Then λk
Lλ(Λ) (El

i) ≥ El
j. Thus we may find n ∈ N such that

n∑
k=1

λk
Lλ(Λ) (El

i) ≥ 1. �

T 3.8. Let Λ be a λ-synchronizing subshift over Σ. Assume that the right one-
sided subshift XΛ of Λ is homeomorphic to the Cantor set. If Λ is synchronizingly
transitive, then the C∗-algebra Oλ(Λ) associated with the λ-synchronizing λ-graph
system Lλ(Λ) for Λ is simple.

P. Since XΛ is homeomorphic to the Cantor set, the λ-graph system Lλ(Λ)

satisfies condition (I). By the preceding proposition, the synchronizing transitivity
of Λ implies that Lλ(Λ) is λ-irreducible so that the C∗-algebra Oλ(Λ) is simple by
[30, Theorem 4.7]. �

4. Flow equivalence and λ-synchronizing C∗-algebras

It has been proved that λ-synchronization is invariant under flow equivalence [36].
The proof uses Parry and Sullivan’s result [37] which says that the flow equivalence
relation on homeomorphisms of the Cantor set is generated by topological conjugacy
and expansion of symbols. Let Λ be a subshift over the alphabet Σ = {1, 2, . . . , N}.
A new subshift Λ̃ over the alphabet Σ̃ = {0, 1, 2, . . . , N} is defined as the subshift
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consisting of all bi-infinite sequences of Σ̃ obtained by replacing the symbol 1 in a bi-
infinite sequence in the subshift Λ by the word 01. This operation is called expansion.
Parry and Sullivan’s result, stated above, is the following lemma.

L 4.1 [37]. The flow equivalence relation of subshifts is generated by topological
conjugacy and expansion Λ→ Λ̃.

In [36], it has been proved that the λ-synchronizing K-groups Kλ
0 (Λ), Kλ

1 (Λ) and
the λ-synchronizing Bowen–Franks groups BF0

λ(Λ), BF1
λ(Λ) for a λ-synchronizing

subshift Λ are invariant under flow equivalence of subshifts. The groups Kλ
0 (Λ),

Kλ
1 (Λ) and the Bowen–Franks groups BF0

λ(Λ), BF1
λ(Λ) are realized as the K-groups

K0(Oλ(Λ)), K1(Oλ(Λ)) and the Ext-groups Ext0(Oλ(Λ)), Ext1(Oλ(Λ)) for the C∗-algebra
Oλ(Λ) associated with the λ-synchronizing λ-graph system Lλ(Λ). If the algebra Oλ(Λ) is
simple and purely infinite, the K-groups K0(Oλ(Λ)), K1(Oλ(Λ)) determine the stable
isomorphism class of Oλ(Λ) by the structure theorem of purely infinite simple C∗-
algebras [14, 15, 38].

In this section, we will prove that the stable isomorphism class of the pair
(Oλ(Λ),Dλ(Λ)) of Oλ(Λ) with its Cartan subalgebra Dλ(Λ) is invariant under flow
equivalence of λ-synchronizing subshifts. The outline of the proof essentially follows
the proof of [28, Theorem 9.3]. As there are many technical differences between the
proofs, we will give a complete proof. We will not assume simplicity of the algebra
Oλ(Λ). As a result, we also give a C∗-algebraic proof of the above invariance of the
groups Kλ

0 (Λ), Kλ
1 (Λ) and the Bowen–Franks groups BF0

λ(Λ), BF1
λ(Λ) under flow

equivalence.
Let Λ be a λ-synchronizing subshift over Σ = {1, 2, . . . , N}. Let S i, i ∈ Σ, and

El
i, i = 1, . . . , m(l), l ∈ Z+, be the generating partial isometries and the projections in

the C∗-algebra Oλ(Λ) satisfying the relations (Lλ(Λ)). The Cartan subalgebra Dλ(Λ) is
defined to be the C∗-subalgebra of Oλ(Λ) generated by the projections of the form
S µEl

iS
∗
µ, i = 1, . . . , m(l), µ ∈ B∗(Λ), which is a regular maximal abelian subalgebra in

Oλ(Λ) if the λ-synchronizing λ-graph system Lλ(Λ) satisfies condition (I). Consider the
subshift Λ̃ over Σ̃ = {0, 1, . . . , N} that is obtained from Λ by replacing 1 in Λ by 01.
It has been proved in [36] that Λ̃ is λ-synchronizing. Denote by Oλ(Λ̃) the C∗-algebra

associated with the λ-synchronizing λ-graph system Lλ(Λ̃) for Λ̃. Similarly, let S̃ i, i ∈ Σ̃,
and Ẽl

i, i = 1, . . . , m̃(l), l ∈ Z+, be the generating partial isometries and the projections

in the C∗-algebra Oλ(Λ̃) satisfying the relations (Lλ(Λ̃)). We set the partial isometries

s1 = S̃ 0S̃ 1, si = S̃ i, for i = 2, . . . , N,

and the projection

P = S̃ 0S̃ ∗0 + S̃ 2S̃ ∗2 + S̃ 3S̃ ∗3 + · · · + S̃ N S̃ ∗N = 1 − S̃ 1S̃ ∗1

in Oλ(Λ̃).

L 4.2. S̃ ∗0S̃ 0 = S̃ 1S̃ ∗1 and hence s1s∗1 = S̃ 0S̃ ∗0, s∗1s1 = S̃ ∗1S̃ 1.
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P. We note that the set Vλ(Λ̃)
0 is a singleton. There exists a unique vertex v1

j0
in Vλ(Λ̃)

1

such that the symbol 0 goes to v1
j0

from Vλ(Λ̃)
0 . The vertex v1

j0
is the 1-past equivalence

class [1µ]1 for a word 1µ ∈ B∗(Λ̃). It launches the symbol 1. Since 1 is the only symbol
which leaves v1

j0
, we see that S̃ ∗αẼ1

j0
S̃ α , 0 if and only if α = 1. It then follows that

Ẽ1
j0 =

∑
α∈Σ̃

S̃ αS̃ ∗αẼ1
j0 = S̃ 1S̃ ∗1Ẽ1

j0 .

Hence, Ẽ1
j0
≤ S̃ 1S̃ ∗1. Since the inequality Ẽ1

j0
≥ S̃ 1S̃ ∗1 is clear,

Ẽ1
j0 = S̃ 1S̃ ∗1.

As v1
j0

is the unique vertex in Vλ(Λ̃)
1 such that the symbol 0 goes to v1

j0
, we have

S̃ ∗0S̃ 0 = Ẽ1
j0
. The equalities s1s∗1 = S̃ 0S̃ ∗0, s∗1s1 = S̃ ∗1S̃ 1 are obvious. �

L 4.3. (i) P =
∑N

j=1 s js∗j .
(ii) P ≥ s∗µsµ for all µ ∈ Bl(Λ), l ∈ N.
(iii)

∑
µ∈Bl(Λ) s∗µsµ ≥ P for all l ∈ N.

P. (i) Since S̃ 0S̃ ∗0 = s1s∗1, the assertion is clear.
(ii) Since P = 1 − Ẽ1

j0
, it suffices to show that Ẽ1

j0
⊥ s∗µsµ for µ = µ1 · · · µl ∈ Bl(Λ).

If µl , 1, then sµl = S̃ µl so that sµl S̃ 1 = S̃ µl S̃ 1 = 0. If µl = 1, then sµl = S̃ 0S̃ 1 so that
sµl S̃ 1 = S̃ 0S̃ 1S̃ 1 = 0. In any case we have sµl S̃ 1 = 0 so that s∗µsµẼ1

j0
= 0.

(iii) We will first prove that
∑N

i=1 s∗i si ≥ P. We know that S̃ ∗i S̃ i = s∗i si for i =

1, . . . , N and S̃ ∗0S̃ 0 = S̃ 1S̃ ∗1 = 1 − P. Since
∑N

i=0 S̃ ∗i S̃ i ≥ 1 in Oλ(Λ̃), one obtains

N∑
i=0

S̃ ∗i S̃ i = 1 − P +

N∑
i=1

s∗i si ≥ 1

so that
∑N

i=1 s∗i si ≥ P. Suppose that the inequality
∑
µ∈Bk(Λ) s∗µsµ ≥ P holds for some

k ∈ N. It then follows that∑
ν∈Bk+1(Λ)

s∗νsν =

N∑
i=1

s∗i

( ∑
µ∈Bk(Λ)

s∗µsµ
)
si

≥

N∑
i=1

s∗i Psi =

N∑
i, j=1

s∗i s js
∗
j si =

N∑
i=1

s∗i si ≥ P.

Hence we have the desired inequalities. �

In the λ-graph system Lλ(Λ), recall that the set Γ−l (vl
i) for a vertex vl

i in Vl denotes
the predecessor of vl

i which is the set of words of Bl(Λ) presented by labeled paths
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terminating at vl
i. Put the projections for i = 1, 2, . . . , m(l), l ∈ Z+,

el
i =

∏
µ∈Γ−l (vl

i)

s∗µsµ
∏

ν∈Bl(Λ)\Γ−l (vl
i)

(P − s∗νsν).

For µ ∈ B∗(Λ), put
s∗µs1

µ = s∗µsµ, s∗µs−1
µ = P − s∗µsµ.

For vl
i ∈ Vλ(Λ)

l , define a function f l
i : Bl(Λ) −→ {1, −1} by setting

f l
i (µ) =

1 if µ ∈ Γ−l (vl
i),

−1 if µ < Γ−l (vl
i),

so that
el

i =
∏

µ∈Bl(Λ)

s∗µs
f l
i (µ)
µ .

Denote by {1, −1}Bl(Λ) the set of all functions from Bl(Λ) to {1, −1}.

L 4.4. For ε ∈ {1, −1}Bl(Λ), we have
∏

µ∈Bl(Λ) s∗µsε(µ)
µ , 0 if and only if ε = f l

i for

some i = 1, . . . , m(l). In this case
∏

µ∈Bl(Λ) s∗µsε(µ)
µ = el

i.

P. Suppose that ε = f l
i for some i = 1, . . . , m(l). Since Λ is λ-synchronizing, there

exists ν ∈ S l(Λ) such that vl
i launches ν so that

s∗µsµ ≥ sνs∗ν for µ ∈ Γ−l (vl
i),

P − s∗µsµ ≥ sνs∗ν for µ ∈ Bl(Λ) \ Γ−l (vl
i).

Hence,
∏

µ∈Bl(Λ) s∗µs
f l
i (µ)
µ ≥ sνs∗ν , 0.

Conversely, suppose that
∏

µ∈Bl(Λ) s∗µsε(µ)
µ , 0. Since

∏
µ∈Bl(Λ) s∗µsε(µ)

µ ∈ Aλ(Λ̃), there

exist k ≥ l and i1 = 1, 2, . . . , m̃(k) such that
∏

µ∈Bl(Λ) s∗µsε(µ)
µ ≥ Ẽk

i1
∈ Aλ(Λ̃). Take ω ∈

S k(Λ̃) such that vk
i1

launches ω. Since
∑
µ∈Bl(Λ) s∗µsµ ≥ P, there exists µ ∈ Bl(Λ) such

that s∗µsµ ≥ Ẽk
i1

. Hence we see that µω ∈ B∗(Λ). As the rightmost letter of µ is not 0,
the leftmost letter of ω is not 1. Let ω̄ be the word in B∗(Λ) obtained from ω by putting
1 in place of 01 in ω. Since Ẽk

i1
≥ S̃ ωS̃ ∗ω, we see that∏
µ∈Bl(Λ)

s∗µsε(µ)
µ ≥ sω̄s∗ω̄.

As [ω̄]l ∈ Vλ(Λ)
l , we have [ω̄]l = vl

i for some i = 1, . . . , m(l). The vertex vl
i launches ω̄

so that ε = f l
i . �

L 4.5. For µ, ν ∈ Bl(Λ) and α, β ∈ Σ, we have:

(i) s∗µ(P − s∗αsα)sµ · s∗µs∗βsβsµ = (P − s∗αµsαµ)s∗βµsβµ;
(ii) s∗α · s

∗
µsµ(P − s∗νsν)sα = s∗µαsµα(P − s∗ναsνα).
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P. (i) Since Ps∗βsβ = s∗βsβ and hence s∗µPs∗βsβsµ = s∗βµsβµ,

s∗µ(P − s∗αsα)sµ · s
∗
µs∗βsβsµ = s∗µPs∗βsβsµ − s∗µs∗αsαs∗βsβsµ

= Ps∗βµsβµ − s∗αµsαµs∗βµsβµ

= (P − s∗αµsαµ)s∗βµsβµ.

(ii) Since Psα = sα and s∗µαsµα = s∗µαsµαP,

s∗α · s
∗
µsµ(P − s∗νsν)sα = s∗µαsµα − s∗µαsµαs∗ναsνα

= s∗µαsµα(P − s∗ναsνα). �

L 4.6. The partial isometries sα, α ∈ Σ and the projections el
i, i = 1, 2, . . . , m(l),

l ∈ Z+, satisfy the following operator relations:∑
β∈Σ

sβs∗β = P, (4.1)

m(l)∑
i=1

el
i = P, el

i =

m(l+1)∑
j=1

Il,l+1(i, j)el+1
j , (4.2)

sαs∗αel
i = el

isαs∗α,

s∗αel
isα =

m(l+1)∑
j=1

Al,l+1(i, α, j)el+1
j , (4.3)

for α ∈ Σ, i = 1, 2, . . . , m(l), l ∈ Z+, where Il,l+1, Al,l+1 denote the transition matrices
for the λ-graph system Lλ(Λ).

P. Equality (4.1) has been proved in Lemma 4.3(i).
It follows that

P =
∏

µ∈Bl(Λ)

(s∗µsµ + P − s∗µsµ) =
∑

ε∈{−1,1}Bl(Λ)

∏
µ∈Bl(Λ)

s∗µsε(µ)
µ .

By Lemma 4.4, the nonzero
∏

µ∈Bl(Λ) s∗µsε(µ)
µ is of the form

∏
µ∈Bl(Λ) s∗µs

f l
i (µ)
µ for some

i = 1, . . . , m(l) so that we have P =
∑m(l)

i=1 el
i.

We will next show equality (4.3). It follows that

s∗αel
isα = s∗α

( ∏
µ∈Γ−l (vl

i)

s∗µsµ
∏

ν∈Bl(Λ)\Γ−l (vl
i)

(P − s∗νsν)
)
sα

=
∏

µ∈Γ−l (vl
i)

s∗µαsµα
∏

ν∈Bl(Λ)\Γ−l (vl
i)

(P − s∗ναsνα).
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Hence s∗αel
isα is written as a finite sum of el+1

j , j = 1, . . . , m(l + 1). If s∗αel
isα ≥ el+1

j ,
then

s∗α(s∗µsµ)sα ≥ el+1
j for µ ∈ Γ−l (vl

i),

s∗α(P − s∗νsν)sα ≥ el+1
j for ν ∈ Bl(Λ) \ Γ−l (vl

i).

Since
el+1

j =
∏

ξ∈Γ−l+1(vl+1
j )

s∗ξ sξ
∏

η∈Bl+1(Λ)\Γ−l+1(vl+1
j )

(P − s∗ηsη)

and Λ is λ-synchronizing, there exists ζ( j) ∈ S l+1(Λ) such that [ζ( j)]l+1 = vl+1
j . Hence,

el+1
j ≥ sζ( j)s∗ζ( j). As s∗αel

isα ≥ el+1
j ≥ sζ( j)s∗ζ( j), we have el

i ≥ sαζ( j)s∗αζ( j) , 0. Hence

µαζ( j) ∈ B∗(Λ) for µ ∈ Γ−l (vl
i),

ναζ( j) < B∗(Λ) for ν ∈ Bl(Λ) \ Γ−l (vl
i)

so that [αζ( j)]l = vl
i. Since [ζ( j)]l+1 = vl+1

j , we have Al,l+1(i, α, j) = 1. Therefore the
condition s∗αel

isα ≥ el+1
j implies that Al,l+1(i, α, j) = 1. We thus obtain

s∗αel
isα =

m(l+1)∑
j=1

Al,l+1(i, α, j)el+1
j .

We will next prove the second equality of (4.2). By the equalities

el
i =

∏
µ∈Γ−l (vl

i)

s∗µsµ
∏

ν∈Bl(Λ)\Γ−l (vl
i)

(P − s∗νsν)

=
∏

µ∈Γ−l (vl
i)

(m(1)∑
k=1

s∗µe1
k sµ

) ∏
ν∈Bl(Λ)\Γ−l (vl

i)

(
P −

m(1)∑
h=1

s∗νe
1
hsν

)

we know that el
i is a finite sum of el

1, . . . , el+1
m(l+1). Suppose that el

i ≥ el+1
j . Since vl+1

j =

[ζ( j)]l+1 for some ζ( j) ∈ S l+1(Λ), we have el+1
j ≥ sζ( j)s∗ζ( j) and hence el

i ≥ sζ( j)s∗ζ( j). This
implies that ∏

µ∈Γ−l (vl
i)

s∗µsµ
∏

ν∈Bl(Λ)\Γ−l (vl
i)

(P − s∗νsν) ≥ sζ( j)s
∗
ζ( j)

so that

s∗µsµ ≥ sζ( j)s
∗
ζ( j) and hence sµζ( j) , 0 for µ ∈ Γ−l (vl

i),

P − s∗νsν ≥ sζ( j)s
∗
ζ( j) and hence sνζ( j) = 0 for ν ∈ Bl(Λ) \ Γ−l (vl

i).
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Hence

µζ( j) ∈ B∗(Λ) for µ ∈ Γ−l (vl
i),

νζ( j) < B∗(Λ) for ν ∈ Bl(Λ) \ Γ−l (vl
i).

Thus we have [ζ( j)]l = vl
i. As [ζ( j)]l+1 = vl+1

j , we obtain that Il,l+1(i, j) = 1. We
conclude that the second equality of (4.2) holds.

The projections el
i and s∗αsα all belong to the commutative C∗-subalgebra of

Oλ(Λ̃) generated by the projections S̃ µS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗µ, µ, ξ1 · · · ξn ∈ B∗(Λ̃). The
commutativity between el

i and s∗αsα is obvious. Thus we complete the proof. �

Therefore we have the following corollary.

C 4.7. Suppose that the λ-synchronizing λ-graph system Lλ(Λ) of a
λ-synchronizing subshift Λ satisfies condition (I). Then the C∗-subalgebra of Oλ(Λ̃)

generated by the partial isometries sα, α ∈ Σ and the projections el
i, i = 1, . . . , m(l), l ∈

Z+, is canonically isomorphic to the C∗-algebra Oλ(Λ) associated with the λ-graph
system Lλ(Λ).

P. Since the λ-synchronizing λ-graph system Lλ(Λ) satisfies condition (I), the
C∗-algebra OLλ(Λ) , which is Oλ(Λ), is the unique C∗-algebra subject to the relations
(Lλ(Λ)) by [30, Theorem 4.3]. Therefore the assertion follows from the preceding
lemma. �

We identify the algebra Oλ(Λ) with the above C∗-subalgebra of Oλ(Λ̃) generated by
the partial isometries sα, α ∈ Σ and the projections el

i, i = 1, . . . , m(l), l ∈ Z+. We note
that the projections el

i, i = 1, . . . , m(l), l ∈ Z+, and P are written by sα, s∗α, α ∈ Σ, so
that the subalgebra Oλ(Λ) is generated by sα, α ∈ Σ.

We will henceforth prove that the C∗-subalgebra POλ(Λ̃)P is generated by sα, α ∈ Σ,
that is, POλ(Λ̃)P = Oλ(Λ). Let Aλ(Λ̃) be the C∗-subalgebra of Oλ(Λ̃) generated by the

projections Ẽl
i, i = 1, . . . , m̃(l), l ∈ Z+, similarly Aλ(Λ) the C∗-subalgebra of Oλ(Λ̃)

generated by the projections el
i, i = 1, . . . , m̃(l), l ∈ Z+. The subalgebra Aλ(Λ) is

naturally regarded as a corresponding subalgebra of Oλ(Λ) through the canonical
isomorphism in the above corollary.

For a word ν = ν1 · · · νl ∈ Bl(Λ̃) satisfying ν1 , 1, νl , 0, we define the word ν ∈
B∗(Λ) by putting 1 in place of 01 in ν. Since s1 = S̃ 0S̃ 1, the following lemma is
straightforward.

L 4.8. For any µ = µ1 · · · µk ∈ Bk(Λ̃), the partial isometry S̃ µ is of the form:

S̃ µ =



sµ if µ1 , 1, µk , 0,

S̃ 1sµ2···µk if µ1 = 1, µk , 0,

sµ1···µk−1 S̃ 0 if µ1 , 1, µk = 0,

S̃ 1sµ2···µk−1 S̃ 0 if µ1 = 1, µk = 0.
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L 4.9. For any µ = µ1 · · · µk ∈ Bk(Λ̃),

S̃ µP =


sµP if µ1 , 1, µk , 0,

S̃ 1sµ2···µk P if µ1 = 1, µk , 0,

0 if µ1 , 1, µk = 0,

0 if µ1 = 1, µk = 0.

P. By the preceding lemma, it suffices to show that S̃ 0P = 0 for both the third and
fourth cases. As S̃ ∗0S̃ 0 = S̃ 1S̃ ∗1,

S̃ 0P = S̃ 0S̃ 1S̃ ∗1P = S̃ 0S̃ 1S̃ ∗1(1 − S̃ 1S̃ ∗1) = 0. �

L 4.10. For any µ = µ1 · · · µk ∈ Bk(Λ̃),

PS̃ ∗µS̃ µP =


Ps∗

µ
sµP if µ1 , 1, µk , 0,

Ps∗
µ2···µk

s∗1s1sµ2···µk P if µ1 = 1, µk , 0,

0 if µ1 , 1, µk = 0,

0 if µ1 = 1, µk = 0.

P. By the preceding lemma, it suffices to show the equality for the second case.
For µ1 = 1, µk , 0, we have S̃ µP = S̃ 1sµ2···µk P so that

PS̃ ∗µS̃ µP = Ps∗µ2···µk
S̃ ∗1S̃ 1sµ2···µk P = Ps∗µ2···µk

s∗1s1sµ2···µk P. �

C 4.11. Therefore we have PAλ(Λ̃)P =Aλ(Λ).

P. By the previous lemma, we see that for µ ∈ B∗(Λ̃), the element PS̃ ∗µS̃ µP belongs

to PAλ(Λ)P. As P is the unit of Aλ(Λ), we know that PS̃ ∗µS̃ µP ∈ Aλ(Λ). Since Aλ(Λ̃)

is generated by the projections S̃ ∗µS̃ µ, µ ∈ B∗(Λ̃), we have PAλ(Λ̃)P ⊂Aλ(Λ). The
converse inclusion relation PAλ(Λ̃)P ⊃Aλ(Λ) is clear. �

L 4.12. For any µ = µ1 · · · µk ∈ Bk(Λ̃),

(1 − P)S̃ ∗µS̃ µ(1 − P) =

S̃ 1s∗
µ1···µk1

sµ1···µk1S̃ ∗1 if µ1 , 1,

S̃ 1s∗
µ2···µk1

s∗1s1sµ2···µk1S̃ ∗1 if µ1 = 1.

P. Since 1 − P = S̃ 1S̃ ∗1, it follows that

(1 − P)S̃ ∗µS̃ µ(1 − P) = S̃ 1S̃ ∗µ1S̃ µ1S̃ ∗1 =

S̃ 1s∗
µ1···µk1

sµ1···µk1S̃ ∗1 if µ1 , 1,

S̃ 1s∗
µ2···µk1

S̃ ∗1S̃ 1sµ2···µk1S̃ ∗1 if µ1 = 1.

As S̃ ∗1S̃ 1 = s∗1s1, the desired equalities follow. �
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C 4.13. Therefore we have (1 − P)Aλ(Λ̃)(1 − P) ⊂ S̃ 1Aλ(Λ)S̃ ∗1.

P. By the previous lemma, we see that for µ ∈ B∗(Λ̃), the element (1 − P)S̃ ∗µS̃ µ(1 −

P) belongs to S̃ 1Aλ(Λ)S̃ ∗1, so that (1 − P)Aλ(Λ̃)(1 − P) ⊂ S̃ 1Aλ(Λ)S̃ ∗1. �

P 4.14. POλ(Λ̃)P ⊂ Oλ(Λ).

P. The C∗-algebra POλ(Λ̃)P is generated by the elements of the form:

PS̃ µS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗νP, µ, ξ1, . . . , ξn, ν ∈ B∗(Λ̃).

Suppose that PS̃ µS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗νP , 0. Let µ = µ1 · · · µk, ν = ν1 · · · νh. Since

PS̃ µ = S̃ µ , 0 and S̃ ∗νP = S̃ ∗ν , 0, we have µ1 , 1, ν1 , 1. Hence the words µ, ν satisfy
the first condition or the third condition in Lemma 4.8. We have then the following
four cases in which the rightmost letters of µ, ν are zero or not.

Case 1: µk , 0, νh , 0. Since S̃ µk S̃ 1S̃ ∗1 = 0, we have S̃ µk (1 − P) = 0 so that S̃ µP = S̃ µ.

Hence S̃ µ commutes with P. Similarly, S̃ ν commutes with P. By Lemma 4.8, one sees
that S̃ µ = sµ, S̃ ν = sν. It then follows that

PS̃ µS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗νP = sµPS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn Ps∗ν.

Since S̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn ∈ Aλ(Λ̃) and PAλ(Λ̃)P =Aλ(Λ), the element

PS̃ µS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗νP

belongs to sµAλ(Λ)s∗ν and hence to Oλ(Λ).

Case 2: µk , 0, νh = 0. As in the above discussion, S̃ µ commutes with P. Since
PS̃ ∗0S̃ 0 = 0, we have

PS̃ µS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗νP = S̃ µPS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗0S̃ ∗ν1···νh−1
P

= S̃ µPS̃ ∗0S̃ 0S̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗0S̃ ∗ν1···νh−1
P = 0,

a contradiction.

Case 3: µk = 0, νh , 0. This case is similar to Case 2.

Case 4: µk = 0, νh = 0. Since S̃ 0P = 0, we have S̃ µ = S̃ µ(1 − P) and similarly S̃ ∗ν =

(1 − P)S̃ ∗ν. As both words µ, ν satisfy the third condition in Lemma 4.8, one sees that

S̃ µ = sµ1···µk−1 S̃ 0, S̃ ν = sν1···νh−1 S̃ 0.

It then follows that

PS̃ µ = S̃ µ = sµ1···µk−1 S̃ 0(1 − P), S̃ ∗νP = S̃ ∗ν = (1 − P)S̃ ∗0s∗ν1···νh−1
.
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Hence

PS̃ µS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗νP

= sµ1···µk−1 S̃ 0(1 − P)S̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn (1 − P)S̃ ∗0s∗ν1···νh−1
.

By the preceding lemma, one knows that (1 − P)Aλ(Λ̃)(1 − P) ⊂ S̃ 1Aλ(Λ)S̃ ∗1 so that

the element S̃ 0(1 − P)S̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn (1 − P)S̃ ∗0 belongs to S̃ 0S̃ 1Aλ(Λ)S̃ ∗1S̃ ∗0 which is

s1Aλ(Λ)s∗1. Then the element PS̃ µS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗νP belongs to s1Aλ(Λ)s∗1 and hence
to Oλ(Λ).

Therefore in all cases PS̃ µS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗νP belongs to Oλ(Λ) so that we
conclude that POλ(Λ̃)P ⊂ Oλ(Λ). �

Let Dλ(Λ̃) be the C∗-subalgebra of Oλ(Λ̃) generated by the projections S̃ µẼl
iS̃
∗
µ,

µ ∈ B∗(Λ̃), i = 1, . . . , m̃(l), l ∈ Z+, and similarly Dλ(Λ) the C∗-subalgebra of Oλ(Λ̃)

generated by the projections sνel
is
∗
ν, ν ∈ B∗(Λ), i = 1, . . . , m̃(l), l ∈ Z+. The subalgebra

Dλ(Λ) is naturally regarded as a corresponding subalgebra of Oλ(Λ) through the
canonical isomorphism in Corollary 4.7.

P 4.15.

(i) POλ(Λ̃)P = Oλ(Λ).
(ii) Oλ(Λ̃)POλ(Λ̃) = Oλ(Λ̃).
(iii) PDλ(Λ̃)P =Dλ(Λ).

P. (i) The inclusion relation POλ(Λ̃)P ⊃ Oλ(Λ) is obvious so that, by the preceding
proposition, POλ(Λ̃)P = Oλ(Λ).

(ii) Since S̃ ∗0S̃ 0 = S̃ 1S̃ ∗1 we have S̃ ∗0PS̃ 0 = S̃ ∗0S̃ 0 = S̃ 1S̃ ∗1. It follows that

S̃ ∗0PS̃ 0 + P =

N∑
j=0

S̃ jS̃
∗
j = 1.

This means that P is a full projection in Oλ(Λ̃).

(iii) In the proof of Proposition 4.14, the projection PS̃ µS̃ ∗ξ1
S̃ ξ1 · · · S̃

∗
ξn

S̃ ξn S̃ ∗µP
belongs to Dλ(Λ) so that PDλ(Λ̃)P ⊂Dλ(Λ). The other inclusion relation PDλ(Λ̃)P ⊃
Dλ(Λ) is clear. �

Let K(H) be the C∗-algebra of all compact operators on a separable infinite
dimensional Hilbert space H and C(H) a maximal commutative C∗-subalgebra of
K(H).

T 4.16. Assume that the right one-sided subshift of a λ-synchronizing subshift
Λ is homeomorphic to the Cantor set. Then

(Oλ(Λ̃) ⊗ K(H),Dλ(Λ̃) ⊗C(H)) � (Oλ(Λ) ⊗ K(H),Dλ(Λ) ⊗C(H)).
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In particular,
Oλ(Λ̃) ⊗ K(H) � Oλ(Λ) ⊗ K(H).

P. Proposition 4.15(ii) shows that the projection P is full in Oλ(Λ̃). By [5], we have
the desired assertions. �

Therefore we conclude the following theorem.

T 4.17. Assume that the right one-sided subshifts of λ-synchronizing subshifts
Λ1 and Λ2 are both homeomorphic to the Cantor set. Suppose that Λ1 is flow
equivalent to Λ2. Then

(Oλ(Λ1) ⊗ K(H),Dλ(Λ1) ⊗C(H)) � (Oλ(Λ2) ⊗ K(H),Dλ(Λ2) ⊗C(H)).

In particular,
Oλ(Λ1) ⊗ K(H) � Oλ(Λ2) ⊗ K(H).

P. The flow equivalence relation of subshifts is generated by topological
conjugacy and expansion Λ −→ Λ̃. Suppose that λ-synchronizing subshifts Λ1 and Λ2

are topologically conjugate. By [23, Proposition 3.5], their symbolic matrix systems
(Mλ(Λ1), Iλ(Λ1)) and (Mλ(Λ2), Iλ(Λ2)) are strong shift equivalence. Then

(Oλ(Λ1) ⊗ K(H),Dλ(Λ1) ⊗C(H)) � (Oλ(Λ2) ⊗ K(H),Dλ(Λ2) ⊗C(H))

by [31, Theorem 4.4]. Hence by the above theorem, we have the desired assertions. �

C 4.18 [36]. Assume that the right one-sided subshifts of λ-synchronizing
subshifts Λ1 and Λ2 are both homeomorphic to the Cantor set. Suppose that Λ1 is
flow equivalent to Λ2. Then their λ-synchronizing K-groups and their λ-synchronizing
Bowen–Franks groups are isomorphic, that is,

Kλ
i (Λ1) � Kλ

i (Λ2) and BF i
λ(Λ1) � BF i

λ(Λ2), i = 0, 1.

P. The λ-synchronizing K-groups Kλ
i (Λ) and the λ-synchronizing Bowen–Franks

groups BF i
λ(Λ) for a λ-synchronizing subshift Λ are isomorphic to the K-groups and

the Ext-groups for the C∗-algebra Oλ(Λ) respectively:

Kλ
i (Λ) = Ki(Oλ(Λ)), BF i

λ(Λ) = Exti(Oλ(Λ)), i = 0, 1.

Hence the assertion is direct from the above theorem. �

5. Examples

5.1. Sofic shifts. Let Λ be an irreducible sofic shift which is homeomorphic to the
Cantor set. Let GF(Λ) be a finite directed labeled graph of the minimal left-resolving
presentation of Λ. Such a labeled graph is unique up to graph isomorphism and
is called the left Fischer cover [9, 18, 19, 40]. Let LGF(Λ) be the λ-graph system
associated with the finite labeled graph GF(Λ) (see [30, Proposition 8.2]). Then the
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λ-synchronizing λ-graph system Lλ(Λ) for the sofic shift Λ is nothing but the λ-graph
system LGF(Λ) . Let N be the number of the vertices of the graph GF(Λ). LetMF(Λ) be
the N × N symbolic matrix of the graph GF(Λ). Let AF(Λ) be the N × N nonnegative
matrix defined from MF(Λ) by setting all symbols equal to 1 in each component of
MF(Λ). Then the C∗-algebra Oλ(Λ) of the λ-graph system Lλ(Λ) is simple and purely
infinite. The algebra Oλ(Λ) is also realized as the labeled graph C∗-algebra OGF(Λ) for
the labeled graph GF(Λ) (see [2]). It is isomorphic to the Cuntz–Krieger algebra OAF(Λ) .
The λ-synchronizing K-groups and Bowen–Franks groups are as follows:

Kλ
0 (Λ) = ZN/(IN − At

F(Λ))Z
N , Kλ

1 (Λ) = Ker(IN − At
F(Λ)) in ZN

and
BF0

λ(Λ) = ZN/(IN − AF(Λ))ZN , BF1
λ(Λ) = Ker(IN − AF(Λ)) in ZN .

They are all invariant under flow equivalence of Λ (see [11]).

5.2. Dyck shifts. Let N > 1 be a fixed positive integer. We consider the Dyck
shift DN with alphabet Σ = Σ− ∪ Σ+ where Σ− = {α1, . . . , αN}, Σ

+ = {β1, . . . , βN}. The
symbols αi, βi correspond to the brackets (i, )i respectively. The Dyck inverse monoid
for Σ has the relations

αiβ j =

1 if i = j,

0 otherwise,
(5.1)

for i, j = 1, . . . , N ([17, 22]; see [7]). A word ω1 · · · ωn of Σ is admissible for DN

precisely if
∏n

m=1 ωm , 0. For a word ω = ω1 · · · ωn of Σ, we denote by ω̃ its reduced
form. That is, ω̃ is a word of Σ ∪ {0, 1} obtained after the operations (5.1). Hence a
word ω of Σ is forbidden for DN if and only if ω̃ = 0.

Let us describe the Cantor horizon λ-graph system LCh(DN ) of DN introduced in [22].
Let ΛN be the full N-shift {1, . . . , N}Z. We denote by Bl(DN) and by Bl(ΛN) the set
of admissible words of length l of DN and that of ΛN , respectively. The vertices Vl of
LCh(DN ) at level l are given by the words of length l consisting of the symbols of Σ+.
That is,

Vl = {βµ1 · · · βµl ∈ Bl(DN) | µ1 · · · µl ∈ Bl(ΛN)}.

It is easy to see that each word of Vl is l-synchronizing in DN such that Vl represent
the all l-past equivalence classes of DN . Hence we know that Vl = Vλ(DN )

l . The cardinal
number of Vl is N l. The mapping ι(=ιl,l+1) : Vl+1→ Vl deletes the rightmost symbol of
a word such as

ι(βµ1 · · · βµl+1 ) = βµ1 · · · βµl , βµ1 · · · βµl+1 ∈ Vl+1. (5.2)

There exists an edge labeled α j from βµ1 · · · βµl ∈ Vl to βµ0βµ1 · · · βµl ∈ Vl+1 precisely
if µ0 = j, and there exists an edge labeled β j from β jβµ1 · · · βµl−1 ∈ Vl to βµ1 · · · βµl+1 ∈

Vl+1. The resulting labeled Bratteli diagram with ι-map is the Cantor horizon λ-graph
system LCh(DN ) of DN .
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P 5.1. The Dyck shift DN is λ-synchronizing, and the λ-synchronizing λ-
graph system Lλ(DN ) is the Cantor horizon λ-graph system LCh(DN ).

The Cantor horizon λ-graph system LCh(DN ) gives rise to a purely infinite simple
C∗-algebra OLCh(DN ) [22, 34]. The K-groups of the C∗-algebra OLCh(DN ) are realized as
the K-groups of the λ-graph system LCh(DN ) so that [22, 34]

K0(Oλ(DN )) � Z/NZ ⊕C(K, Z), K1(Oλ(DN )) � 0,

where C(K, Z) denotes the abelian group of all Z-valued continuous functions on the
Cantor set K. The Ext-groups for Oλ(DN ) are computed from the universal coefficient
theorem for K-theory [39] so that we know [22] that

Kλ
0 (DN) � Z/NZ ⊕C(K, Z), Kλ

1 (DN) � 0,

BF0
λ(DN) � Z/NZ, BF1

λ(DN) � HomZ(C(K, Z), Z).

5.3. Topological Markov–Dyck shifts. We consider a generalization of the above
discussions for the Dyck shifts. Let A = [A(i, j)]i, j=1,...,N be an N × N matrix with
entries in {0, 1}. Consider the Dyck inverse monoid for the alphabet Σ = Σ− ∪ Σ+ where
Σ− = {α1, . . . , αN} and Σ+ = {β1, . . . , βN} satisfy relations (5.1). Let OA be the Cuntz–
Krieger algebra of the matrix A that is the universal C∗-algebra generated by N partial
isometries t1, . . . , tN subject to the following relations:

N∑
j=1

t jt
∗
j = 1, t∗i ti =

N∑
j=1

A(i, j)t jt
∗
j , for i = 1, . . . , N

[8]. Define a correspondence ϕA : Σ −→ {t∗i , ti | i = 1, . . . , N} by setting

ϕA(αi) = t∗i , ϕA(βi) = ti, i = 1, . . . , N.

We denote by Σ∗ the set of all words γ1 · · · γn of elements of Σ. Define the set

FA = {γ1 · · · γn ∈ Σ∗ | ϕA(γ1) · · · ϕA(γn) = 0 in OA}.

Let DA be the subshift over Σ whose forbidden words are FA. The subshift is called
the topological Markov–Dyck shift defined by A [35]. These kinds of subshifts first
appeared in [21] in a semigroup setting and in [12] in a more general setting without
using C∗-algebras (see [35]). If all entries of A are 1, the subshift becomes the Dyck
shift DN with 2N brackets, because the partial isometries {ϕA(αi), ϕ(βi) | i = 1, . . . , N}
yield the Dyck inverse monoid. Consider the following subsystem of DA:

D+
A = {(γi)i∈Z ∈ DA | γi ∈ Σ+, i ∈ Z},

which is identified with the topological Markov shift

ΛA = {(xi)i∈Z ∈ {1, . . . , N}Z | A(xi, xi+1) = 1, i ∈ Z}
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defined by the matrix A. If A satisfies condition (I) in the sense of [8], the subshift
DA is not sofic [35, Proposition 2.1]. Similarly to the Dyck shifts, one may consider
the Cantor horizon λ-graph system LCh(DA) for the topological Markov–Dyck shift DA,
as studied in [35]. We denote by Bl(D+

A) the set of admissible words of length l of
D+

A. The vertices Vl, l ∈ Z+, of LCh(DA) are given by the admissible words of length l
consisting of the symbols of Σ+. They are l-synchronizing words of DA such that their
l-past equivalence classes coincide with the l-past equivalence classes of the set of all
l-synchronizing words of DA. Hence Vl = Vλ(DA)

l . Since Vl is identified with Bl(ΛA),
we may write Vl as

Vl = {βµ1 · · · βµl | µ1 · · · µl ∈ Bl(ΛA)}.

The mapping ι(=ιl,l+1) : Vl+1→ Vl is defined by deleting the rightmost symbol of a
corresponding word as in (5.2). There exists an edge labeled α j from βµ1 · · · βµl ∈ Vl

to βµ1 · · · βµl+1 ∈ Vl+1 precisely if µ0 = j, and there exists an edge labeled β j from
β jβµ1 · · · βµl−1 ∈ Vl to βµ1 · · · βµl+1 ∈ Vl+1. It is easy to see that the resulting labeled
Bratteli diagram with ι-map becomes a λ-graph system written LCh(DA) called the
Cantor horizon λ-graph system for the topological Markov–Dyck shifts DA.

P 5.2. The subshift DA is λ-synchronizing, and the λ-synchronizing λ-graph
system Lλ(DA) is the Cantor horizon λ-graph system LCh(DA).

Hence the C∗-algebra Oλ(DA) coincides with the algebra OLCh(DA) . By [35, Lemma
2.5], if A satisfies condition (I) in the sense of [8], the λ-graph system LCh(ΛA) satisfies
λ-condition (I) in the sense of [33]. If A is irreducible, the λ-graph system LCh(ΛA) is
λ-irreducible. We have the following proposition.

P 5.3. Suppose that A is an irreducible matrix with entries in {0, 1}
satisfying condition (I). Then the C∗-algebra Oλ(DA) associated with the λ-
synchronizing λ-graph system Lλ(DA) for the topological Markov–Dyck shift DA is
simple and purely infinite.

One knows that β-shifts for 1 < β ∈ R, a synchronizing counter-shift called the
context-free shift in [24, Example 1.2.9], and Motzkin shifts are all λ-synchronizing.
Their C∗-algebras for the λ-synchronizing λ-graph systems have been studied in the
papers [13, 26, 32] respectively.
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