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Abstract

Let a prime p divide the order of a finite real reflection group. We classify the reflection subgroups up
to conjugacy that are minimal with respect to inclusion, subject to containing a p-Sylow subgroup. For
Weyl groups, this is achieved by an algorithm inspired by the Borel–de Siebenthal algorithm. The cases
where there is not a unique conjugacy class of reflection subgroups minimally containing the p-Sylow
subgroups are the groups of type F4 when p = 2 and I2(m) when m ≥ 6 is even but not a power of 2 for
each odd prime divisor p of m. The classification significantly reduces the cases required to describe the
p-Sylow subgroups of finite real reflection groups.
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1. Introduction

Throughout, let W be a finite real reflection group. For each prime p dividing the
order of W, we classify the reflection subgroups up to W-conjugacy that are minimal
with respect to inclusion, subject to containing a p-Sylow subgroup. By Sylow’s
theorems, the p-Sylow subgroups form a unique conjugacy class for each prime p
dividing |W |. Since the class of reflection subgroups is closed under conjugation, we
have conjugacy classes of reflection subgroups containing the p-Sylow subgroups if a
reflection subgroup has the same p-adic valuation as |W |. By the classification of finite
real reflection groups seen in [8, Ch. 2], we only need to classify for each irreducible
type of W.

Definition 1.1. Call the conjugacy class of parabolic subgroups minimally containing
the p-Sylow subgroups the p-Sylow conjugacy class of parabolic subgroups. We refer
to a parabolic subgroup in such a conjugacy class as Pp. In the case that W = Pp we
say that p is cuspidal for W.

Definition 1.2. Call a conjugacy class of reflection subgroups minimally containing
the p-Sylow subgroups a p-Sylow conjugacy class of reflection subgroups. We refer to
a reflection subgroup in one of these conjugacy classes as Rp.
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In [1, Table 4.1], a classification of Pp up to W-conjugacy for all Weyl groups
is presented. We will first present a classification of Pp up to W-conjugacy for all
finite real reflection groups, adding the classification for noncrystallographic reflection
groups to [1, Table 4.1]. Then we will give a classification of Rp up to W-conjugacy.
As suggested by Definition 1.1, the Pp conjugacy class is unique since the class
of parabolic subgroups is closed under conjugation and intersection. However, as
suggested by Definition 1.2, the Rp conjugacy class is not necessarily unique, since the
class of reflection subgroups is not closed under intersection. An example of this is in
the Weyl group of type G2, which has two Rp conjugacy classes of type A2 containing
the 3-Sylow subgroup isomorphic to the cyclic group C3.

In [5], a classification of reflection subgroups in finite real reflection groups is given
up to W-conjugacy. A possible way to classify the p-Sylow conjugacy classes of
reflection subgroups would be to use the given classification directly, while solving
an inclusion minimisation problem where the p-adic valuation of |W | is preserved.
However, for Weyl groups we instead classify by adapting the Borel–de Siebenthal
algorithm found in [9, page 136]. This algorithm is based on the work of Borel and
de Siebenthal in [2].

We will see in Corollary 2.5 that any Rp has a Pp as its parabolic closure. Hence,
Rp is a reflection subgroup minimally containing a p-Sylow subgroup in a Pp. We can
then find Rp up to W-conjugacy for each cuspidal prime p, which will also give us
Rp up to Pp-conjugacy in the noncuspidal cases of W. We then easily extend these
noncuspidal classifications of Rp to W-conjugacy.

In Section 2 we show that any Rp has Pp as its parabolic closure and classify
the p-Sylow conjugacy class of parabolic subgroups. In Section 3, we introduce the
basic definitions required to state the Borel–de Siebenthal algorithm and turn it into
Algorithm 3.9 which finds the p-Sylow conjugacy classes of reflection subgroups for
the cuspidal cases. In Section 4 we classify the p-Sylow conjugacy classes of reflection
subgroups for the cuspidal cases, allowing us to deduce Rp up to Pp-conjugacy for
the noncuspidal cases and extend the classification to W-conjugacy. In Section 5
we make some general observations regarding our classifications and see how they
reduce the cases required to describe the p-Sylow subgroups of finite real reflection
groups.

Tables 1–4 give the respective classifications of p-Sylow conjugacy classes of
parabolic subgroups, the cuspidal cases for finite real reflection groups, the p-
Sylow conjugacy classes of reflection subgroups for the cuspidal cases and the full
classification of p-Sylow conjugacy classes of reflection subgroups. We note here the
interpretations of types of groups found in the tables. We interpret B1 as A1, I2(2)
as A1 × A1, I2(3) as A2 and I2(4) as B2. The tilde above the type of group in the
case of Weyl groups signifies that the roots in this subsystem are short, while for the
noncrystallographic reflection groups it is simply used to signify a different conjugacy
class. In the classical Weyl group cases, the base p expression for n is (blbl−1 . . .b1b0)p.
Finally, for the groups of type I2(m), the p-adic valuation of 2m is denoted by k.

https://doi.org/10.1017/S0004972717000764 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000764


[3] Reflection subgroups minimally containing p-Sylow subgroups 59

2. Preliminaries and the p-Sylow conjugacy class of parabolic subgroups

For introductory definitions and results regarding finite real reflection groups and
root systems we refer the reader to Humphreys [8, Ch. 1–2]. In this section, we use the
definition of root systems that does not require the crystallographic property.

Definition 2.1. A parabolic subgroup of W is a reflection subgroup generated by any
subset of any set of simple reflections.

Let V be a real euclidean space on which W acts essentially. The following lemma
gives an equivalent definition of parabolic subgroups as stabilisers of subspaces of V .

Lemma 2.2 [9, pages 60–61]. A subgroup W ′ of W is a parabolic subgroup if and only
if W ′ = WU for some subspace U of V, where WU = {w ∈ W | w(v) = v for all v ∈ U}.

Lemma 2.3. Let W be a finite real reflection group. The intersection of a parabolic
subgroup P and a reflection subgroup R is a reflection subgroup of W.

Proof. By Lemma 2.2, P = WU for some subspace U of V , so P ∩ R is the stabiliser
in R of the intersection of U and the space on which R acts essentially. Hence, P ∩ R
is a parabolic subgroup of R generated by a subset of reflections found in R and we
conclude that P ∩ R is a reflection subgroup of W. �

Definition 2.4. The parabolic closure of some subset X of W is the minimal parabolic
subgroup of W with respect to inclusion that contains X.

Corollary 2.5. For any Rp, its parabolic closure is a Pp.

Proof. Take Pp containing the same p-Sylow subgroup as Rp. By Lemma 2.3
and minimality arguments, Pp contains Rp since Pp ∩ Rp is a reflection subgroup
containing a p-Sylow subgroup. Then by the minimality of Pp it is the parabolic
closure of Rp. �

We conclude this section by classifying Pp up to W-conjugacy for all finite real
reflection groups by using the classification of parabolic subgroups from [5]. Let

vp(n) := max{k ∈ N | pk divides n}.

We use the same notation and definitions for partitions as in [5].

Lemma 2.6. Let the base p expression of n be (blbl−1 . . .b1b0)p. Then the partition λ ` n
with length r that provides the minimum of the set{ r∏

i=1

λi!
∣∣∣∣∣ vp(n!) =

r∑
i=1

vp(λi!)
}

is given by the join λ = λl ∪ λl−1 ∪ · · · ∪ λ1 ∪ λ0, where λ j = (p j, . . . , p j) with length
b j for each j with 0 ≤ j ≤ l.
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Table 1. Type of Pp in W.

Type of W |W | p Type of Pp |Pp|

An−1, n ≥ 2 n! Any
∏l

i=1 Abi

pi−1

∏l
i=1[(pi)!]bi

Bn, n ≥ 2 2nn! 2 Bn 2nn!
>2

∏l
i=1 Abi

pi−1

∏l
i=1[(pi)!]bi

Dn, n ≥ 4 2n−1n! 2 Dn 2n−1n!
>2

∏l
i=1 Abi

pi−1

∏l
i=1[(pi)!]bi

E6 27 · 34 · 5 2 D5 27 · 3 · 5
3 E6 27 · 34 · 5
5 A4 23 · 3 · 5

E7 210 · 34 · 5 · 7 2 E7 210 · 34 · 5 · 7
3 E6 27 · 34 · 5
5 A4 23 · 3 · 5
7 A6 24 · 32 · 5 · 7

E8 214 · 35 · 52 · 7 ≤ 5 E8 214 · 35 · 52 · 7
7 A6 24 · 32 · 5 · 7

F4 27 · 32 2, 3 F4 27 · 32

G2 22 · 3 2, 3 G2 22 · 3
H3 23 · 3 · 5 2 H3 23 · 3 · 5

3 A2 2 · 3
5 I2(5) 22 · 52

H4 26 · 32 · 52 2, 3, 5 H4 26 · 32 · 52

I2(m),m = 5
or m ≥ 7 2m 2

{ I2(m) for m even,
A1 for m odd

{2m for m even,
2 for m odd

>2 I2(m) 2m

Proof. By Kummer’s theorem for binomial coefficients, vp((
∑r

i=1 ni)!) =
∑r

i=1 vp(ni!)
for any ni ∈ N if and only if the sum of ni in base p has no carries. Hence, the result
follows. �

We achieve the classification of Pp up to W-conjugacy by observing the type of
parabolic subgroup that has smallest order as well as the same p-adic valuation as |W |.
The subgroup minimal with respect to inclusion will be the same as the subgroup
minimal with respect to order, since the p-Sylow conjugacy class of parabolic
subgroups is unique.

Theorem 2.7. The classification of the p-Sylow conjugacy classes of parabolic
subgroups in finite real reflection groups is as given in Table 1.

Proof. This classification can be found in [1, Table 4.1] for Weyl groups. For
completeness, we give an independent proof for all finite real reflection groups.
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Table 2. Cases when p is cuspidal for W.

Type of W p cuspidal for W
An n = ps − 1, where s ∈ N
Bn p = 2
Dn p = 2
E6 p = 3
E7 p = 2
E8 p = 2, 3, 5
F4 p = 2, 3
G2 p = 2, 3
H3 p = 2
H4 p = 2, 3, 5

I2(m),m = 5 or m ≥ 7 p = 2 when m is even and p > 2 for all m

Let W be of type An−1 with n ≥ 2. We claim that the Pp conjugacy class consists of
subgroups of type

∏l
i=1 Abi

pi−1, where the base p expression of n is (blbl−1 . . . b1b0)p.
The order of the reflection group of type An−1 is n!. From [5, Theorem 3.1] the
parabolic subgroups are unique conjugacy classes of type

∏
i Aλi−1 for each partition

λ ` n. Hence, the result follows by Lemma 2.6.
Let W be of type Bn with n ≥ 2. We claim that the Pp conjugacy class has a subgroup

of type Bn when p = 2 and subgroups of type
∏l

i=1 Abi

pi−1 when p > 2, where the base
p expression of n is (blbl−1 . . . b1b0)p. The order of the reflection group of type Bn is
2nn!. From [5, Section 3] the parabolic subgroups are unique conjugacy classes of type
Bn−m ×

∏
i Aλi−1 for each partition λ ` m with 0 ≤ m ≤ n. Hence, the result follows by

Lemma 2.6.
Let W be of type Dn with n ≥ 4. We claim that the Pp conjugacy class has a subgroup

of type Dn when p = 2 and subgroups of type
∏l

i=1 Abi

pi−1 when p > 2, where the base
p expression of n is (blbl−1 . . . b1b0)p. The order of the reflection group of type Dn is
2n−1n!. From [5, Section 3] the parabolic subgroups are unique conjugacy classes of
type Dn−m ×

∏
i Aλi−1 for each partition λ ` m with 0 ≤ m ≤ n − 2, two classes of type∏

i W(Aλi−1) for each even partition λ ` n and a unique class of type
∏

i W(Aλi−1) for
each noneven partition λ ` n. Hence, the result follows by Lemma 2.6.

When W is of type E6, E7, E8, F4,G2, H3, or H4, the classification is found by
observing the type of parabolic subgroup with the smallest order while preserving
the p-adic valuation of |W |. The classifications of the parabolic subgroups of W are
found in [5, Tables 3–9].

Let W be of type I2(m) with m = 5 or m ≥ 7. We claim that the Pp conjugacy class
consists of subgroups of type I2(m) when m is even and A1 when m is odd. This is clear
since the parabolic subgroups of W are simply ∅, A1, or I2(m). �

We now have the complete classification of the p-Sylow conjugacy class of
parabolic subgroups in finite real reflection groups presented in Table 1. This matches
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the classification in [1, Table 4.1] for all Weyl groups. Table 2 summarises when p is
cuspidal for W by extracting the cases with W = Pp.

3. Adapting the Borel–de Siebenthal algorithm

We now use the convention that root systems require the crystallographic property
as seen in the work by Bourbaki [3]. We introduce some definitions required to present
the Borel–de Siebenthal algorithm as in [9, page 136].

Definition 3.1. A subsystem Ψ of root system Φ is a subset that is also a root system.

Definition 3.2. A subsystem Ψ ⊂ Φ is called closed if for all α, β ∈ Ψ we have
α + β ∈ Φ implies α + β ∈ Ψ.

Definition 3.3. A maximal subsystem of a root system Φ is a proper subsystem of Φ

that is not properly contained in any other proper subsystem of Φ.

The following theorem is the core of the Borel–de Siebenthal algorithm which takes
an irreducible root system Φ and returns all maximal closed subsystems up to W(Φ)-
conjugacy.

Theorem 3.4 (Borel–de Siebenthal). Let Φ be an irreducible crystallographic root
system with simple system ∆ = {α1, . . . , αn} and highest root α̃ =

∑n
i=1 hiαi. The

maximal closed subsystems of Φ up to W(Φ)-conjugacy are those with simple systems

(i) {α1, . . . , α̂i, . . . , αn} where hi = 1;
(ii) {−α̃, α1, . . . , α̂i, . . . , αn}, for each 1 ≤ i ≤ n, such that hi is prime.

The positive integers hi in the expression of the highest root in terms of simple
roots α̃ =

∑n
i=1 hiαi are called the weights. In Figure 1 we present the extended Dynkin

diagrams with the weights added to their corresponding vertices. These can all be
found in [3, pages 200–222].

We will now adapt the Borel–de Siebenthal algorithm to classify the p-Sylow
conjugacy classes of reflection subgroups in the cuspidal cases. The rank of a root
system Φ is the number of roots found in its simple system, or equivalently, the
dimension of real euclidean space V on which W(Φ) acts essentially.

Lemma 3.5 [5, Lemma 2.1]. Let R be a reflection subgroup of W. Then R and its
parabolic closure have the same rank.

Definition 3.6. A maximal-rank subsystem of a root system Φ is a subsystem with
rank equal to the rank of Φ.

Since we are concerned here with the classification in the cuspidal cases, by
Corollary 2.5 and Lemma 3.5, we need only consider the maximal-rank reflection
subgroups of W since they will have W as their parabolic closure. Hence, (i) of the
Borel–de Siebenthal algorithm will not be needed. Let W be an irreducible Weyl group
with root system Φ and dual system Φ∨, so W = W(Φ) = W(Φ∨). We use the following
property of maximal subsystems of Weyl groups.

https://doi.org/10.1017/S0004972717000764 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000764


[7] Reflection subgroups minimally containing p-Sylow subgroups 63

Figure 1. Extended Dynkin diagrams with weights.

Lemma 3.7 [6, Corollary 2]. If Ψ is a maximal subsystem of Φ, then either Ψ is closed
in Φ or Ψ∨ is closed in Φ∨.

Carter [4] attributes the following property of maximal-rank closed subsystems to
Dynkin [7, page 146] who states it in terms of subalgebras of simple Lie algebras.

Lemma 3.8 [4, Proposition 32]. Any two maximal-rank closed subsystems are of the
same type if and only if they are W-conjugate.

Algorithm 3.9. Let p be a cuspidal prime for the irreducible Weyl group W.

(1) Take the extended Dynkin diagram of W and remove a vertex with prime weight.
(2) Apply (1) to the dual of the Dynkin diagram of W and take the dual of the

resulting diagram.
(3) Check if the p-adic valuation of the resulting diagrams are the same as |W |. If not,

discard. Repeat steps (1) and (2) on each component of the remaining diagrams
until no new diagram is found.

(4) Take the diagrams on which step (3) halts as the output.

Theorem 3.10. Let p be a cuspidal prime for the Weyl group W. Then the output of
Algorithm 3.9 is the types of Rp.

Proof. By elementary maximality arguments it is clear that for any maximal-rank
subsystem Ψ1 of Φ, we have a finite chain Ψ1 ( · · · ( Ψk ( Φ such that Ψi is a maximal
subsystem of Ψi+1 for all 1 ≤ i ≤ k, taking Ψk+1 = Φ. By Lemma 3.7, the chain is such
that either Ψi is closed in Ψi+1 or Ψ∨i is closed in Ψ∨i+1 for 1 ≤ i ≤ k. Hence, repeating
steps (1) and (2) on each new subsystem will find all the subsystems of Φ. However,
we do not need all subsystems, so in step (3) we filter the process so that we only
follow chains that have group orders with the same p-adic valuation as |W |. Naturally,
in step (4) we take the minimal subsystems which are the diagrams that step (3) is last
applied to. �
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Table 3. Type of Rp for cuspidal cases.

Type of W p Type of Rp

Aps−1, s ∈ N Any Aps−1

Bn, n ≥ 2 2
∏l

i=0 Bbi

2i

Dn, n ≥ 4 2 Dn

E6 3 E6

E7 2 A1 × D6

E8 2 D8

3 A2 × E6

5 A2
4

7 A6

F4 2 B4 and C4

3 A2 × Ã2

G2 2 A1 × Ã1

3 A2 and Ã2

H3 2 A3
1

H4 2 D4

3 A2
2

5 I2(5)2

I2(m),m ≥ 8 with m even 2 I2(2k−1)

I2(m),m = 5 or m ≥ 7 >2

 I2(pk) and Ĩ2(pk) for m even,
I2(pk) for m odd

4. Classification of p-Sylow conjugacy classes of reflection subgroups

We begin this section by classifying Rp up to W-conjugacy for the cuspidal
cases. We use Algorithm 3.9 for the Weyl group cases and the reflection subgroup
classifications given in [8] for the noncrystallographic cases.

Theorem 4.1. The classification of Rp up to W-conjugacy in the cuspidal cases is given
in Table 3.

Proof. Let W be a Weyl group. Then the classification of Rp up to type is just a
corollary of Theorem 3.10. For illustrative purposes we include worked examples of
applying Algorithm 3.9 when p = 2 to types F4 and Bn with n ≥ 2. We then explain
how this algorithm leads to a classification up to W-conjugacy.

Let W have type F4. Consider the extended Dynkin diagram of F4 whose dual is
also F4:
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Applying steps (1) and (2), gives types A1 × C3, B4, Ã1 × B3, C4 and A2 × Ã2. In step
(3) we discard A1 ×C3, Ã1 × B3 and A2 × Ã2, leaving us with B4 and C4.

Applying steps (1) and (2) to B4 and C4 gives types A2
1 × B2, A3 × Ã1, D4, Ã1 × B3 and

B2
2 from B4 and the duals from C4. By step (3) of the algorithm we discard all of these.

Finally, in step (4) we conclude there are two types of Rp in W(F4), namely B4 and C4.
Let W have type Bn with n ≥ 2. We claim that R2 has type

∏l
i=0 Bbi

2i ,where the base 2
expression of n is (blbl−1 . . . b1b0)2 and B1 is interpreted as A1. Consider the following
extended Dynkin diagrams:

Applying step (1) of Algorithm 3.9 gives Bn−m × Dm for some 2 ≤ m ≤ n, which
reduces the 2-adic valuation of the group order, so we discard all of these in step
(3). Note we interpret D2 as A1 × A1 and D3 as A3. Applying step (2) gives Bn−m × Bm
for some 1 ≤ m ≤ n, which preserves the 2-adic valuation if and only if the sum of
n − m and m in base 2 has no carries (by Kummer’s theorem). Repeating steps (1)–(3)
and using Lemma 2.6, we find that in step (4) there are 2-Sylow conjugacy classes
of reflection subgroups of the form

∏l
i=0 Bbi

2i , where the base 2 expression of n is
(blbl−1 . . . b1b0)2.

Now we will settle the W-conjugacy of the types of Rp found for the cuspidal
cases of the Weyl groups. In all cases other than Bn with p = 2, the type found from
Algorithm 3.9 comes from one application of either step (1) or step (2). By the Borel–
de Siebenthal Algorithm 3.4, each type of Rp, other than Bn with p = 2, has a unique
W-conjugacy class. For the case of type Bn with p = 2 we claim there is a unique
W-conjugacy class of Rp with type

∏l
i=0 Bbi

2i . When applying Algorithm 3.9, each new
subsystem achieved from steps (1)–(3) stems from step (2). Hence, the chains are
subsystems Ψ1 ⊂ · · · ⊂ Ψk ⊂ Φ such that Ψ∨i is closed in Ψ∨i+1 for 1 ≤ i ≤ k. By the
definition of closed, Ψ∨1 = (

∏l
i=0 Bbi

2i )∨ is closed in B∨n and, by Lemma 3.8, the groups
of type

∏l
i=0 Bbi

2i have a unique W-conjugacy class in W(B∧n ) = W(Bn).
Let W be of type H3 or H4. From [5, Table 8] or [5, Table 9], respectively, we find

Rp up to W-conjugacy.
Let W be of type I2(m) with m = 5 or m ≥ 7, where the p-adic valuation of 2m is k.

We claim that I2(m) with m = 5 or m ≥ 7 has the following classifications of Rp up to
W-conjugacy for the cuspidal cases.

(i) When m is even and p = 2, there is a unique conjugacy class of Rp with type
I2(2k−1).

(ii) When p > 2, there are two conjugacy classes of Rp with types I2(pk) and Ĩ2(pk).

By [5, Theorem 5.1], the reflection subgroups of I2(m) up to conjugacy are of types ∅,
A1 and I2(d) where d > 1 is a divisor of m. Note, we interpret I2(2) as A1 × A1, I2(3)
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as A2, I2(4) as B2 and I2(6) as G2. Also note the order of the reflection group of type
I2(m) is 2m. Hence, the claim follows. �

From the classification of the cuspidal cases in Table 3, we can easily deduce Rp

up to Pp-conjugacy for the noncuspidal cases since the Rp of W have the same type as
the Rp of Pp. We wish to extend this to a classification of Rp up to W-conjugacy. If a
type of Rp is unique up to Pp-conjugacy, then it is clear by the uniqueness of Pp up to
W-conjugacy that this type of Rp is unique up to W-conjugacy.

Theorem 4.2. The classification of the p-Sylow conjugacy classes of reflection
subgroups in finite real reflection groups is as given in Table 4.

Proof. We deduce Rp up to Pp-conjugacy from Tables 1 and 3, since the Rp of W
in the noncuspidal cases have the same type as the Rp of Pp. From this, all the
noncuspidal cases have each type of Rp unique up to Pp-conjugacy, and so unique
up to W-conjugacy. �

Remark 4.3. When applying steps (1) and (2) in Algorithm 3.9 to the cuspidal cases
of the Weyl groups, removing a vertex of prime weight not equal to the prime p
will always result in a reflection subgroup with lower p-adic valuation. If we do not
restrict ourselves to the cuspidal cases and apply step (ii) of the Borel–de Siebenthal
Algorithm 3.4, we find that if the p-adic valuation is preserved when removing a vertex
of prime weight not equal to the prime p, then the parabolic subsystem found by
removing this same vertex and not adding on the negative of the highest root will also
preserve the p-adic valuation.

5. Observations and p-Sylow subgroups in finite real reflection groups

In this section, we give some comments on the classifications found in Tables 1–4
and show how they relate to the p-Sylow subgroups of finite real reflection groups.

Corollary 5.1. The cases when a p-Sylow conjugacy class of reflection subgroups is
not unique occur in the groups of type F4 when p = 2 and I2(m) when m ≥ 6 is even
but not a power of 2 for each odd prime divisor of m, including G2 when p = 3.

As with parabolic subgroups, the reflection subgroups minimally containing p-
Sylow subgroups are the same when minimality is with respect to order instead of
inclusion. This is because the Rp in the nonunique conjugacy classes have the same
order.

A special case of our classification is when the p-Sylow subgroups Sp are reflection
subgroups and so Sp = Rp. This can only happen when p = 2, since the order of any
group containing reflections is even. We check the orders of the R2 found in Table 4 to
find the cases when the order is a power of 2. We do the same for P2 found in Table 1.

Corollary 5.2. The cases of W when the 2-Sylow conjugacy class of reflection
subgroups is itself the 2-Sylow conjugacy class are in types A1, A2, B2, G2, H3 and
I2(m) for m = 5 and all m ≥ 7.
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Table 4. Type of Rp in W.

Type of W |W | p Type of Rp |Rp|

An−1, n ≥ 2 n! Any
∏l

i=1 Abi

pi−1

∏l
i=1[(pi)!]bi

Bn, n ≥ 2 2nn! 2
∏l

i=0 Bbi

2i 2n ∏l
i=0[(2i)!]bi

>2
∏l

i=1 Abi

pi−1

∏l
i=1[(pi)!]bi

Dn, n ≥ 4 2n−1n! 2 Dn 2n−1n!
>2

∏l
i=1 Abi

pi−1

∏l
i=1[(pi)!]bi

E6 27 · 34 · 5 2 D5 27 · 3 · 5
3 E6 27 · 34 · 5
5 A4 23 · 3 · 5

E7 210 · 34 · 5 · 7 2 A1 × D6 210 · 32 · 5
3 E6 27 · 34 · 5
5 A4 23 · 3 · 5
7 A6 24 · 32 · 5 · 7

E8 214 · 35 · 52 · 7 2 D8 214 · 32 · 5 · 7
3 A2 × E6 28 · 35 · 5
5 A2

4 26 · 32 · 52

7 A6 24 · 32 · 5 · 7

F4 27 · 32 2 B4 and C4 27 · 3
3 A2 × Ã2 22 · 32

G2 22 · 3 2 A1 × Ã1 22

3 A2 and Ã2 2 · 3

H3 23 · 3 · 5 2 A3
1 23

3 A2 2 · 3
5 I2(5) 2 · 5

H4 26 · 32 · 52 2 D4 26 · 3
3 A2

2 22 · 32

5 I2(5)2 22 · 52

I2(m),m = 5
or m ≥ 7 2m 2

{
I2(2k−1) for m even,
A1 for m odd

2k

>2
{

I2(pk) and Ĩ2(pk) for m even,
I2(pk) form odd

2 · pk

Corollary 5.3. The cases of W when the 2-Sylow conjugacy class of parabolic
subgroups is itself the 2-Sylow conjugacy class are in types A1,A2, B2 and I2(m) where
m ≥ 7 is odd or a power of 2.
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When the prime p is not cuspidal for W and so Rp does not have maximal-rank,
the p-Sylow conjugacy classes of reflection subgroups is in fact the unique p-Sylow
conjugacy class of parabolic subgroups.

Corollary 5.4. If W , Pp, then Pp = Rp.

Our classification of p-Sylow conjugacy classes of reflection subgroups leads to a
significant reduction in the cases required to describe the p-Sylow subgroups of finite
real reflection subgroups. For example, from our classification for the reflection group
of type E8, the p-Sylow subgroups of W(E8) are the same as the p-Sylow subgroups of
its reflection subgroups W(D8) for p = 2, W(A2) ×W(E6) for p = 3, W(A4)2 for p = 5
and W(A6) for p = 7. Checking all the cases with W = Rp gives the next result.

Corollary 5.5. The p-Sylow subgroups of finite real reflection groups are products of
the p-Sylow subgroups of Api−1 for all primes p where i ∈ N, B2 j for p = 2 where j ∈ N,
Dn for p = 2, E6 for p = 3 and I2(pk) for all primes p and k ∈ N.
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