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The present work proposes a general analysis of those models for gravity wave propagation
that partially or totally rely on an average procedure over the water depth. The aim is
the identification of the intrinsic physical quantities that characterize the wave dynamics,
going beyond the usual definition of depth-averaged velocity. In particular, the proposed
approach is based on the decomposition of the depth-averaged fields in their gradient- and
divergence-free components. This naturally leads to the definition of a generalized velocity
field that includes part of the dispersive contributions of the wave dynamics, and to the
detection of the intrinsic boundary conditions along the free surface and the seabed. The
analysis also proves the existence of generalized velocity potentials that under particular
circumstances can include rotational contributions.
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1. Introduction
The dynamics of gravity waves is a classic topic in fluid dynamics that captivated
several generations of physicists, mathematicians and engineers. Its allure does not lie
exclusively in the theoretical and physical aspects of wave propagation, but is also in the
important practical applications, some directly related to human activities in the coastal
and ocean regions. Different approaches can be employed for the theoretical modelling
of this phenomenon according to the specific assumptions that are adopted. A complete
description requires the implementation of the Navier–Stokes equations along with proper
closures for turbulent terms (as in large-eddy simulations or Reynolds-averaged Navier–
Stokes). In any case, if one assumes that turbulence plays a minor role, then it is possible
to disregard the presence of boundary layers and dissipation, and rely on the use of the
Euler equation. Moreover, if the vorticity in the fluid bulk is absent, and no singularities
are present along the free surface and the seabed (namely, wave breaking and sharp seabed
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profiles), then the potential flow theory holds true and one can describe the wave
dynamics through the velocity potential and the Bernoulli equation. All the approaches
mentioned above allow for an accurate description of the wave dynamics, even though
their applicability is limited to narrow sea regions when they are employed in numerical
simulations. This issue is due to the fact that wave propagation generally affects large
areas, whereas the above models depend on local quantities and are therefore more suited
for the description of small-scale phenomena.

These aspects motivated the development of depth-averaged models, i.e. those models
based on the assumption that the horizontal dynamics is predominant in the dynamics
along the vertical direction and relying on the use of an average procedure over the
water depth. These models can be obtained by applying the average procedure to each of
the small-scale equations described above (i.e. Navier–Stokes equations, Euler equation,
potential flow theory) along with proper theoretical assumptions. The simplest depth-
averaged model is represented by the nonlinear shallow-water equations (NSWEs), which
rely on the approximation of the pressure field through its hydrostatic component. Despite
their simplicity and the availability of a wide collection of theoretical and numerical works
(Carrier & Greenspan 1958; Stoker 1992; Toro 2001; Brocchini et al. 2001; LeVeque
2002; Antuono 2010; Rybkin, Pelinovsky & Didenkulova 2014), the accuracy of these
equations is limited to the long-wave dynamics, i.e. wave propagation characterized by
h0/λ� 1, where h0 and λ are respectively the reference water depth and wavelength. A
more accurate approximation of the pressure field (with the inclusion of nonlinear and
dispersive effects) leads to the definition of the Boussinesq-type models, which for many
years have been a very active field of research (Madsen & Schäffer 1998; Veeramony
& Svendsen 2000; Gobbi, Kirby & Wei 2000; Briganti et al. 2004; Eskilsson & Sherwin
2006; Kim, Lynett & Socolofsky 2009; Bingham, Madsen & Furman 2009; Tonelli & Petti
2012; Judge et al. 2018; Duran & Richard 2020). In comparison with the NSWEs, these
models can describe the wave dynamics up to the intermediate-water conditions (namely
h0/λ< 1/2). The main drawback of Boussinesq-type models lies in their derivation, since
this requires proper closures and/or specific approximations to obtain closed formulations
in terms of depth-averaged variables. This limits their accuracy and consequently their
range of applicability. A thorough description of Boussinesq models can be found, for
example, in Brocchini (2013) and Kirby (2016).

For the purpose of overcoming the above limitations, many works in the last decades
have addressed the definition of the so-called non-hydrostatic schemes (Zijlema & Stelling
2008; Ma, Shi & Kirby 2012; Raoult, Benoit & Yates 2016; Pan, Kramer & Piggott 2019).
The basic idea is to represent, totally or partially, the vertical dynamics in order to recover
a higher accuracy in the pressure field estimation. This allows non-hydrostatic schemes to
describe the wave propagation up to the deep-water regime at the price of an increase of the
computational costs in comparison to Boussinesq-type equations. Some non-hydrostatic
schemes are obtained from equations that belong to large-eddy simulations (LES) or
Reynolds-averaged Navier–Stokes (RANS) approaches (Christensen & Deigaard 2001;
Smit, Zijlema & Stelling 2013; Derakhti et al. 2016), and for this reason are expected to
share in part some of the computational limitations of the small-scale equations described
before. Alternatively, other schemes are obtained by coupling depth-averaging procedures
with a model (approximated or exact) for the vertical dynamics (Zijlema & Stelling 2005;
Yamazaki, Kowalik & Cheung 2009; Antuono & Brocchini 2013; Lu & Xie 2016; Cantero-
Chinchilla, Castro-Orgaz & Khan 2018; Pan et al. 2019; Escalante et al. 2024). In this case,
the representation of the depth-averaged terms is again a crucial matter for investigation.

In comparison with small-scale equations, the models that totally or partially adopt a
depth-averaging procedure cannot rely on a deepened physical characterization such as,
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for example, the potential flow theory. In this context, the main concern is about the
closure and approximation of those terms that cannot be expressed directly as functions
of depth-averaged quantities. Such a process, though accurate, has to be applied with
great care, since it may lead to the detriment of general physical properties in the models.
Furthermore, many approaches are driven by the necessity of attaining numerical schemes
characterized by limited computational costs, rather than a thorough physical analysis. In
fact, there is not yet a general and comprehensive overview about the physical structure
that such schemes have to possess.

The aim of the present work is therefore to provide a contribution on this topic,
and derive a theory for those models that (partially or totally) employ depth-averaging
procedures. This is done by identifying the intrinsic physical quantities that characterize
the wave dynamics through the decomposition of the averaged quantities in their gradient-
and divergence-free components. This allows for a clear identification of the rotational
and irrotational terms, and likewise the local models. Furthermore, the adopted approach
allows for a direct inspection of the necessary conditions along the interfaces, namely the
free surface and the bottom seabed.

The paper is organized as follows. Section 2 introduces some basic concepts that are
used in the derivation that follows, while in § 3, we derive the general depth-averaged
equations starting from the Navier–Stokes equations. Hence an extensive analysis of the
governing equations is provided in Sections 4 and 5, while a proof of concept of the
main theoretical findings is provided in § 6. Finally, an overall discussion of the results
is proposed in § 7.

2. Generalities on the depth-averaged fields
In this section, we introduce the depth-averaging procedure, and apply it to the local
velocity and vorticity fields. This allows us to draw some general preliminary observations
that will be useful later on.

For the sake of simplicity, we adopt the following notation for the two- and three-
dimensional fields. Let us denote by u = (u, v, w) the three-dimensional velocity field.
Then we indicate by u = (u, v) the two-dimensional velocity field on the (x, y)-plane.
Generally, the same notation is adopted to indicate the projection on the (x, y)-plane
of a generic three-dimensional field. Similarly, we denote by ∇ the gradient operator
on the (x, y)-plane, while ∇ is the gradient in three dimensions. Finally, the quantities
evaluated at the free surface and along the seabed are denoted by the subscripts F and B.
In particular, the elevation of the free surface is indicated by η(x, y, t), while the seabed
position is given by z = −h(x, y, t). Accordingly, the total water depth is d = η + h. The
origin of the Cartesian frame of reference is placed at the position of the undisturbed free
surface, with the vertical axis pointing upwards.

The components of the vorticity field ω = ∇ × u are

ω1 = ∂w

∂y
− ∂v

∂z
, ω2 = ∂u

∂z
− ∂w

∂x
, ω3 = ∂v

∂x
− ∂u

∂y
. (2.1)

Integrating the first two relations from z to the free surface η along the vertical direction,
using the Leibniz rule and rearranging, we find

u = −∂Υ

∂x
+ uF + wF

∂η

∂x
−
∫ η

z
ω2 dζ, (2.2)

v = −∂Υ

∂y
+ vF + wF

∂η

∂y
+
∫ η

z
ω1 dζ, (2.3)
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where the variable Υ is defined by the expression

Υ =
∫ η

z
w dζ ⇒ w = −∂Υ

∂z
. (2.4)

We observe that the function Υ behaves as a velocity potential for u, whereas the
remaining contributions, at this point, do not yet have a clear interpretation. In order
to provide a physical characterization, we decompose them in a depth-averaged part
and a rotational deviation. This leads to the definition of the generalized mass flux
M = (M1, M2) as

M1

d
= uF + wF

∂η

∂x
− 1

d

∫ η

−h
dz
∫ η

z
ω2 dζ, (2.5)

M2

d
= vF + wF

∂η

∂y
+ 1

d

∫ η

−h
dz
∫ η

z
ω1 dζ, (2.6)

so that (2.2) and (2.3) can be rewritten as

u = −∇Υ + M
d

+ R, (2.7)

where the rotational deviation is given by

R =
(

−
∫ η

z
ω2 dζ + 1

d

∫ η

−h
dz
∫ η

z
ω2 dζ

∫ η

z
ω1 dζ − 1

d

∫ η

−h
dz
∫ η

z
ω1 dζ

)
. (2.8)

As shown in § 3.2, the field M naturally appears when depth averaging is applied to the
Navier–Stokes equations, and as pointed out in Antuono et al. (2017), it includes those
linear contributions that are associated with the phenomenon of wave dispersion. This
motivates the wording ‘generalized’ adopted for it. Accordingly, we refer to the field M/d
as the generalized velocity field. Finally, integrating (2.7) over the fluid depth, we obtain

dU = −
∫ η

−h
∇Υ dz + M, (2.9)

where U = (U, V ) is the depth-averaged field on the (x, y)-plane, i.e.

U = 1
d

∫ η

−h
u dz. (2.10)

Accordingly, we denote by δu = u − U the deviation of the two-dimensional velocity
field from the depth-averaged quantities.

Before proceeding, it is worth noting that some kinds of ‘generalized velocities’ also
appear in many models for coastal dynamics, even though there is not always a full
awareness of it. For example, in Wei et al. (1995), Erduran, Ilic & Kutija (2005) and Tonelli
& Petti (2012), the variable in the momentum equation that is integrated in time is not the
depth-averaged velocity, rather an expression containing both U and its spatial derivatives
(the latter extracted from the fluxes of the momentum equation). Such a variable can
be regarded as a generalized velocity field due to the similarities with the derivation of
M/d in § 3.2. In other models (Nwogu 1993; Chen et al. 2000; Kennedy et al. 2000), in
addition to U , a further velocity term is defined by evaluating u at a certain reference quote
over the fluid depth. This strategy is applied to improve the description of the dispersive
effects in wave propagation. Again, this procedure shows close analogies with the physical
interpretation of M/d as a term consisting of velocity components along the free surface;
see (2.5)–(2.6).
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As a final step, we highlight some aspects related to the decomposition provided in this
section. By a slight abuse of notation, we introduce the curl operator in two dimensions as
∇ × f = ∂ f2/∂x − ∂ f1/∂y, where f = ( f1, f2) is a generic vector. Hence applying it to
(2.7), we find

ω3 = ∇ ×
(

M
d

+ R
)

. (2.11)

The above result, already obtained in Antuono et al. (2022), shows that ω3 can be derived
from the remaining components of the vorticity field. This is a consequence of the fact that
ω is a null-divergence field. Furthermore, (2.11) suggests a close relation between the field
M/d and the vorticity in the fluid. This aspect will be addressed in detail in the following
sections.

2.1. Rotational and gradient fields
Let us introduce the normal unit vectors to the free surface and the seabed. Since we
require them to point out of the fluid domain, they read

nF =
(

−∂η

∂x
, −∂η

∂y
, 1
)

/NF , nB =
(

−∂h

∂x
, −∂h

∂y
, −1

)
/NB, (2.12)

where N 2
F = 1 + ‖∇η‖2 and N 2

B = 1 + ‖∇h‖2. We also define ñF = NF nF and ñB =
NB nB , since these vectors will be used extensively for the derivation of useful
expressions. Note that ñF and ñB are not unit vectors.

In particular, as shown in Appendix A, the following relation holds true:

∇ × (RF − RB) = ωF · ñF + ωB · ñB, (2.13)

where

RF − RB =
(∫ η

−h
ω2 dz, −

∫ η

−h
ω1 dz

)
. (2.14)

In more detail, the following expressions between the vorticity along the interfaces and the
generalized velocity M/d are derived:

∇ ×
(

M
d

+ RF

)
= ωF · ñF , (2.15)

∇ ×
(

M
d

+ RB

)
= −ωB · ñB . (2.16)

The above relations are trivially satisfied when unidirectional wave propagation occurs.
Conversely, for a generic wave motion, they suggest a special structure for the equations
that describe the evolution of the generalized velocity. For example, the term M/d is
expected to be a gradient field when the flow is irrotational. The same reasoning stands for
the fields (M/d + RF ) and (M/d + RB) if the boundary terms (ωF · ñF ) and (ωB · ñB)

are null. Apart from the above considerations, (2.15) and (2.16) suggest that these boundary
terms may play an important role in the characterization of the depth-averaged models.
These relevant aspects will be addressed in the following sections where the equations
of motions are studied in the framework of the depth-averaging approach. Incidentally,
we observe that, differently from (ωF · ñF ) and (ωB · ñB), RF and RB do not represent
boundary conditions, since they are defined through integrals over the water depth and
therefore contain vortical contributions coming from both the interfaces (namely, free
surface and seabed).
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Finally, we highlight that the expressions and results derived up to here represent general
properties of the depth-averaged field, and do not depend on any specific dynamic law.

3. Governing equations and depth averaging
In this section, we apply the depth-averaging procedure to the equations for incompressible
Newtonian fluids. The analysis will be developed by keeping in mind the results of the
previous section and highlighting the presence of terms depending on (M/d + RF ),
(M/d + RB) and the boundary expressions (ωF · ñF ) and (ωB · ñB).

Incidentally, we clarify that in depth-averaged models, the interfaces (i.e. the
free surface and the seabed) are assumed to be single-valued in order to avoid
ambiguities during the integration along the vertical direction. This implies that the
vortical contributions generated by wave breaking (which generally involve free-surface
overturning and/or fragmentation) have to be modelled separately through proper closures.
This approach also stands for the vorticity generated at the seabed, since the spatial
resolution used in the numerical implementation is generally too coarse to describe the
boundary layer. In practice, all the dynamics of the rotational component of the velocity
field has to be modelled, apart from the main depth-averaged equations. In the present
work, we do not deal with the latter part, which represents a distinct line of research,
and assume that a proper model is available for the vorticity field. Similarly, the same
assumption is adopted for the turbulent terms whose closure is not discussed here.

To simplify the treatise as much as possible, we write the Navier–Stokes equations in
the following compact form: {∇ · u = 0,

∂u
∂t

= −∇ P + g − q + θ ,
(3.1)

where P = p + ‖u‖2/2, p is the pressure field (divided by the density), g is the gravity
acceleration, q = ω × u is the Lamb vector, and θ = ∇ ·V, where V is the viscous stress
tensor. The latter terms also includes possible turbulent contributions. The kinematic
boundary conditions are

wF = ∂η

∂t
+ uF · ∇η, wB = −∂h

∂t
− uB · ∇h, (3.2)

while the dynamics boundary condition at the free surface is

pF = (n ·V · n)F . (3.3)

Here it is also possible to include the action of surface tension. Integrating the continuity
equation over the water depth and using the kinematic conditions, we find:

∂d

∂t
+ ∇ · (U d) = 0 . (3.4)

From a certain point of view, (3.4) represents the depth-averaged counterpart of the
kinematic conditions along the free surface and the seabed. Substituting (2.2)–(2.4) in
the continuity equation, we finally find the governing equation for Υ ,

∇Υ = ∇ ·
(

M
d

+ R
)

, (3.5)

along with the following boundary conditions at the free surface and at the seabed:

ΥF = 0,
∂Υ

∂n
|B = −

[
∂h

∂t
+
(

M
d

+ RB

)
· ∇h

]
/NB . (3.6)
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The Neumann condition is equivalent to the kinematic condition along the seabed, and its
derivation is detailed in Antuono et al. (2017). Equation (3.5) for Υ is solved in place of
the Poisson equation for the pressure field that is obtained by taking the divergence of the
momentum equation in (3.1). In particular, the solution of the Poisson equation for Υ is
used to recover the dynamics along the vertical direction relying on the knowledge of the
fields M/d and R. As illustrated in the following sections, the governing equation for M/d
is obtained from the momentum equations through the application of the depth-averaging
procedure.

3.1. The equation for the dynamic pressure field
Integrating the third component of the momentum equation over the vertical interval [z, η],
we obtain ∫ η

z

∂w

∂t
dζ = −PF + P − g(η − z) −

∫ η

z
q3 dζ +

∫ η

z
θ3 dζ, (3.7)

from which we find

P = ∂Υ

∂t
+ PF − wF

∂η

∂t
+ g(η − z) +

∫ η

z
q3 dζ −

∫ η

z
θ3 dζ. (3.8)

Similarly, integrating over [−h, η], we obtain

PB = ∂ΥB

∂t
+ PF − wF

∂η

∂t
− wB

∂h

∂t
+ gd +

∫ η

−h
q3 dz −

∫ η

−h
θ3 dz. (3.9)

Finally, we recall that

PF = pF + ‖uF‖2

2
, (3.10)

where pF is given by (3.3). The above expressions are used to eliminate the explicit
dependence on the pressure field from the remaining components of the momentum
equation.

Before proceeding to the analysis, we highlight that the derivation of many Boussinesq
and non-hydrostatic models can be basically traced back to approximations applied to the
dynamics pressure field (e.g. Nwogu 1993; Kim et al. 2009; Donahue et al. 2015; Kazakova
& Richard 2019) and/or to the Laplace equation for the velocity potential φ (e.g. Wei et al.
1995; Gobbi et al. 2000; Raoult et al. 2016). In the current framework, the latter case
is equivalent to approximating the solution of the Poisson equation for Υ , namely (3.5),
whereas the former approach corresponds to approximations of (3.8)–(3.10). Regardless of
the accuracy of the above strategies, an insidious issue lies in the possible loss of general
physical properties associated with the wave dynamics. For this reason, in the following
analysis we do not consider any of the above approximations, and derive a general structure
that stands as a reference framework for both Boussinesq and non-hydrostatic models.

3.2. The equation for the generalized velocity field
Let us consider the momentum in the x-direction. Integrating over the water depth and
using the Leibniz rule, we find

∂(Ud)

∂t
− uF

∂η

∂t
− u B

∂h

∂t
= − ∂

∂x

(∫ η

−h
P dz

)
+ PF

∂η

∂x
+ PB

∂h

∂x

−
∫ η

−h
q1 dz +

∫ η

−h
θ1 dz. (3.11)
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We first focus on the integral of the pressure field. Substituting (3.8) and using the
condition ΥF = 0 and the Leibniz rule, we find∫ η

−h
P dz = ∂

∂t

(∫ η

−h
Υ dz

)
− ΥB

∂h

∂t
+ d

(
PF − wF

∂η

∂t

)
+ g

d2

2
(3.12)

+
∫ η

−h
dz
∫ η

z
q3 dζ −

∫ η

−h
dz
∫ η

z
θ3 dζ.

Substituting (3.12) and (3.9) in (3.11) and rearranging, we obtain

∂

∂t

[
Ud + ∂

∂x

(∫ η

−h
Υ dz

)
− ΥB

∂h

∂x

]
= uF

∂η

∂t
+ u B

∂h

∂t
+ ∂ΥB

∂x

∂h

∂t
− gd

∂η

∂x

− ∂

∂x

[
d

(
PF − wF

∂η

∂t

)]
+ PF

∂d

∂x
−
(

wF
∂η

∂t
+ wB

∂h

∂t

)
∂h

∂x
+ G1 ,(3.13)

where

G1 = − ∂

∂x

(∫ η

−h
dz
∫ η

z
q3 dζ −

∫ η

−h
dz
∫ η

z
θ3 dζ

)
+
(∫ η

−h
q3 dz −

∫ η

−h
θ3 dz

)
∂h

∂x
−
∫ η

−h
q1 dz +

∫ η

−h
θ1 dz. (3.14)

Hereinafter, we introduce the two-dimensional vector G = (G1, G2), where G2 is
the component along the y-direction analogous to G1. Note that (3.13) represents a
cornerstone in the derivation of the models, since it provides the passage of certain time
derivatives out of the momentum flux, and motivates the definition of the generalized mass
flux M. Indeed, using (2.9) and rearranging, we find

∂ M1

∂t
= d

∂

∂x

(
wF

∂η

∂t
− PF − gη

)
+
(

uF + wF
∂η

∂x

)
∂η

∂t

+
(

u B − wB
∂h

∂x
+ ∂ΥB

∂x

)
∂h

∂t
+ G1. (3.15)

Now, let us focus on (2.7). Using (2.4) for Υ , we simplify some expressions as

uF + wF
∂η

∂x
= M1

d
+ (RF )1 , u B − wB

∂h

∂x
+ ∂ΥB

∂x
= M1

d
+ (RB)1 , (3.16)

where the condition ΥF = 0 is applied in the first relation. Substituting these relations in
the momentum equation, dividing by the total water depth and rearranging, we obtain a
compact form that in vectorial notation reads as

∂

∂t

(
M
d

)
= ∇

(
wF

∂η

∂t
− PF − gη

)
+ 1

d

(
RF

∂η

∂t
+ RB

∂h

∂t
+ G

)
. (3.17)

The above expression is compatible with the condition ∇ × (M/d) = 0 described in
Antuono et al. (2019) for inviscid and irrotational laminar flows (i.e. when R = 0 and
G = 0). Besides this, it is possible to provide a deeper inspection of the above structure.
We observe that

RF
∂η

∂t
+ RB

∂h

∂t
= RF

∂d

∂t
− (RF − RB)

∂h

∂t

= ∂(RF d)

∂t
− d

∂ RF

∂t
− (RF − RB)

∂h

∂t
, (3.18)
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and (3.17) becomes

∂

∂t

(
M
d

+ RF

)
= ∇

(
wF

∂η

∂t
− PF − gη

)
+ 1

d

[
∂(RF d)

∂t
− (RF−RB)

∂h

∂t
+ G

]
. (3.19)

In the next subsection, we show that the last term in the right-hand side can be recast in
the form of vortical and viscous boundary contributions at the free surface. This result
represents a keystone in the present reformulation of the depth-averaged equations, since
it allows for a drastic simplification of the equations themselves, and for the identification
of the intrinsic boundary conditions along this interface.

3.3. The equation for the vorticity field
The equation for the vorticity is obtained by applying the curl operator to the momentum
equation in the second expression of the system (3.1). We obtain

∂ω

∂t
= −∇ × q + ∇ × θ . (3.20)

As shown in § B.1, this equation along with the kinematic condition at the free surface
allows one to obtain the result

1
d

[
∂(RF d)

∂t
− (RF − RB)

∂h

∂t
+ G

]
= u⊥

F

(
ωF · ñF

)+
[
θ F + (θ3)F ∇η

]
, (3.21)

where u⊥ = (v, −u). The above expression allows us to simplify (3.19) as

∂

∂t

(
M
d

+ RF

)
= ∇

(
wF

∂η

∂t
− PF − gη

)
+ u⊥

F

(
ωF · ñF

)+
[
θ F + (θ3)F ∇η

]
. (3.22)

This formulation is important since it brings to light the significant boundary conditions
along the free surface in an explicit form. We observe that in addition to the term
proportional (ωF · ñF ), there is a further boundary contribution that originates from the
viscous term θ .

One interesting aspect is that it is possible to derive an analogous version of (3.22) with
boundary contributions along the seabed. With respect to this, in § B.2, we derive the
relation

∂(RF − RB)

∂t
= ∇

(∫ η

−h
q3 dz −

∫ η

−h
θ3 dz

)
+ u⊥

F

(
ωF · ñF

)
+ u⊥

B

(
ωB · ñB

)+
[
θ F + (θ3)F ∇η

]
−
[
θ B − (θ3)B ∇h

]
. (3.23)

The above equation allows one to obtain a version of (3.22) with boundary conditions
at the seabed. Indeed, subtracting (3.23) from (3.22), we immediately obtain

∂

∂t

(
M
d

+ RB

)
= ∇

(
wF

∂η

∂t
− PF − gη −

∫ η

−h
q3 dz +

∫ η

−h
θ3 dz

)
− u⊥

B

(
ωB · ñB

)+
[
θ B − (θ3)B ∇h

]
. (3.24)

Hereinafter, (3.22) and (3.24) will be the reference equations of the models studied in the
present work. To recast them in closed forms, an expression for the flux (wF ∂η/∂t − PF )

is finally needed. This is also important to avoid the presence of a time derivative inside
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the fluxes, since this is often a source of instability for numerical schemes. This alternative
form is derived in Appendix C through the use of the kinematic condition at the free
surface. In particular, we have the identity

wF
∂η

∂t
− PF = N 2

F w2
F

2
− 1

2

∥∥∥∥M
d

+ RF

∥∥∥∥2

− pF . (3.25)

We recall that wF is computed using (2.4) after (3.5) for Υ is solved, RF is provided by
an external model for vorticity, and pF is obtained by introducing a proper closure for
viscous/turbulent terms.

Before proceeding to the study of the derived models, a final remark is addressed.
Equations (3.22) and (3.24) have to be compatible with (2.15) and (2.16) (which are only
based on a decomposition of the velocity and vorticity fields and do not depend on any spe-
cific evolution equation). This implies that the following relations have to be satisfied:

∂(ωF · ñF )

∂t
= ∇ ×

[
u⊥

F

(
ωF · ñF

)]+ ∇ ×
[
θ F + (θ3)F ∇η

]
, (3.26)

∂(ωB · ñB)

∂t
= ∇ ×

[
u⊥

B

(
ωB · ñB

)]− ∇ ×
[
θ B − (θ3)B ∇h

]
. (3.27)

The validity of these relations is proved in § B.3. Equations (3.26) and (3.27) highlight
an important mechanism at the basis of the models described in the following sections. In
particular, they show that the viscous effects at the interfaces (i.e. the terms depending on
θ ) act as sources for the generation of vorticity in the normal directions. From a different
perspective, this means that the boundary conditions (ωF · ñF ) and (ωB · ñB) are not
completely ‘free’, but, except for their initial values, they evolve according to (3.26) and
(3.27).

3.3.1. Circulation of the generalized velocity
As explained above, (3.26)–(3.27) imply the compatibility of (3.22)–(3.24) with (2.15)–
(2.16). In particular, the latter allow for the derivation of interesting circulation theorems,
which are a direct application of the Stokes’ theorem on the horizontal plane. Let us
consider a domain D ⊂R

2 with a regular boundary ∂D. Integrating (2.15) and (2.16) over
D and applying the Stokes theorem, we immediately obtain∮

∂D

(
M
d

+ RF

)
· d
 =

∫
D

(
ωF · ñF

)
dV, (3.28)∮

∂D

(
M
d

+ RB

)
· d
 = −

∫
D

(
ωB · ñB

)
dV . (3.29)

If the vorticity is zero and D is simply connected, then the circulations of (M/d + RF )

and (M/d + RB) are identically null along any closed loop contained in such a domain,
implying that they are gradient fields in D.

4. The model equations
The system of governing equations considered hereinafter is made of the continuity
equation (3.4), one momentum equation among (3.22) and (3.24), and finally the Poisson
equation for Υ . After proper models for the vorticity field and closures for the turbulent
terms are provided, the system is in closed form, since the depth-averaged equations,
namely (3.4), (3.22) and (3.24), provide the boundary conditions and forcing term for
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the Poisson equation, and, in turn, the solution of Υ allows us to evaluate the fluxes in the
depth-averaged equations.

In the present section, we further inspect (3.22) and (3.24). In particular, we bring to
light the existence of velocity potentials for both irrotational and rotational flows. We again
highlight that the rotational and turbulent parts of the system are assumed to be known (e.g.
through proper models for wave breaking and/or for friction along the seabed).

We also point out that (3.22) and (3.24) are obtained from the Navier–Stokes equations
without any approximation. Hence the existence of velocity potentials for both irrotational
and rotational flows is not a peculiarity of the present models, rather a general property
of the wave propagation phenomenon. We observe, however, that in many Boussinesq and
non-hydrostatic schemes, the evidence of this feature may be hidden or compromised by
the approximations introduced during their derivation.

4.1. Irrotational fluid
Let us assume that the fluid is irrotational, i.e. ω = 0 during the evolution. Such a
hypothesis also implies that no vorticity has to be diffused inside the fluid domain from
the boundaries (both free surface and seabed). This can be attained only by assuming the
fluid to be inviscid as a consequence of (3.26) and (3.27). These hypotheses lead to a
substantial simplification of (3.22) and (3.24). In particular, they both coincide with the
following simple expression

∂

∂t

(
M
d

)
= ∇

(
N 2

F w2
F

2
− 1

2

∥∥∥∥M
d

∥∥∥∥2

− gη

)
(4.1)

that is obtained through the use of (3.25). The above expression implies that there exists
a potential Φ(t, x, y) such that M/d = ∇Φ. As shown in Antuono et al. (2019), Φ = φF ,
where φ(t, x, y, z) is the velocity potential, and (4.1) corresponds to a rearrangement of
the Bernoulli equation at the free surface. From a different perspective, M/d is the velocity
field obtained from the Zakharov potential φF (see Zakharov 1968). In particular, (4.1)
becomes

∂φF

∂t
+ ‖∇φF‖2

2
− N 2

F w2
F

2
+ gη = C(t), (4.2)

where C(t) is a function of time only. Equation (4.2) is also used in the context of fully
nonlinear potential flow models, as described, for example, in Yates & Benoit (2015),
Mohanlal et al. (2023) and Benoit, Zhang & Ma (2024). In analogy with these works, in
Appendix C we prove the identity

∂Υ

∂n
|F = −NF wF . (4.3)

This means that the solution of (4.2) along with the Poisson equation for Υ can be regarded
as a sort of Dirichlet-to-Neumann problem (see e.g. Lannes 2013).

Aside from the above considerations, we highlight that the Bernoulli equation at the
free surface exhibits a substantial difference in comparison to (4.1) and (4.2). In the former
case, the equation is evaluated along a moving interface (namely, the free surface), whereas
in the latter case, the equations are formulated on a two-dimensional plane. This implies
that the numerical implementation of (4.1) and (4.2) is considerably simpler.
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4.2. Rotational fluid
If the fluid is rotational, then (3.22) and (3.24) represent different reformulations of the
momentum equation of the Navier–Stokes system. In particular, (3.22) highlights the
boundary contributions at the free surface coming from the vortical and viscous terms,
whereas (3.24) shows those along the seabed. These boundary terms suggest which are
the basic conditions that have to be specified along each interface, namely

ωF · ñF ,
[
θ F + (θ3)F ∇η

]
and ωB · ñB,

[
θ B − (θ3)B ∇h

]
, (4.4)

according to the specific formulation at hand. As shown in the next subsubsection, there
is no preferable choice, and each formulation has its own strong points and weaknesses.
In any case, some care has to be paid when handling the pairs of conditions in (4.4).
In fact, they are not independent but are related to each other through (3.26) and (3.27),
respectively. An explanatory example is the problem of wave propagation over a frictional
seabed. In that case, a proper closure has to be provided for the viscous boundary term
[θ B − (θ3)B ∇h], while the vortical boundary term (ωB · ñB) has to be obtained from
(3.27). A simpler but interesting situation is described in the next section.

4.2.1. The rotational potentials
Let us assume that the boundary conditions (ωF · ñF ) and (ωB · ñB) are null during
the flow evolution, whereas the vorticity is generally non-null inside the fluid domain.
Consistently with (3.26) and (3.27), and assuming that the two-dimensional domain is
simply connected, there exist two potential functions χ and ς such that

θ F + (θ3)F ∇η = ∇χ, θ B − (θ3)B ∇h = ∇ς. (4.5)

Then (3.22) simplifies as

∂

∂t

(
M
d

+ RF

)
= ∇

(
N 2

F w2
F

2
− 1

2

∥∥∥∥M
d

+ RF

∥∥∥∥2

− gη − pF + χ

)
, (4.6)

while (3.24) becomes

∂

∂t

(
M
d

+ RB

)
= ∇

(
N 2

F w2
F

2
− 1

2

∥∥∥∥M
d

+ RB

∥∥∥∥2

− gη − pF −
∫ η

−h
q3 dz +

∫ η

−h
θ3 + ς

)
. (4.7)

The above results confirm that both (M/d + RF ) and (M/d + RB) are in the form of a
gradient field. Accordingly, there exist two potential functions Ξ and Π such that

M
d

+ RF = ∇Ξ,
M
d

+ RB = ∇Π. (4.8)

These satisfy the equations

∂Ξ

∂t
+ ‖∇Ξ‖2

2
− N 2

F w2
F

2
+ gη + pF − χ = CF (t), (4.9)

∂Π

∂t
+ ‖∇Π‖2

2
− N 2

F w2
F

2
+ gη + pF +

∫ η

−h
q3 dz −

∫ η

−h
θ3 − ς = CB(t), (4.10)
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where CF and CB are functions of time only. Since the fluid is rotational, Ξ and Π are
called rotational potentials hereinafter. Incidentally, we highlight that the potentials χ and
ς are generally unknown at this level, unless related Poisson equations are solved or proper
closures are provided.

Before proceeding, it is important to address some observations about the hypotheses
introduced above. The condition (ωF · ñF ) = 0 appears to be suited for long-crested waves
and, more specifically, for spilling breaking events. Indeed, the particular geometry of
the wave front is expected to approximately match the above condition. Incidentally, we
observe that the wave-breaking model described in Antuono et al. (2022) is compatible
with it. In that work, good agreement with the experimental measurements was observed
for spilling breaking waves that were essentially two-dimensional. Conversely, further
studies should be addressed to inspect its accuracy in the presence of short-crested seas.
Condition (ωB · ñB) = 0 seems a natural condition when the friction along the seabed is
neglected. For both the cases described above, we should in theory specify the forms of
χ and ς . Anyway, it seems a reasonable choice to assume them to be constant, so that the
expressions in (4.5) are identically null.

5. The conservative-variable model
The systems derived up to here can be included in the family of primitive-variable models,
i.e. those systems that are expressed in terms of the depth-averaged velocity field. In the
specific case of systems (3.22) and (3.24), the primitive variables are the generalized
velocity fields (M/d + RF ) and (M/d + RB). As shown in the present section, it is
also possible to derive models that are in the form of conservation laws. These imply the
conservation of certain global quantities (in the present case, the generalized mass flux) ,
therefore they are called conservative-variable models.

The derivation of the latter systems is rather interesting, since it requires the
rearrangement of some vortical contributions that, as a consequence of the procedure,
become implicit in the scheme. Despite the systems in conservative and primitive variables
still being equivalent at the continuum, the rearrangement of the vortical terms may lead
to non-negligible differences after numerical implementation.

As anticipated above, to derive the conservative model, we first need to isolate some
vortical and viscous term from the expression (3.14) of G1. Specifically, we decompose it
as

G1 = G̃1 −
∫ η

−h
q1 dz +

∫ η

−h
θ1 dz, (5.1)

where G̃1 contains the remaining terms in (3.14). As shown in Appendix D, we can express
the vortical term as∫ η

−h
q1 dz = ∂

∂x

(∫ η

−h

u2 − v2 − w2

2
dz

)
+ ∂

∂y

(∫ η

−h
uv dz

)
+ uF

∂η

∂t
+ u B

∂h

∂t
+ ‖uF‖2

2
∂η

∂x
+ ‖uB‖2

2
∂h

∂x
, (5.2)

while a straightforward application of the Leibniz rule leads to∫ η

−h
θ1 dz = ∂

∂x

(∫ η

−h
V11 dz

)
+ ∂

∂y

(∫ η

−h
V12 dz

)
− pF

∂η

∂x
+ τ

(1)
B , (5.3)
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where

τ
(1)
B = − (V11)B

∂h

∂x
− (V12)B

∂h

∂y
− (V13)B . (5.4)

Substituting the above expression in (3.15) and rearranging, we finally rewrite the equation
in the form of a conservation law:

∂ M1

∂t
+ ∂

∂x

[
g

d2

2
+ d

2

(∥∥∥∥M
d

+ RF

∥∥∥∥2

− N 2
Fw2

F + U 2 − V 2

)
+
∫ η

−h

δu2 − δv2 − w2

2
dz

]

+ ∂

∂y

(
dU V +

∫ η

−h
δuδv dz

)
= ∂h

∂x

[
gd + 1

2

(∥∥∥∥M
d

+ RF

∥∥∥∥2

− N 2
Fw2

F − ‖uB‖2

)]

+ ∂h

∂t

(
∂ΥB

∂x
− wB

∂h

∂x

)
+ S1 + T1, (5.5)

where S1 and T1 contain the remaining vortical and turbulent terms, namely

S1 = − ∂

∂x

(∫ η

−h
dz
∫ η

z
q3 dζ

)
+
(∫ η

−h
q3 dz

)
∂h

∂x
,

T1 = ∂

∂x

(∫ η

−h
dz
∫ η

z
θ3 dζ − pF d +

∫ η

−h
V11 dz

)
+ ∂

∂y

(∫ η

−h
V12 dz

)
+
(

−
∫ η

−h
θ3 dz + pF

)
∂h

∂x
+ τ

(1)
B . (5.6)

The usual symmetry between vector components and spatial derivatives is applied to
obtain the equation along the y-direction, whereas the components along the vertical
direction, namely q3 and θ3, remain unchanged. Again, we highlight that the viscous
components are explicit in (5.5), whereas the vortical contributions from q1 lead to the
generation of the terms containing U and δu and thus become implicit in the conservative
scheme.

Incidentally, we observe that (5.5) represents a simpler version of the models described
in Antuono et al. (2017, 2022).

5.1. The long-wave approximation
The long-wave approximation relies on the hypothesis that the characteristic wavelength
of the propagation phenomenon is much larger than the reference water depth. Essentially,
this corresponds to assuming that the higher-order derivatives in the equations give small
contributions in comparison to the leading-order terms, and that therefore they can be
neglected.

In the present formulation, this is equivalent to putting Υ ≡ 0, and dropping all the terms
related to the vertical dynamics as well as any variation along the vertical direction. For
the sake of simplicity, we also assume that the fluid is inviscid. Under these hypotheses,
the formulation (5.5) reduces to the NSWEs in conservative form, i.e.

∂ (U)

∂t
+ ∇ ·

(
dU ⊗ U + gd2

2
1

)
= gd ∇h, (5.7)

while the formulation (3.22) gives

∂U
∂t

+ ∇
(‖U‖2

2
+ gη

)
− U⊥

(
∂V

∂x
− ∂U

∂y

)
= 0, (5.8)
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where the last factor on the left-hand side is the vorticity of the depth-averaged velocity
field U . Note that such a term has been obtained by representing (ωF · ñF ) through U ,
instead of assuming it to be an external forcing term. Expanding the gradient term and
simplifying, we obtain the NSWEs in primitive variables, namely

∂U
∂t

+ U · ∇U + g ∇η = 0. (5.9)

Equation (5.7) is recovered by multiplying (5.9) by d and rearranging the terms through
the use of the continuity equation (3.4).

The above findings prove that the NSWEs in two (horizontal) dimensions are
intrinsically rotational. In particular, such equations include the vorticity in the vertical
direction, whereas the other components are null. This also implies that they reduce to the
irrotational formulation for one-dimensional propagation.

Incidentally, we highlight that the long-wave approximation is also at the basis of models
like the Korteweg–de Vries and Serre–Green–Naghdi equations (see e.g. Lannes 2013).
In the present work, however, these models are not considered, for the sake of brevity.
In general, non-hydrostatic and Boussinesq schemes can be obtained from the present
framework by introducing a proper modelling of the Poisson equation (3.5) – e.g. by
employing a modal decomposition as in Raoult et al. (2016) or a multi-layer representation
as in Ma et al. (2012) and Pan et al. (2019) – or approximate solutions for Υ (e.g.
polynomial expansions along the vertical direction as in Gobbi et al. 2000; Kim et al.
2009).

6. Proof of concept
In this section, we consider some numerical applications to corroborate the main findings
of the previous sections. The fluid is assumed to be inviscid and the turbulence effects
negligible. The aim is to show that in absence of wave breaking and friction along the
seabed, the wave motion is characterized by a null vorticity for the field M/d, while
the vorticity of the depth-averaged field U is generally different from zero because of
the interaction with the bathymetry.

Specifically, we consider the interaction of a non-breaking solitary wave with a
submerged shoal placed over a constant-depth seabed. The shoal, which is inspired by the
experiments described in the thesis of Chawla (1995), consists of the top cut off portion of
a sphere of radius 9.1m, whose centre is placed at x = 5 m and y = 6.93 m. The perimeter
of the shoal is given by

(x − 5)2 + (y − 6.93)2 = 2.572, (6.1)

while the seabed bathymetry is given by

h = h0 + 8.73 −
√

82.81 − (x − 5)2 − (y − 6.93)2, (6.2)

where h0 = 0.45 m is the constant water depth of the wave basin. The solitary wave
height is H = 0.0675 m, corresponding to a nonlinearity parameter ε = H/h0 = 0.15, and
is generated through the ninth-order solution by Fenton (1972). The numerical domain
is (x, y) ∈ [0, 18] × [0, 14.1] m2, the inflow boundary is at x = 0, and open-boundary
conditions are applied at x = 18 m. Finally, wall conditions are imposed along the planes
y = 0 and y = 14.1 m. We highlight that the present numerical domain is smaller than the
one considered in the experimental campaign of Chawla (1995), where regular wave trains
were considered. In fact, differently from Chawla, we are not interested in refraction and
wave–wave interaction phenomena, rather in the deformation and bending of the wave
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front. In the latter case, the propagation of a single solitary wave allows for a simpler and
more straightforward analysis. We recall one more time that the wave is non-breaking and
that no friction is considered along the seabed. Hence the field M/d is expected to be a
gradient field, according to the theoretical findings of the previous sections.

A uniform Cartesian grid with �x = �y = 0.03 m is used in the horizontal direction,
whereas a stretched grid with �z = 0.03 m for z ≥ −0.12 m increasing to 4 �z at the
seabed is employed in the vertical direction. The still-water level is at z = 0. The total
number of solution points is approximately 3 700 000, and the simulation is run in the
time interval [0, 13] s.

Different numerical formulations are implemented in order to better highlight the
generality of some results. For the schemes described in § 4.1, we consider the primitive-
variable model based on the use of (4.1) and the potential-like model given by (4.2). In
the latter case, (4.2) is integrated in time to obtain the potential φF , and a fourth-order
central finite difference is used to compute its gradient (namely, M/d). Conversely, (4.1)
is integrated through a MUSCL–Hancock scheme with an approximate HLL Riemann
solver. Due to the similarity, the numerical implementation complies with that used for the
scheme described in Antuono et al. (2017, 2019). The same approach is used to solve the
conservative-variable model described in § 5. Furthermore, the scheme of Antuono et al.
(2017, 2019) is used as an additional check of the results. In all the above cases, the Poisson
equation for Υ is discretized through second-order finite difference, and solved by using
the library pARMS of parallel solvers for distributed sparse linear systems of equations
described in Li, Saad & Sosonkina (2003). For the time integration, a fourth-order Adams–
Bashforth–Moulton predictor–corrector scheme is adopted for all the models. It is worth
noting that all the schemes that are in the form of conservation laws – namely, the
primitive-variable model in (4.1), the conservative-variable model of § 5, and the scheme
of Antuono et al. (2017, 2019) – give similar results, as a consequence of the analogous
structure and numerical implementation. For this reason, only the results of the model of
§ 5 are shown.

Figure 1 displays a three-dimensional view of the free-surface evolution at four selected
time instants, namely t = 6.14, 6.61, 7.07, 7.51 s, obtained by using the potential-like
model given by (4.2). As the solitary wave propagates, the central part of the wave front
starts bending because of the slower velocity close to the shoal (top left panel), then its
height increases as a consequence of shoaling and nonlinear effects (top right and bottom
left panels). After the solitary wave overtakes the shoal, the wave height slightly decreases,
and the front bending reduces (bottom right panel).

The above dynamics is proposed again in a two-dimensional view in figure 2. In this
case, the results of the potential-like solver (contour fields) are compared with the outputs
obtained through the conservative-variable model described in § 5 (contour levels in thick
black lines). It is evident that both models predict practically the same evolution for t =
6.14, 6.61 s (top panels), while some negligible discrepancies arise later (bottom panels).
The above dynamics has been also checked through the model described in Antuono et al.
(2017, 2019), which essentially confirmed the same evolution.

For the potential-like solver, figure 3 shows the vorticity fields computed from the depth-
averaged velocity U (left column) and the generalized velocity M/d (right column).
These are obtained through fourth-order central finite differences. Consistently with the
theoretical findings of § 4.1, the field ∇ × (M/d) is zero up to the machine precision, while
∇ × U is sensibly different from zero in the regions where the wave front is characterized
by the largest height and curvature. In particular, the magnitude of ∇ × U increases as
the height and curvature increase (see panels at t = 6.14, 6.61 s), then decreases when the
front bending reduces (see panels at t = 7.07, 7.51 s).
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Figure 1. Snapshots of the free-surface evolution during the interaction of the solitary wave with the submerged
shoal as computed by using (4.2) for φF .
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Figure 2. Snapshots of the free-surface evolution computed by using (4.2) for φF (contour fields) and the
conservative-variable model described in § 5 (contour levels with thick black lines). The thin solid lines

represent the contour levels of the seabed h.
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Figure 3. Evolution of ∇ × U (left column) and ∇ × (M/d) (right column) at different time instants as
computed by using (4.2) for φF . The thin solid lines represent the contour levels of the seabed h.

The above analysis is repeated in figure 4 by using the outputs of the conservative-
variable model of § 5. In this case, the overall dynamics is essentially the same, but both
the fields ∇ × U and ∇ × (M/d) appear to be more noisy, especially close to the shoal
boundary. This phenomenon is caused by the explicit presence of ∇h in the source term.
Furthermore, even if the magnitude of ∇ × (M/d) is smaller than ∇ × U , some spurious
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Figure 4. Evolution of ∇ × U (left column) and ∇ × (M/d) (right column) at different time instants as
computed by using the conservative-variable model described in § 5. The thin solid lines represent the contour
levels of the seabed h.

noise is still present inside the domain. This is as a consequence of the fact that M/d does
not appear explicitly in the form of a gradient field, therefore its numerical computation is
unavoidably affected by some inaccuracy. In addition to this issue, the use of the MUSCL–
Hancock scheme implies that the spatial derivatives of the momentum fluxes are computed
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by using a variable reconstruction at the cell sides, and in turn, this implies that the post-
processing application of a central finite difference to compute the curl of a gradient field
generally leads to a non-null output.

Concluding, the above results confirm the theoretical findings of the previous sections,
but at the same time suggest that a careful numerical implementation has to be considered
in order to accurately detect the gradient components of the two-dimensional velocity
fields.

7. Discussion and conclusions
The analysis proposed so far highlights some features that a model which partially or
totally relies on a depth-average procedure has to exhibit, but at the same time, it clears
the way to further questions and lines of research. In the following discussion, we address
these along with a brief summary of the results obtained up to here.

In § 3.3, we showed that starting from the Navier–Stokes equations, it is possible to
derive two equivalent depth-averaged formulations with fluxes that are in the form of
gradient fields, with forcing terms containing contributions along the free surface or
along the seabed. These formulations have been derived under general assumptions and
without any approximation, therefore can be regarded as a rearrangement of the Navier–
Stokes equations. The analysis performed on these depth-averaged models highlights a
number of interesting aspects that are important for the physical characterization of the
wave propagation phenomenon. In particular, we showed that the classic depth-averaged
velocity is not the most significant field for the description of the wave dynamics. The
depth-averaged system, in fact, is naturally well represented through a generalized velocity
field that partially includes the dispersive effects of wave propagation. This also allowed
us to highlight some intriguing physical features. Specifically, we identified the conditions
under which the existence of generalized velocity potentials can be established. Differently
from the classical potential theory, the generalized potentials can also include rotational
contributions, and stem from a more general decomposition of the depth-averaged fields
in their gradient- and divergence-free components.

As a proof of concept, the models described in §§ 4.1 and 5 have been implemented
numerically and applied to simulate the evolution of a non-breaking solitary wave
interacting with a frictionless uneven bottom. The numerical outputs proved to be
consistent with the theoretical findings, even though they suggest that the identification of
the gradient fields is a delicate and insidious matter. The diffculty is essentially related to
two interconnected aspects, namely the specific structure of the model under consideration
and its numerical implementation. In particular, the use of (4.2) for φF , or alternatively of
the primitive-variable formulation (4.1), seems the most reliable approach, even though in
the latter case, numerical approximations may jeopardize the results. The implementation
of ad hoc numerical techniques is, however, expected to overcome this issue.

The above considerations are useful for the definition of future schemes for coastal
dynamics. In fact, the structures of the models described in the present work can be
used as general frameworks for the derivation of non-hydrostatic or Boussinesq schemes
that prescribe the presence of generalized fields (namely, M and M/d) and gradient
fields (under the conditions reported in §§ 4.1 and 4.2.1). As a consequence of the results
shown in §§ 4.1 and 5.1, the generalized fields are expected to be good candidates for
the description the dynamics in both deep- and shallow-water conditions. Indeed, being
closely related to the potential φF , they remain significant in deep-water conditions,
whereas U loses its physical relevance, since the depth-average procedure is applied for a
large extent to regions where the local fluid motion is weak. Vice versa, the generalized
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fields naturally tend to depth-averaged quantities when the long-wave approximation is
valid, as shown in § 5.1. For the modelling of gradient fields, this seems an important
aspect if one aims at a correct description of the vorticity. Indeed, an inaccurate
representation of these terms may lead to a non-physical generation of vorticity at the
interfaces as a consequence of (2.15) and (2.16), and to its subsequent diffusion inside the
fluid bulk.

An essential subject that still needs to be inspected is the match of the formulations
described in (3.22) and (3.24) with models for the dynamics of the vorticity field. The latter
have to include a description of the breaking process and of the consequent generation of
turbulence. In this case, a study on the essential boundary conditions for the vorticity field
and their link to the boundary conditions of the depth-averaged models would be beneficial
for the understanding of the wave dynamics phenomenon.

A further important point to address in future is about the numerical implementation of
the two alternative formulations represented in (3.22) and (3.24) for breaking waves and/or
frictional seabeds, since they may exhibit different pros and cons according to the problem
at hand.

Finally, we observe that many aspects described in the previous sections drastically
simplify in two dimensions (i.e. for unidirectional wave propagation). In particular, the
terms (ωF · ñF ) and (ωB · ñB) are identically null in two dimensions, as well as (3.26) and
(3.27). Conversely, the viscous terms [θ F + (θ3)F ∇η] and [θ B − (θ3)B ∇h] are generally
different from zero and need to be modelled. These aspects, which are not simply related
to a higher geometrical complexity but include specific physical features, confirm that the
three-dimensional case is intrinsically more rich than the two-dimensional one.
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Appendix A. Details on the results of § 2.1
Here we prove the relation described in (2.13). Let us focus on the left-hand side. Using
the Leibniz rule, we obtain

∇ × (RF − RB) = − ∂

∂x

(∫ η

−h
ω1 dz

)
− ∂

∂y

(∫ η

−h
ω2 dz

)
y
= −

∫ η

−h

(
∂ω1

∂x
+ ∂ω2

∂y

)
dz

− (ω1)F
∂η

∂x
− (ω2)F

∂η

∂y
− (ω1)B

∂h

∂x
− (ω2)B

∂h

∂y
. (A1)

Since the vorticity field is solenoidal, the argument of the integral is equal to −∂ω3/∂z,
consequently we find

∇ × (RF − RB) = (ω3)F − (ω1)F
∂η

∂x
− (ω2)F

∂η

∂y
− (ω3)B − (ω1)B

∂h

∂x
− (ω2)B

∂h

∂y
.

(A2)

Equation (2.13) is then recovered by using the definitions of ñF and ñB . Now, let us
consider the left-hand side of (2.15). Using (2.11) and the definition (2.8) of R, we write it
as
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∇ ×
(

M
d

+ RF

)
= ω3 − ∇ ×

(
−
∫ η

z
ω2 dζ,

∫ η

z
ω1 dζ

)
= ω3 − ∂

∂x

(∫ η

z
ω1 dζ

)
− ∂

∂y

(∫ η

z
ω2 dζ

)
= ω3 −

∫ η

z

(
∂ω1

∂x
+ ∂ω2

∂y

)
dζ − (ω1)F

∂η

∂x
− (ω2)F

∂η

∂y
, (A3)

and (2.15) is recovered by using the identity ∇ · ω = 0 in the argument of the integral.
Finally, we observe that (2.16) is obtained by subtracting (2.13) from (2.15).

Appendix B. Details on the results of § 3.3

B.1 Derivation of (3.21)
Let us consider the right-hand side of (3.19) along the x-direction. Using the definition
of R and the Leibniz rule to rearrange the integrals of the vorticity, then substituting the
vorticity equation (3.20), we find

∂
[
(RF )1 d

]
∂t

− (RF − RB)1
∂h

∂t
=
∫ η

−h
dz
∫ η

z

∂ω2

∂t
dζ + d (ω2)F

∂η

∂t

=
∫ η

−h
dz
∫ η

z

(
∂q3

∂x
− ∂q1

∂ζ

)
dζ

+
∫ η

−h
dz
∫ η

z

(
∂θ1

∂ζ
− ∂θ3

∂x

)
dζ + d (ω2)F

∂η

∂t

=
∫ η

−h
dz
∫ η

z

∂q3

∂x
dζ − d (q1)F +

∫ η

−h
q1dz

−
∫ η

−h
dz
∫ η

z

∂θ3

∂x
dζ + d (θ1)F

−
∫ η

−h
θ1dz + d (ω2)F

∂η

∂t
. (B1)

Using the Leibniz rule again, we obtain

∂
[
(RF )1 d

]
∂t

− (RF − RB)1
∂h

∂t
=
∫ η

−h

∂

∂x

(∫ η

z
q3 dζ

)
dz − d (q3)F

∂η

∂x
− d (q1)F

+
∫ η

−h
q1 dz −

∫ η

−h

∂

∂x

(∫ η

z
θ3 dζ

)
dz + d (θ3)F

∂η

∂x

+ d (θ1)F −
∫ η

−h
θ1 dz + d (ω2)F

∂η

∂t

= ∂

∂x

(∫ η

−h
dz
∫ η

z
q3 dζ

)
−
(∫ η

−h
dz
∫ η

z
q3 dζ

)
∂h

∂x
− d

[
(q1)F + (q3)F

∂η

∂x

]
+
∫ η

−h
q1 dz − ∂

∂x

(∫ η

−h
dz
∫ η

z
θ3 dζ

)
+
(∫ η

−h
dz
∫ η

z
θ3 dζ

)
∂h

∂x

+ d

[
(θ1)F + (θ3)F

∂η

∂x

]
−
∫ η

−h
θ1 dz + d (ω2)F

∂η

∂t

= −G1 − d

[
(q1)F + (q3)F

∂η

∂x

]
+ d

[
(θ1)F + (θ3)F

∂η

∂x

]
+ d (ω2)F

∂η

∂t
, (B2)

1007 A37-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.70


Journal of Fluid Mechanics

where the definition of G given in (3.14) is used in the last equality. Now we focus on the
terms in the right-hand side of the former equation that contain ω2 and the components of
q. Using the definition of the vorticity field and the kinematic boundary condition at the
free surface, we write

−
[
(q1)F + (q3)F

∂η

∂x

]
+ (ω2)F

∂η

∂t

= −
[
wF (ω2)F − vF (ω3)F + vF (ω1)F

∂η

∂x
− uF (ω2)F

∂η

∂x

]
+ (ω2)F

(
wF − uF

∂η

∂x
− vF

∂η

∂y

)
= vF

(
ω3 − ω1

∂η

∂x
− ω2

∂η

∂y

)
= vF

(
ωF · ñF

)
. (B3)

Collecting all this together, we obtain

∂
[
(RF )1 d

]
∂t

− (RF − RB)1
∂h

∂t
= −G1 + dvF

(
ωF · ñF

)+ d

[
(θ1)F + (θ3)F

∂η

∂x

]
.

(B4)

Accordingly, we find the following expression for the y-component:

∂
[
(RF )2 d

]
∂t

− (RF − RB)2
∂h

∂t
= −G2 − duF

(
ωF · ñF

)+ d

[
(θ2)F + (θ3)F

∂η

∂y

]
.

(B5)

The above results correspond to (3.21).

B.2 Derivation of (3.23)
The same procedure shown in the previous subsection is applied to discover a second
interesting relation. This reads

∂
[
(RF )1 − (RB)1

]
∂t

= ∂

∂x

(∫ η

−h
q3 dz −

∫ η

−h
θ3 dz

)
−
[
(q1)F + (q3)F

∂η

∂x

]
+ (ω2)F

∂η

∂t
+
[
(θ1)F + (θ3)F

∂η

∂x

]
+
[
(q1)B − (q3)B

∂h

∂x

]
+ (ω2)B

∂h

∂t
−
[
(θ1)B − (θ3)B

∂h

∂x

]
. (B6)

Similarly to what was done before, we focus on the terms in the right-hand side that contain
ω2 and the components of q at the seabed. Using the kinematic condition along the seabed,
we find [

(q1)B − (q3)B
∂h

∂x

]
+ (ω2)B

∂h

∂t
= vB

(
ωB · ñB

)
. (B7)

Using the last expression along with (B3), we finally obtain

∂
[
(RF )1 − (RB)1

]
∂t

= ∂

∂x

(∫ η

−h
q3 dz −

∫ η

−h
θ3 dz

)
+ vF

(
ωF · ñF

)+ vB
(
ωB · ñB

)
+
[
(θ1)F + (θ3)F

∂η

∂x

]
−
[
(θ1)B − (θ3)B

∂h

∂x

]
. (B8)
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For the y-direction, we find

∂
[
(RF )2 − (RB)2

]
∂t

= ∂

∂y

(∫ η

−h
q3 dz −

∫ η

−h
θ3 dz

)
− uF

(
ωF · ñF

)− u B
(
ωB · ñB

)
+
[
(θ2)F + (θ3)F

∂η

∂y

]
−
[
(θ2)B − (θ3)B

∂h

∂y

]
. (B9)

The above results lead to (3.23).

B.3 Proof of (3.26)
We first focus on the last term on the right-hand side of (3.26), and write

∇ ×
[
θ F + (θ3)F ∇η

]
= ∂

∂x

[
(θ2)F + (θ3)F

∂η

∂y

]
− ∂

∂y

[
(θ1)F + (θ3)F

∂η

∂x

]
= ∂θ2

∂x
+ ∂θ2

∂z

∂η

∂x
+
(

∂θ3

∂x
+ ∂θ3

∂z

∂η

∂x

)
∂η

∂y
+ θ3

∂2η

∂2xy

− ∂θ1

∂y
+ ∂θ1

∂z

∂η

∂y
−
(

∂θ3

∂y
+ ∂θ3

∂z

∂η

∂y

)
∂η

∂x
− θ3

∂2η

∂2xy

=
(

∂θ2

∂x
− ∂θ1

∂y

)
−
(

∂θ3

∂y
− ∂θ2

∂z

)
∂η

∂x
−
(

∂θ1

∂z
− ∂θ3

∂x

)
∂η

∂y
= (∇ × θ)F · ñF . (B10)

Similarly, it is possible to prove that

∇ ×
[
θ B − (θ3)B ∇h

]
= − (∇ × θ)B · ñB . (B11)

In the same way, we obtain the relations

∇ × [
q F + (q3)F ∇η

]= (∇ × q)F · ñF , (B12)

∇ × [
q B − (q3)B ∇h

]= − (∇ × q)B · ñB . (B13)

Now, let us consider (B3) and (B7) along with the corresponding expressions along the
y-directions. These can be recast in the compact form

− [
q F + (q3)F ∇η

]+ ω⊥
F

∂η

∂t
= u⊥

F

(
ωF · ñF

)
, (B14)[

q B − (q3)B ∇h
]+ ω⊥

B
∂h

∂t
= u⊥

B

(
ωB · ñB

)
. (B15)

Then applying the curl operator in two dimensions and substituting (B12) and (B13), we
obtain

∇ ×
[
u⊥

F

(
ωF · ñF

)]= − (∇ × q)F · ñF + ∇ ×
(

ω⊥
F

∂η

∂t

)
, (B16)

∇ ×
[
u⊥

B

(
ωB · ñB

)]= − (∇ × q)B · ñB + ∇ ×
(

ω⊥
B

∂h

∂t

)
. (B17)

Now let us focus on (3.26). Substituting the expressions (B12) and (B10), we find

∂(ωF · ñF )

∂t
= − (∇ × q)F · ñF + ∇ ×

(
ω⊥

F
∂η

∂t

)
+ (∇ × θ)F · ñF . (B18)
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Expanding the time derivative and substituting the vorticity equation (3.20), we simplify
the expression above as

∂η

∂t

(
∂ω

∂z
|F · ñF

)
+ ωF · ∂ ñF

∂t
= ∇ ×

(
ω⊥

F
∂η

∂t

)
. (B19)

Expanding the two-dimensional curl operator on the right-hand side, we recast this
equation as

∂η

∂t

(
∂ω

∂z
|F · ñF − ∇ × ω⊥

F

)
= ∇

(
∂η

∂t

)
× ω⊥

F − ωF · ∂ ñF

∂t
. (B20)

Using the definition of ñF , it is simple to show that the right-hand side is zero. Similarly,
expanding all the terms, the left-hand side becomes

∂ω

∂z
|F · ñF − ∇ × ω⊥

F = (∇ · ω)F = 0. (B21)

This proves (3.26). A similar procedure allows us to prove (3.27).

Appendix C. Details on the results of § 4
Let us consider (3.25). Substituting the expression for PF , we obtain

wF
∂η

∂t
− PF = wF

∂η

∂t
− ‖uF‖2

2
− pF . (C1)

Substituting the kinematic boundary condition at the free surface, and the decomposition
‖u‖2 = ‖uF‖2 + w2

F , we find

wF
∂η

∂t
− PF = w2

F

2
− wF uF · ∇η − ‖uF‖2

2
− pF . (C2)

Now evaluating (2.7) at the free surface, we find

uF = − (∇Υ
)

F + M

d
+ RF = −wF ∇η + M

d
+ RF , (C3)

where the last equality comes from the condition ΥF = 0. Substituting (C3) in (C2) and
rearranging, we obtain

wF
∂η

∂t
− PF = w2

F

2

(
1 + ‖∇η‖2

)
− 1

2

∥∥∥∥M

d
+ RF

∥∥∥∥2

− pF , (C4)

which corresponds to (3.25). Alternatively, it is possible to rearrange (C2) as

wF
∂η

∂t
− PF = ‖uF‖2

2
− uF ·

(
M
d

+ RF

)
− pF . (C5)

As a last result, we highlight an interesting relation between the vertical velocity
component and the Neumann condition for Υ along the free surface. Because of its
definition, a null Dirichlet condition for Υ holds true along the free surface. This implies

0 = ∂ (ΥF )

∂x
= ∂Υ

∂x
|F + ∂Υ

∂z
|F

∂η

∂x
= ∂Υ

∂x
|F − wF

∂η

∂x
⇒ ∂Υ

∂x
|F = wF

∂η

∂x
. (C6)
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Collecting the results along all the spatial directions, we find

∇Υ |F = −wF ñ, (C7)

and, computing the dot product with n, we finally obtain (4.3).

Appendix D. Details on the results of § 5
According to the definition of q, the first component reads q1 = w ω2 − v ω3. Using the
expressions in (2.1) for the vorticity components and the continuity equation, we write

q1 = w
∂u

∂z
− w

∂w

∂x
− v

∂v

∂x
+ v

∂u

∂y

= ∂(uw)

∂z
− u

∂w

∂z
− w

∂w

∂x
− v

∂v

∂x
+ ∂(vu)

∂y
− u

∂v

∂y

= ∂(uw)

∂z
+ ∂(vu)

∂y
− u

(
∂v

∂y
+ ∂w

∂z

)
− v

∂v

∂x
− w

∂w

∂x

= ∂(uw)

∂z
+ ∂(vu)

∂y
+ u

∂u

∂x
− v

∂v

∂x
− w

∂w

∂x
. (D1)

Integrating over the water depth and using the Leibniz rule, we obtain∫ η

−h
q1 dz = uF wF − u B wB + ∂

∂y

(∫ η

−h
uv dz

)
− uF vF ηx − u B vB

∂h

∂x

+ ∂

∂x

(∫ η

−h

u2 − v2 − w2

2
dz

)
−
(

u2
F − v2

F − w2
F

2

)
∂η

∂x

−
(

u2
B − v2

B − w2
B

2

)
∂h

∂x
. (D2)

Substituting the kinematic boundary conditions in place of wF and wB and rearranging,
we find (5.2).
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