ON A COMBINATORIAL PROBLEM IN NUMBER THEORY
Bernt Lindstrom
(received October 17, 1964)
1. Introduction and statement of results. Given an

integer k> 2 and a finite set M of rational integers. Let
vi (i=1,2,...,n) be m-dimensional (column-)vectors with all

n
components from M and such that the k sums

n
(1.1) Z ev, (¢.=0,1,2,...,k-1)
. ii i
are all different. Then we shall say that {vi’VZ' ...,V }15a
n
detecting set of vectors.
Let a be the maximum of absolute values of the eiements
in M. Then the components of the sums (1. 1) lie between

-akn and akn. The number of m-dimensional vectors with
all components in this interval is less than (2akn)™. Hence

(1.2) ™ < (2an)™ .

For m f{fixed n is bounded above. Let Fk(m) be the maximal

number of m-dimensional vectors forming a detecting set.
Similarly, m is bounded below for n fixed. Let fk(n) ‘be

the minimal m.

In the special case k=2, M={0,1} the problem of
determining fz(n) is equivalent to the following weighing

problem: what is the minimal number of weighings on an
accurate scale to determine all false coins in a set of n coins,
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if false coins weigh a and correct ones b (a # b)? The
choice of coins for a weighing must not depend on results of
previous weighings.

This weighing problem was first proposed by H.S. Shapiro
in [8] for n=5. N.J. Fine [6] proved that fZ(S) =4. For

large n, fz(n) is estimated in [2], [5], [7], [9)- 1f M ={0,1}
or {-1,1}, then

f_(n)logn
. 2
lim ——————— =log 4.

n
n—+

This was proved in [7]. For k> 2 the problem to estimate
f (n) was first studied in [2] by D.G. Cantor.

The purpose of this note is to introduce a new method to
construct detecting sets of vectors. The method is of more
general scope than that used in [7]. A feature of the construction
is the use of sets of integers di (i=1,2,...,h), 1< dif- X,

such that the sums

(1.3) T ed, (.=0,1,2,...,k-1)

li1l 1

are all different (i.e. detecting sets of integers). A simple

i-1
example is di =K . Let hk(x) be the maximum of h.

h,(x) was studied by P. Erdos and L. Moser in [4]. It is

easy to see that

Zn-i)_>_n n (Zn-i)> n-1

(1. 4) h_( .

2

log, k )

Professor R.K. Guy, Delhi, has kindly sent me a

detecting set of 23 integers < 2“7, i.e.
: 2
(1.5) h2(2 1)2_23.
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The smallest number in Professor Guy's set is 1042698, and
the largest 2094203.

By the aid of (1.4) we shall prove the following

THEOREM 1. If M={0,1} then Fz(m) > A(m) and

A(m) - m

Fk(m) > , where A(m) is the number of 1's in the

logzk

binary representation of the first m positive integers.

I conjecture that Fz(m) =A(m) for m=1,2,...,15
at least. It would follow that fZ(A(m)) =m for m=1,2,...,15.

On the other hand one can prove, by the aid of (1.5), that

(1. 6) Fz(m) > A(m) for m> 222 .

The following asymptotic formula was first proved by
R. Bellman and H.N. Shapiro in [1] (for another proof see [3]),

1
(1.7) A(m)MEmlome, as m— o .

By the aid of (1. 7) and Theorem 1 we shall prove

THEOREM 2. For any finite set of integers M with
IM]| > 2 and any integer k> 2,

fk(n)logkn

lim ————— = 2.
n
n->x

For the proof of Theorem 2 we shall also need the fact
that

(1. 8) ™ < (ca) ™™/ 2

(c is an absolute constant < 4e),

if there is a detecting set of n m-dimensional vectors with
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all components in M. In the special case k=2, m=1,
M=1,2,...,%x, we get by (1.8)

(1.9) 2" Vn < ex for n =h,(x) .

The inequality (1.9) was proved by P. Erdos and L. Moser in
[4]. (1.8) has been proved by L. Moser in the case k =2,
a =1 (unpublished).

There is a class of detecting sets of vectors, which
could be characterized as residue-class representing. A set

in this class is obtained as follows. Let Vi' VZ' e, WV be
m

m-dimensional independent vectors with all components from M.
They generate a sublattice A in the lattice X of all m-dimensional

vectors with integral components. Assume that v FURIEER v
m n

have all components in M, and that the sums

n
= ev, (e.=0,1,...,k-1)
11 1
i=m+1
are incongruent modulo A .  Then {vi, Vo ., v }tisa
n

detecting set. For example, it is easy to see that the detecting
sets in [7] and [9] are of the residue-class representing type.

By a lemma in geometric number theory, the number of

residue-classes in A* modulo A is )det(vi,vz,... v o).
m

It follows that

n-

(1.10) KT < |det(v,, v, -ensv )]
- 1 m

57
and, by an application of Hadamard's inequality,

(1. 11) WLorm o m m/2

If k=2 and M={0,1} one can prove the existence of
detecting sets of the residue-class representing type for every
integer m > 3 and with n = A(m) for which equality holds in
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(1.10). Below will be given a table with references to previous
detecting sets of this type.

One possible method to find detecting sets with n > A(m)

istochoose v , v_, ..., Vv such that det(v ,v
1 2 m 1

is as large as possible and then try to find v

v )
m

2’

y see, V

m+1 n’
This method will be illustrated by an example in section 3.

Table of the function A(m) with references to detecting sets.

m 3 4 5 6 7 8 9 10 11 12 13 14 15

A(m) 4 5 7 9 12 13 .15 17 20 22 25 28 32

Ref. 9 6 9 7 9 7

2. Proof of Theorem 1. Any positive integer s can be
uniquely written in the form

n n n
(2. 1) s=21+2%+... 42",
where n, <n2 <... <nv are non-negative integers. We put
S = {ni’nZ"”'nv}

and write s = (S)Z. We then put 0 = (¢)2, where 9 is the

empty set. Let o(s) =v for s> 0 and «(0)=0. For any
two non-negative integers s = (S)2 and t= (T)Z we define

snt:(Sf'\T)2 and write sCt if SCT. Now we prove the

LEMMA. Let bO' bi’ ..., b be a sequence of
n

numbers and r an integer > 0 such that bs =bs for

Nr
s=0,1,2,...,n. Then

oz(s_)b

z (-1) s

sCt

=0 if t¢dr, 1<t<n.
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Proof of the lemma. Since t ¢ r there are integers u

and v, us= Zv, such that uC t but u¢. r. If sCt-u then
(stu) N r=sN r and so b =b_ by the condition b =b .
stu s sNnr s

Since a(s+u) =a(s) + 1 we get

z 0% -b ) =0,

s
sCt sCt-u

z (-1

and the lemma is proved.

We shall define a class of matrices Dm with m rows
(m=1,2,...), such that if v (i=1,2,...,n) are the columns

in D then{v ,v ,...,v}1sadetectmg set, (M={0, 1}).
m 1 n

2
Forany r in 1 <r<m let d(r) (Zr)’”.’d;r) be a
-1
detecting set of integers with 1 < d(r) ar(r) » j=4,2,...,h,
-1
and h =h(r) < hk(Za(r) ). Since a(i) is an odd integer for
-1
Za(r) integers i, iCr, we can determine dg;) =0or1
for i Cr such that
(2.2) R L U
iCr 3 J J
(r)

for j=1,2,...,h

(r) _4(m)

For i ¢Cr we then define 4, and find by the Lemma

ij 1ﬁr,j

(2.3) z 0T _ 6 e rct<n.

icCt 3
Define a matrix D) =(d\7)), i=1,2,...,m; j=1,2,...,h),

m ij
1 2

and put D ==(D( ), D( ), e D(m)). We shall prove that the

m m m m
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criumn vectors in D are a detecting set.
m

Let xt and yt (t=1,2,...,m) be column vectors of

dimension h(t), with all components from the set
{0,1,2,...,k-1}. Suppose that

(2.4)

™
o

»

I

u ™
o

<

We shall prove X =Y, for t=1,2,...,m. If this is not true
let r be the largest t for which X, #yt. If r<m we sub-

tract the terms with t> r from both members of (2.4). This
is allowed since X =Y, for t>r. Then we multiply the

th iH1

i components in both members by (-1)0'(1)+ and add for all

i with iCr. By (2.2) and (2.3), with t and r interchanged,

we get

() () Q)

(r)y .(r) (r)
I SRR a.’, d Ny

(2.5) (d )xr = (d1 » d, e dp Ny

(r)

The 4.7 () -1,2,...,n%

) form a detecting set, hence

x =y . But this contradicts the assumption, and we have
r r

proved that the column vectors in Dm form a detecting set.

(r) a(r)-1

If we choose h =hk(2 ), we find by (1. 4) for the

number n of columns in D

The second inequality in Theorem 1 is proved. The first is
proved similarly.
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(r) _, 3-1

3 =K we get a detecting set of the residue-

class representing type. For in this case (2.5) implies x =y

If we take d

even if the hth components are allowed to take any interer value.
It follows that the sums (1. 1) of column vectors in D take
m

different values even if m of the € are allowed to take any
i
integer value. This implies that the column vectors form a

detecting set of the residue-class representing type.

Consider the case k=2. The number of columns in Dm

is A(m). Those columns in Dm which generate A form a
matrix B =(b..), where b, is given by the formula
m ij ij

a(inj)+1

1 ..
(2. 6) bij -E((-“ +1), i,j=1,2,...,m.

We can prove that

2.7) [det B | =28(m) ™
m

Hence equality holds in (4. 10).
In order to prove (2. 7), we note that

0 for j<m,

(2. 8) R
iCm 3 a(m)-1 .
-2 for j=m,

by (2. 6) and our Lemma. Multiply the last row in Bm by

th i
-1)°* and add to this the i multiplied by (_1)0(1), if

iCm. We get

(m)

a(m)-1

(m)(detB ) = -2 (det B
m m

a
('1) _1) ’

and then (2. 7) easily follows.
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3. Two examples.

Example 1. We shall illustrate the method in section 2

by proving that the columns in the matrix D6 below form a

detecting set, (k =2).

o1 2 142 4 1+4 244 i (-1)°0H!
(1 0 1414 0 14 00 1 +1
‘0 14 01414 O OO0 11 2 +1
1 414 00 0 114 11 142 -1
Dg = 0 0 00 4 01 01| 4 +
1 0 1414 4 00 01 1+4 -1
{ o 414 04 1 014 00O ) 2+4 -1
The columns in D6 are denoted vi, vz, e ey v9. We shall
9
prove that the sums Z e,vi, €. =0 or 1, are all different.
i=¢ * 11
s s e d , s coes 0 .
Let X0 X, x9 an Yy Y, y9 be or 1
Suppose that
9 9
Z xv, = X yv. .
i=1 11 i=1 11

Take the "sum!' of rows with i C 2+4: row 2 + row 4 - row(2+4).
We get

x8+2x9 = y8+2y9

and conclude that x =y8 and x_=y Next take the '"'sum"

8 9 79
of rows with i C1+4: row 1 + row 4 - row (1+4). We get

X, + Zx7 =Ye + 2y7 and conclude that x =Y, and X, =Y.

Now we prove X =y5. The 4th row is
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x5 + X, + x9 =y’5 + Y, + y9. We have already proved X, =Y,
and x9 = yg. It follows X, =Y, Etc.

Example 2. k=2, m=6, M={0,1}. The maximum
value of determinants of order 6 with all entries 0 or 1 is 9.
The following matrix with determinant = 9 can be found?)

(1 1 0 1 1 0
1t 0 1 1 1 1
1 1 1 0 0 1
D=1lo 1 0 1 0o 1
0 1 0 0 1 1
0 1 1 1 1 o0

We triangulate D by the operations: (i) add a multiple of one
column to another column, (ii) two columns change places,
(iii) the elements in a column are multiplied by -1. Then we
get the following matrix:

(

1 0 0 0 0 ©

0 1 0 0 0 0

0 0 1 0 0 0
DP=10o 0 0o 1 0o o
0 0 0 0 1 0

\-1 -2 -6 -5 -5 9

The columns in D and D' generate the same sublattice A
in K . Observe that the sums £ + 252 + 583, €. =0 or 1,
1

are incongruent modulo 9. Then the following column vectors
are incongruent modulo A :

1)

cf. J. Williamson, Determinants whose elements are 0 and
1, Amer. Math. Monthly 53 (1946), 427-434.
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(0 (o) (o)
0 1 0
0 0 0
0 0 1
0 0 0
1).,{0).,\0

\

These vectors and those in D form a detecting set of the
residue-class representing type.

4. Proof of Theorem 2. First assume that M ={0,1}.
Put fk(n) =m. Then n> Fk(m-i) > {A(m-1) - m + i)/logzk

by Theorem 1. The function log x/x is decreasing for x> e.
Then we find for n sufficiently large

£ -
k(n)logkn mlong(m 1)

(4. 1) n < A(m-1)-m+1

Let n—w. Then, by (1.2), m-=o. It follows by (4.1) and
(1.7)

f (n)log . n
(4.2) lim sup—k———k— <2.

n -—
n-+>x0

In order to prove (4. 2) for an arbitrary M, we observe

th i » y oo ey » = ) PRI » i det ti »
atx_f{v1 v, vn} v, (a11 a, aim) is detecting

then also ' L, V., .., vV =(ca_  +b, ca _+b, ..., ca, +b, b),
1 2 n i i1 i2 im

c #0, is detecting. let a, be M, a#b. Put c=a-b. If
the vectors v, have all components in { 0,1}, then the
1

vectors v' have all components from M. The immediate
1
conclusion is that fk(n)' cannot increase by more than 1
(the vectors v! are (m+1i)-dimensional) at the transition from
1

{0,1} to M. Thus (4.2) holds in the general case.

Next we want to prove
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f (n)log. n
k
(4. 3) lim inf ~—— 5 5 2.

n —_
n-+= o

The inequality {1. 8) implies

fk(n)lo gkn >

>
n -1+ O{1/log n)

Now we shall prove (1. 8) by the method of L.. Moser.

Let {v1 TSI } be a detecting set with
! n
v.=(a. ,a. ,...,a. ) and all components from the set M.
i i1 12 im
Let a denote the maximum of absolute values of the elements
in M.
Put
n
Z a e = x, for j=1,2,...,m.

n
The k wvectors

n
(xi,xz,...,x y = Z ev,, (.=0,1,2,...,k-1),
: m AR 1 i

are all distinct. Now we define the mean value operator E by

_ k-1 k-1 k-1 >
E =k = X ... Z , andput Var x = E(x-Ex) .
e =0 ¢_=0 e =0
1 2 n

By simple calculations one can prove
1 2
Ee = -z(k-i) and Var Ei = (k -1)/12 .
i

If we observe that
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n
2 2
Varx, = Z a_Vare < kza n/i2,
J 4 U 1

i=1

we find

m

Z E(2x. - ZEx,)2 < (1/3)k232mn .

=g J J

j_

1 n
Hence, there are at least -k wvectors (x ,x_,...,x ) for
2 1" 2 m

which

m .

2 22

Z (2x,- 2Ex) <(2/3)k a mn .

P4 J J

J_
Since xj and ZExj are integers, we conclude that the
inequality

m

2 2 2 2
Z vy, <(2/3)ka mn=R
j=t ?

i n
has at least -k integer solutions. We can find an upper bound

2
for the number of solutions, if we calculate the volume of an
2 2 2
m-dimensional sphere with radius R: (CiR /m)m/ = (Czka)mnm/

for suitable constants Ci and CZ. (1. 8) follows immediately.
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