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Abstract

Consider random vectors formed by a finite number of independent groups of independent
and identically distributed random variables, where those of the last group are stochas-
tically smaller than those of the other groups. Conditions are given such that certain
functions, defined as suitable means of supermodular functions of the random variables
of the vectors, are supermodular or increasing directionally convex. Comparisons based
on the increasing convex order of supermodular functions of such random vectors are also
investigated. Applications of the above results are then provided in risk theory, queueing
theory, and reliability theory, with reference to (i) net stop-loss reinsurance premiums of
portfolios from different groups of insureds, (ii) closed cyclic multiclass Gordon–Newell
queueing networks, and (iii) reliability of series systems formed by units selected from
different batches.
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1. Introduction

In a previous paper [12] the reliability of series or parallel systems has been studied when the
system components are randomly chosen from two different batches, the components of the first
batch being more reliable than those of the second. It has been proved that the system’s reliability
increases, in the usual stochastic order sense, when the random number of components chosen
from the first batch increases in the increasing convex order. As a consequence, the randomness
in the number of components extracted from the two batches improves the reliability of the
series system.

Stimulated by the previous research, in this paper we aim to obtain similar results involving
stochastic systems described by more general mathematical structures than series or parallel
systems. The starting idea is to consider random vectors composed of a finite number of
independent groups of independent and identically distributed (i.i.d.) random variables, where
the sizes of the groups are random themselves, and where the random variables of the last
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group are stochastically smaller than those of the other groups. Roughly speaking, we propose
to show that if the randomness in the sizes of the groups increases in some stochastic sense,
then suitable measures of the random vectors, expressed by supermodular functions, increase
in the ‘increasing convex’ stochastic order.

We recall that recent contributions oriented to the stochastic comparisons of random vectors,
and involving increasing directionally convex transformations of the vectors, are given in [5].
See also [1], where increasing convex comparisons of generalized order statistics are given,
and are extended to the increasing directionally convex comparisons of random vectors of
generalized order statistics.

The plan of the paper is as follows. Section 2 is devoted to recalling some useful notions
that will be used in the sequel, such as certain properties of multidimensional functions, and the
definitions of various one-dimensional and multidimensional stochastic orders. The two main
results of the paper are given in Section 3, where conditions are given such that a suitable function
of the sizes of the groups is supermodular or is increasing directionally convex, and where
stochastic comparisons are shown for pairs of supermodular functions of the underlying random
vectors. In Section 4 we present some applications of the main results. The first case deals
with risk theory, and involves stochastic comparisons of the total claim amount from a possible
portfolio of risks, where the number of insureds of each group is random. In the second case we
consider closed cyclic multiclass Gordon–Newell queueing networks with FCFS (first-come–
first-served) service discipline, where some units of the network provide a service that gains a
profit and other units supply auxiliary services originating a cost. We stochastically compare
the total profit gained by the activity of the multiclass queueing network in the equilibrium
state, by emphasizing the dependence on the random sizes of the units’ classes. The last
application involves the reliability of series systems formed by units selected from different
batches. Comparisons are given for the availability and the lifetimes of different systems.

Throughout the paper, the terms ‘increasing’and ‘decreasing’are used in the nonstrict sense.

2. Preliminary notions

Hereafter we recall some necessary notions and useful properties ofn-dimensional functions.
Let ‘≤’ denote the coordinatewise ordering in R

n. Given a function ϕ : R
n → R, we recall

that it is said to be

• directionally convex if, for any xi ∈ R
n, i = 1, 2, 3, 4, such that x1 ≤ x2 ≤ x4,

x1 ≤ x3 ≤ x4, and x1 + x4 = x2 + x3, we have

ϕ(x2)+ ϕ(x3) ≤ ϕ(x1)+ ϕ(x4);
• coordinatewise convex if it is convex in each coordinate when the remaining ones are

fixed;

• supermodular if, for any x, y ∈ R
n, it satisfies

ϕ(x)+ ϕ(y) ≤ ϕ(x ∧ y)+ ϕ(x ∨ y), (1)

where the operators ‘∧’ and ‘∨’ respectively denote the coordinatewise minimum and
maximum;

• symmetric supermodular if it is supermodular and satisfies

ϕ(x1, . . . , xn) = ϕ(xπ(1), . . . , xπ(n))

for all permutations (π(1), . . . , π(n)) of (1, . . . , n).
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Remark 1. We note (see Section 7.A.8 of [19]) that in the multivariate case directional
convexity neither implies, nor is implied by, conventional convexity, whereas in the univariate
case the two notions are identical. Moreover, directionally convexity implies supermodularity.
We also recall that a function is directionally convex if and only if it is both supermodular and
coordinatewise convex.

Remark 2. We note that if a function ϕ : R
n → R is supermodular, and if ψ : R → R is

increasing, then the composition ψ(ϕ) is not necessarily supermodular. Indeed, for n = 2,
let us consider the supermodular function ϕ(x1, x2) = (x1 + x2)

2, and the increasing function
ψ(u) = uc, u ≥ 0, for 0 < c < 1

2 . When x = (0, 1) and y = (1, 0), we have
ϕ(x) = ϕ(y) = 1, ϕ(x ∧ y) = 0, and ϕ(x ∨ y) = 4, so that (1) is satisfied. However,
ψ(ϕ) is not supermodular, since

2 = ψ[ϕ(x)] + ψ[ϕ(y)] > ψ[ϕ(x ∧ y)] + ψ[ϕ(x ∨ y)] = 4c

for 0 < c < 1
2 .

Various properties of the above notions are given in [19], where their use in the definition
of suitable stochastic orders is also pinpointed. Chapter 6 of [15] contains useful examples
of supermodular functions, denominated as ‘L-superadditive’ functions. We remark that
supermodular functions play a significant role in applied fields, such as optimization and game
theory (see [8] for instance). Recent contributions dealing with applications of directional
convexity and supermodularity to risk management, insurance, queueing, and macroeconomic
dynamics are given, for instance, in [7], [9], [10], [16], [17], and [18].

Let us now recall the definitions of four stochastic orders that will be used later (see [19] for
other details).

(i) A random variable X is said to be larger than Y in the usual stochastic order (denoted by
X ≥st Y ) if P(X > t) ≥ P(Y > t) for all t ∈ R or, equivalently, if E[ψ(X)] ≥ E[ψ(Y )]
for all increasing functions ψ : R → R for which the expectations exist.

(ii) A random variable X is said to be larger than Y in the increasing convex order (denoted
byX ≥icx Y ) if E[ψ(X)] ≥ E[ψ(Y )] for all increasing convex functions ψ : R → R for
which the expectations exist.

(iii) A d-dimensional random vector X is said to be larger than Y in the increasing
directionally convex order (denoted by X ≥idcx Y ) if E[ψ(X)] ≥ E[ψ(Y )] for all
increasing directionally convex functions ψ : R

d → R for which the expectations exist.

(iv) A d-dimensional random vector X is said to be larger than Y in the supermodular
order (denoted by X ≥sm Y ) if E[ψ(X)] ≥ E[ψ(Y )] for all supermodular functions
ψ : R

d → R for which the expectations exist.

We remark that the supermodular order strictly implies the increasing directionally convex
order. However, the supermodular order compares only the dependence structure of vectors
with fixed equal marginals, whereas the increasing directionally convex order also compares the
marginals both in variability and location, where the marginals are possibly different. Moreover,
when d = 1, the increasing directionally convex order reduces to the increasing convex order.

https://doi.org/10.1239/jap/1371648954 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648954


Supermodular functions of heterogeneous random vectors 467

3. The main results

We first recall a preliminary result on the monotonicity of a function expressed in terms of
the means of a supermodular function, and of stochastically ordered random variables. The
proof of this statement may be found, for example, in Theorem 3.1 of [14].

Lemma 1. Let X ≥st Y . If ϕ : R
2 → R is a supermodular function then

h(z) = E[ϕ(X, z)− ϕ(Y, z)]
is an increasing function of z, provided that the above means are finite.

In the following, given the random variables Xi, i = 1, 2, . . . , d, and Y , we consider
n-dimensional random vectors of the form

(X1,1, . . . , X1,k1 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗), (2)

where we have set k∗ := k1 + · · · + kd , and where Xi,j and Yj for i = 1, 2, . . . , d and j ≥ 1
denote independent copies of Xi and Y , respectively. Independence among all the random
variables appearing in these vectors is also assumed from now on. Moreover, we set

Dn := {(k1, . . . , kd) ∈ N
d : k∗ ≤ n}. (3)

The following theorem shows that if Xi and Y are stochastically ordered, then the mean of a
symmetric supermodular (respectively increasing symmetric supermodular) function of (2) is
supermodular (respectively increasing directionally convex) in the sizes of the groups of i.i.d.
variables.

Theorem 1. IfXi ≥st Y for all i = 1, 2, . . . , d and ifϕ : R
n → R is a symmetric supermodular

(respectively increasing symmetric supermodular) function, then, for 1 ≤ d ≤ n, the function

ψ(k1, . . . , kd) := E[ϕ(X1,1, . . . , X1,k1 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗)] (4)

is supermodular (respectively increasing directionally convex) in (k1, . . . , kd) ∈ Dn, provided
the expectation is finite.

Proof. To prove the supermodularity of ϕ, it is enough to consider the case d = 2. Indeed,
due to (1), the supermodularity of a d-dimensional function follows from the supermodularity
with respect to any pair of its coordinates. Hence, we have to prove that

ψ(k1, k2)− ψ(k1 + 1, k2)− ψ(k1, k2 + 1)+ ψ(k1 + 1, k2 + 1) ≥ 0 (5)

for positive integers k1 and k2 such that k1 + k2 + 2 ≤ n. Consider the (n − 2)-dimensional
vector

V = (X1,1, . . . , X1,k1 , X2,1, . . . , X2,k2 , Y1, . . . , Yn−k1−k2−2).

It is enough to prove inequality (5) under the conditional expectation, namely given V = v.
Since ϕ is symmetric by assumption, we have to prove that

E[ϕ(Y1, Y2, v)− ϕ(Y1, X2, v)] ≥ E[ϕ(X1, Y2, v)− ϕ(X1, X2, v)]. (6)

Since ϕ is supermodular, for x > y,

ϕ(x, t, v)− ϕ(y, t, v)

is monotone increasing in t . From the assumption that X2 ≥st Y2 we thus have, for x > y,

E[ϕ(x,X2, v)− ϕ(y,X2, v)] ≥ E[ϕ(x, Y2, v)− ϕ(y, Y2, v)].
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Hence,
E[ϕ(x,X2, v)− ϕ(x, Y2, v)]

is increasing in x. This implies (6), by again using the assumption that X1 ≥st Y1. The proof
for supermodularity of ϕ is thus completed. Let us now prove thatψ is increasing directionally
convex when ϕ is increasing symmetric supermodular. Due to Remark 1, it is now sufficient
to prove that ψ is coordinatewise convex, for instance, in the first coordinate. Hence, we need
to prove that

ψ(k1 + 1, k)− ψ(k1, k) ≥ ψ(k1, k)− ψ(k1 − 1, k), (7)

where k = (k2, . . . , kd) and k1 + · · · + kd ≤ n− 1. Let us consider the (n− 2)-dimensional
vector

W = (X1,1, . . . , X1,k1−1, X2,1, . . . , X2,k2 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗−1),

where k∗ := k1 + · · · + kd . It is now enough to prove (7) under the conditional expectation,
i.e. given W = w. Since ϕ is a symmetric function, we have

ψ(k1 + 1, k)− ψ(k1, k) = E[ϕ(X1,k1 , X1,k1+1,w)− ϕ(X1,k1 , Yn−k∗ ,w)]
≥ E[ϕ(Yn−k∗ , X1,k1 ,w)− ϕ(Yn−k∗ , Yn−k∗+1,w)]
= ψ(k1, k)− ψ(k1 − 1, k).

Indeed, the above inequality immediately follows from Lemma 1 and recalling the assumption
thatX1 ≥st Y . The proof is thus completed by noting that the monotonicity ofψ can be proved
by means of the same arguments.

Suitable examples of symmetric supermodular functions that satisfy the assumptions of
Theorem 1 are

(i) ϕ(x1, . . . , xn) = − max{x1, . . . , xn};
(ii) ϕ(x1, . . . , xn) = γ (x1 + · · · + xn) if γ (·) is convex;

(iii) ϕ(x1, . . . , xn) = x1 · · · xn.

Examples of increasing symmetric supermodular functions that satisfy the assumptions of
Theorem 1 are

(i) ϕ(x1, . . . , xn) = min{x1, . . . , xn};
(ii) ϕ(x1, . . . , xn) = γ (x1 + · · · + xn) if γ (·) is increasing convex;

(iii) ϕ(x1, . . . , xn) = x1 · · · xn if x1, . . . , xn ≥ 0.

Let K = (K1, . . . , Kd) and M = (M1, . . . ,Md) be random vectors taking values in Dn.
Let

ZK = ϕ(X1,1, . . . , X1,K1 , . . . , Xd,1, . . . , Xd,Kd , Y1, . . . , Yn−K∗), (8)

whose distribution is expressed by

P(ZK ≤ t) =
∫

Dn

Fk(t) dPK(k),

where Fk is the distribution of ϕ(X1,1, . . . , X1,k1 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗) and
PK is the distribution of K . We define ZM and its distribution similarly.

Hereafter we provide a comparison result that follows from Theorem 1.
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Theorem 2. Let Xi ≥st Y for all i = 1, 2, . . . , d.

(i) If
K ≥sm M (9)

and ϕ : R
d → R is a symmetric supermodular function, then

E[ZK ] ≥ E[ZM ],
provided the expectations exist.

(ii) If
K ≥idcx M (10)

and ϕ : R
d → R is an increasing symmetric supermodular function, then

ZK ≥icx ZM .

Proof. (i) Let ψ(k) be defined as in (4). Thus, recalling (8) and the fact that ϕ is symmetric
supermodular,

E[ZK ] = E[E[ZK | K]] = E[ψ(K)] ≥ E[ψ(M)] = E[E[ZM | M]] = E[ZM ],
where the inequality follows from Theorem 1 and assumption (9).

(ii) Let h : R → R denote any increasing convex function. We recall that (see [3] for
instance), under the given assumptions, the composition h ◦ ϕ is increasing symmetric
supermodular. Thus, defining

ψ(k) = E[h ◦ ϕ(X1,1, . . . , X1,k1 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗)],
and setting K∗ := K1 + · · · +Kd and M∗ := M1 + · · · +Md , it follows that

E[h(ZK)] = E[h ◦ ϕ(X1,1, . . . , X1,K1 , . . . , Xd,1, . . . , Xd,Kd , Y1, . . . , Yn−K∗)]
= E[E[h ◦ ϕ(X1,1, . . . , X1,K1 , . . . , Xd,1, . . . , Xd,Kd , Y1, . . . , Yn−K∗) | K]]
= E[ψ(K)]
≥ E[ψ(M)]
= E[h(ZM)],

where the inequality follows from Theorem 1 and assumption (10).

We note that a result similar to Theorem 2(ii), with ZK ≥st ZM instead of ZK ≥icx ZM ,
cannot be obtained, due to Remark 2.

Hereafter we give an example of random vectors K and M satisfying conditions (9)
and (10).

Example 1. Let K and M be bivariate random vectors such that

P(K = (0, 0)) = P(K = (1, 1)) = 1
2 , P(M = (0, 1)) = P(M = (1, 0)) = 1

2 .

Hence, since any supermodular function η can be expressed as

η(x) =
∑
i

aiηi(x),

where ai ≥ 0 for all i, and ηi(x) = 1Ui∪Li
(x), where Ui and Li are suitable upper and

lower orthants, respectively, it is not hard to verify that K ≥sm M , which, in turn, implies that
K ≥idcx M .
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Remark 3. We point out that, since in the univariate case the increasing directionally convex
order reduces to the increasing convex order, if d = 1 then inequality (10) can be replaced by
K ≥icx M in the statement of Theorem 2, and everywhere in the subsequent section.

4. Applications

This section deals with applications of the previous results in various fields.

4.1. Application to risk theory

We consider a finite population of n insureds divided into d + 1 different groups with sizes
k1, k2, . . . , kd, n− k∗, where k∗ = k1 + k2 + · · · + kd ≤ n. Let

(X1,1, . . . , X1,k1 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗) (11)

be a possible portfolio of risks, whereXi,j is a nonnegative random variable denoting the amount
of claim caused by the j th insured of the ith group (i = 1, 2, . . . , d and j = 1, 2, . . . , ki).
Assume that claims within groups are identically distributed, the variablesXi,j are independent,
and Xi ≥st Y . This situation can happen, for example, in a bonus malus system where insured
drivers are classified according to their potential risk, so that good drivers having low damage
experience pay lower premiums than drivers with a higher probability for damage. For example,
drivers living in regions with low traffic or careful drivers have a low probability for damage.
In this case the risk for these drivers is stochastically smaller than the risk of the other drivers.
This phenomena also occurs in health insurance where people with ‘good’ genetics or a healthy
lifestyle have smaller risk. Examples of models where risks are divided into more groups is
also provided in [4]. We note that this paper also presented some comparison results involving
the supermodular ordering and the symmetric supermodular ordering.

Let us now assume that the size of each group is random, and denote by K = (K1,K2, . . . ,

Kd) the random vector of the first d group sizes, so that the last group, formed by an insured
causing stochastically smaller claims, has size n−K∗. Consider the total claim amount

SK =
d∑
i=1

Ki∑
j=1

Xi,j +
n−K∗∑
j=1

Yj ; (12)

similarly define the total claim amount SM when the portfolio has distinct group sizes M =
(M1,M2, . . . ,Md).

Proposition 1. Let K = (K1, . . . , Kd) and M = (M1, . . . ,Md) be random vectors taking
values in the set Dn. If

K ≥idcx M

then
SK ≥icx SM .

Proof. The proof follows from Theorem 2(ii), since Xi ≥st Y and

ϕ(x1,1, . . . , x1,k1 , . . . , xd,1, . . . , xd,kd , y1, . . . , yn−k∗) =
d∑
i=1

ki∑
j=1

xi,j +
n−k∗∑
j=1

yj

is an increasing symmetric supermodular function.
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We remark that (12) gives the total claim amount when the variability in the insureds group
sizes is described by K . Proposition 1 thus shows that the total claim amount increases in the
icx-order as the variability in the group sizes increases in the idcx-order.

Remark 4. Consider the net stop-loss reinsurance premium of portfolio (11), i.e.

πK(a) = E

[( d∑
i=1

Ki∑
j=1

Xi,j +
n−K∗∑
j=1

Yj − a

)
+

]
, a > 0,

where, as usual, (w)+ := max{w, 0}; similarly define πM(a) when the portfolio has distinct
group sizes M . Hence, under the assumptions of Proposition 1, in particular we have

πK(a) ≥ πM(a), a > 0,

provided the expectations exist.

4.2. Application to a closed cyclic multiclass queueing network

Consider a closed Gordon–Newell network of n queues with exponential service times,
and with a total population of � > 0 customers. For the definition of closed Gordon–Newell
queues, see, for instance, the seminal paper by Gordon and Newell [13] or the book by Breuer
and Baum [6]. Assume that the network is cyclic, so that every customer completing service
at queue i moves to queue i + 1 if 1 ≤ i < n or to queue 1 if i = n. The state space of the
network is given by

S(�, n) =
{
(x1, . . . , xn) ∈ Z

n :
n∑
i=1

xi = � and xi ≥ 0 for all i = 1, 2, . . . , n

}
,

where xi represents the number of customers in the ith queue. A model of the network is shown
in Figure 1.

Let us now introduce a multiclass nature in the network units. Assume that the network
units may perform two kinds of activity: some units provide a service that gains a certain profit,
whereas the remaining units supply auxiliary services, such as recovery or repair activity,
originating a cost. Specifically, we assume that the n queues of the network are partitioned
into d + 1 classes, each class being formed by a random number of units. The ith class for
i = 1, 2, . . . , d is formed by Ki units. Each customer of the j th unit of the ith class provides
a random profit of Ai,j ≥ 0 assets (due to some performance of the job on that station). Note
that such profit is identical for each customer in the queue. Moreover, the (d + 1)th class is
formed by n− ∑d

i=1Ki units. Each customer of the j th unit of the (d + 1)th class causes
a random cost Cj ≤ 0, which is identical for each customer in the queue. Hence, only the

Queue 1 Queue n

Figure 1: Closed cyclic network with n queues.
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first d classes are ‘producing classes’. The random vector (K1,K2, . . . , Kd) describes the sizes
of the d producing classes, and takes values in Dn (see (3)).

Moreover, we assume that the service discipline at all queues is FCFS, and the exponential
service times of the queues within each class are identically distributed. We thus denote by µi
the parameter of the service times of the queues of class i for i = 1, 2, . . . , d + 1. Denoting
by X̃i,j the number of customers in the j th queue of the ith class in the equilibrium state, and
by Ỹj the number of customers in the j th queue of the (d + 1)th class in the equilibrium state,
then the state of the network in the equilibrium state is described by the n-dimensional random
vector

(X̃, Ỹ ) = (X̃1,1, . . . , X̃1,K1 , . . . , X̃d,1, . . . , X̃d,Kd , Ỹ1, . . . , Ỹn−K∗),

where K∗ = ∑d
i=1Ki , with state space S(�, n). The equilibrium state probability distribution

of the network conditional on (K1,K2, . . . , Kd) = (k1, k2, . . . , kd) ∈ Dn is given, for (x, y) ∈
S(�, n), by

π(x, y) = 1

G(�, n)

d∏
i=1

ki∏
j=1

(
1

µi

)xi,j n−k∗∏
j=1

(
1

µd+1

)yj
,

where k∗ = ∑d
i=1 ki and

G(�, n) =
∑

(x,y)∈S(�,n)

d∏
i=1

ki∏
j=1

(
1

µi

)xi,j n−k∗∏
j=1

(
1

µd+1

)yj

is the normalizing constant. We remark that subvectors (Xi,1, . . . , Xi,Ki ) for i = 1, 2, . . . , d,
and (Y1, . . . , Yn−K∗) are formed by i.i.d. random variables.

Let us now define the following random variables:

Xi,j = Ai,j X̃i,j , i = 1, 2, . . . , d, j = 1, 2, . . . , Ki,

Yj = Cj Ỹj , j = 1, 2, . . . , n−K∗.

Hence, Xi,j represents the profit gained due to the customers in the j th unit of the ith class,
whereas Yj gives the cost caused by the customers in the j th unit of the (d + 1)th class. We
note that Xi,j ≥st Yj . Let

SK =
d∑
i=1

Ki∑
j=1

Xi,j +
n−K∗∑
j=1

Yj

be the total profit gained by the activity of the multiclass queueing network in the equilibrium
state when the d producing classes have random sizes K1, . . . , Kd . Similarly define SM

when the producing classes have random sizes M1, . . . ,Md . Hence, as for Proposition 1, if
K ≥idcx M then SK ≥icx SM . This implies that the total profit increases in the icx-order as the
variability in the group sizes increases.

4.3. Application to the reliability of series systems

Results involving the fact that increasing the randomness in the structure of reliability systems
causes a stochastical improvement of the system have been given recently in [11], where it was
shown that the lifetime of a series or of a parallel system may be stochastically improved
by means of suitable mixtures. See also [12], where the reliability of a system improves by
introducing randomness in the number of system components extracted from different batches.

https://doi.org/10.1239/jap/1371648954 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648954


Supermodular functions of heterogeneous random vectors 473

Along the above lines, hereafter we consider a series system formed by n units randomly
selected from d + 1 different batches. Specifically, assume thatK1,K2, . . . , Kd, n−K∗ units
are selected from the first, second, . . . , dth, (d + 1)th batch, where the nonnegative integer-
valued random variablesKi are such thatK∗ = K1 +K2 + · · ·+Kd ≤ n. For i = 1, 2, . . . , d
and j = 1, 2, . . . , Ki, let Xi,j (t) denote the Bernoulli random variable that describes the
functioning at time t ≥ 0 of the j th unit selected from the ith batch. Similarly, Yj (t) is the
Bernoulli random variable describing the functioning at time t ≥ 0 of the j th unit selected
from the (d + 1)th batch, which is assumed to contain weaker units. Hence, denoting by
pi,j (t) = P(Xi,j (t) = 1) and qj (t) = P(Yj (t) = 1) the availability of Xi,j (t) and Yj (t),
respectively, we have

pi,j (t) ≥ qj (t), t ≥ 0,

so that Xi,j (t) ≥st Yj (t). Moreover, we assume that the random variables that describe the
functioning of the components within each batch are i.i.d. The overall functioning of the series
system at time t ≥ 0 is given by (see [2])

RK(t) =
d∏
i=1

Ki∏
j=1

Xi,j (t)

n−K∗∏
j=1

Yj (t),

and RM(t) is similarly expressed when M1,M2, . . . ,Md, n−M∗ are the random numbers of
units.

Proposition 2. Let K = (K1, . . . , Kd) and M = (M1, . . . ,Md) be random vectors taking
values in Dn. If

K ≥idcx M

then
RK(t) ≥icx RM(t)

for all t ≥ 0.

The proof of Proposition 2 is similar to that of Proposition 1, since Xi,j (t) ≥st Yj (t), and
since ϕ(x, y) = ∏d

i=1
∏ki
j=1 xi,j

∏n−k∗
j=1 yj is an increasing symmetric supermodular function

for xi,j , yj ≥ 0.

Remark 5. Let SK be the lifetime of the above series system under randomization of the
number of units described by K , and similarly for SM . Under the above assumptions, due to
Proposition 2, we also have

P(SK > t) = E[RK(t)] ≥ E[RM(t)] = P(SM > t) for all t ≥ 0,

that is, SK ≥st SM . This shows that the system lifetime stochastically increases as the variability
of the group sizes increases.
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