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Abstract. We give a complete description of bounded composition operators on
model subspaces KB, where B is a finite Blaschke product. In particular, if B has at
least one finite pole, we show that the collection of all bounded composition operators
on KB has a group structure. Moreover, if B has at least two distinct finite poles, this
group is finite and cyclic.
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1. Introduction. Let � be a domain in the Riemann sphere �, and denote the
family of all analytic functions f : � −→ � by H(�). Assume that a linear subspace
X ⊂ H(�), endowed with a norm, is a Banach space. If ϕ : � −→ � is analytic, then
the mapping

Cϕf = f ◦ ϕ, (f ∈ X),

is called the composition operator with symbol ϕ. We are interested in finding symbols
ϕ for which X is invariant under Cϕ and the restriction Cϕ : X −→ X is a bounded
operator, i.e. Cϕ ∈ L(X). The collection of all bounded composition operators will be
denoted by Lc(X). It is easy to verify that Lc(X) has a semi-group structure and

Cϕ ◦ Cψ = Cψ◦ϕ. (1.1)

The identity function ϕ(z) = z, which is simply denoted by z, induces the identity
element id = Cz in Lc(X). We will use the notation ϕ[n] = ϕ ◦ · · · ◦ ϕ, n times. In our
discussion, we will see that quite often Lc(X) is precisely the trivial group {Cz}.

The classical subordination principle of Littlewood can be rephrased in this setting
by saying that, for any symbol ϕ : � −→ �, the mapping

Cϕ : Hp(�) −→ Hp(�)
f �−→ f ◦ ϕ

is a well-defined bounded operator on the classical Hardy space Hp(�).
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It is rather impossible to make justice and give a comprehensive list of papers
on this subject. We just make a very short list of papers that we consulted in the
preparation of this note: [3, 4] treat the composition operators on Hardy space H2,
[14] characterises the compact composition operators on H2, [10, 11] is for Begrman
and weighted Hardy spaces, [15] for Besov spaces, [16] for BMO, [2, 7, 8] for Bloch
spaces and finally [17] for the Dirichlet space. The compactness of Cϕ on Hardy spaces
is also studied in [13]. There is also another characterisation for compactness in [9].
Composition operators on many other spaces have been extensively studied by many
authors. The books in [5] and [13] provide an excellent exposition as well as a rich
bibliography of the subject.

Let (λn)1≤n≤N be N distinct points in the punctuated open unit disc � \ {0}, let
(mn)0≤n≤N be a finite sequence of non-negative integers and let γ be a unimodular
constant. Then the special rational function

B(z) = γ zm0

N∏
n=1

(
λn − z

1 − λn z

)mn

(1.2)

is called a finite Blaschke product. Clearly, B is an analytic function on � with zeros of
order mn at λn, and it fulfills the characterising property

|B(ζ )| = 1, (ζ ∈ �).

Based on the above definition, a unimodular constant should also be treated as a finite
Blaschke product. However, to avoid certain technical difficulties, in the following we
exclude this case and always assume that a finite Blaschke product has at least one
zero.

The finite dimensional subspace spanned by the functions

1, z, z2, . . . , zm0−1,

and

1

1 − λn z
,

1

(1 − λn z)2
, . . . ,

1

(1 − λn z)mn
, (1 ≤ n ≤ N),

is called the model subspace generated by B and is denoted by KB. In other words,
f ∈ KB if and only if there are some constants cn,k such that

f (z) =
m0−1∑
k=0

c0,k zk +
N∑

n=1

mn∑
k=1

cn,k

(1 − λn z)k
. (1.3)

As a very special case of the well-known result of Beurling [1] on invariant subspaces
of the shift operator S on the Hardy space H2, KB is the closed subspace H2, which is
generated by S∗k, k ≥ 0. Owing to the special form of functions in KB, we remind that

kλ(z) = 1

1 − λ z

is called the Cauchy kernel. As a matter of fact, kλ is the reproducing kernel of the
Hardy–Hilbert space H2(�).
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In this paper, we completely characterise bounded composition operators on
the model subspace KB, which is generated by the finite Blaschke product B. Our
characterisation reveals that the structure of Lc(KB) is heavily glued to the distribution
of zeros of B. Naively speaking, we can say that Lc(KB) has a rich structure, provided
that the zeros of B have a rich geometrical symmetry. Due to lack of symmetry, we
mostly have Lc(KB) = {id}. Moreover, under certain mild conditions to ensure the
symmetry, Lc(KB) is a finite cyclic group. There are also some marginal cases that do
not fall in the above two categories. These facts are crystallised in the next section.

Some precision is needed to describe the symbols that are discussed below. Back to
the general setting which was pictured above, if we consider KB as a closed subspace of
H2(�), we should treat its elements as analytic functions on �. Hence, we seek symbols
ϕ : � −→ � for which Cϕ is a bounded operator on KB. We will determine all such ϕs
for a given KB. However, the elements of KB live on � and thus it is natural to look
for symbols ϕ : � −→ � that induce bounded operators on KB. We will see that this
class is larger and, as a matter of fact, includes all the previous symbols ϕ : � −→ �.
It is well known that the only analytic functions on � are rational functions. Therefore,
we need to characterise all rational functions ϕ such that Cϕ maps KB into itself. The
boundedness then easily follows from Littlewood’s theorem.

2. The structure of Lc(KB). To understand the structure of Lc(KB), on the one
hand, we should distinguish between the cases where B has no zero, a simple zero,
or a multiple zero at the origin, and on the other hand, the case where B has one or
more distinct zeros other than the origin. Hence, totally we face six different situations.
In the following, the set of zeros of B, multiplicity not counted, is denoted by Z(B).
Therefore, when we write Z(B) = {λ}, it does not mean that λ is necessarily a simple
zero, and when we write Z(B) = {λ1, λ2, . . . }, it implicitly implies that λ1 �= λ2.

2.1. Z(B) = {λ}, B(0) �= 0. In the first step, we study the Blaschke products with
a single zero, other than the origin, which might be repeated a finite number of times.

THEOREM 2.1. Let

B(z) =
(

λ − z

1 − λ z

)n

, (λ �= 0, n ≥ 1).

Then

Lc(KB) = { C(1−λ a)z+a : a ∈ �, a �= 1/λ }.

Proof. Let Cϕ ∈ Lc(KB). Then we must have Cϕkn
λ ∈ KB. Therefore, by (1.3), there

are some constants ck such that

(Cϕkn
λ)(z) = 1(

1 − λ ϕ(z)
)n =

n∑
k=1

ck

(1 − λ z)k
.
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Firstly, this representation shows that ϕ(z) = a + bz, for some a, b ∈ �. Secondly, since

(Cϕkλ)(z) = 1

1 − λ a
× 1

1 −
(

b λ
1−a λ

)
z
,

we must have 1 − λ a �= 0 and

λ = b λ

1 − a λ
,

or equivalently b = 1 − λ a. �
If we put ϕa(z) = (1 − λ a)z + a, then, by (1.1),

Cϕa ◦ Cϕb = Cϕb◦ϕa = Cϕa+b−λ̄ab
.

Hence, Lc(KB) is a group which is isomorphic to � \ {1/λ} endowed with the law of
composition

a ∗ b = a + b − λ̄ab.

The identity element is zero and the inverse of a is −a/(1 − λ̄a).
If we seek only the symbols ϕ : � −→ �, we end up with the same characterisation

accompanied by an extra condition

|1 − λ a| + |a| ≤ 1.

But, this inequality holds just for a = 0, i.e. the only acceptable symbol is ϕ(z) = z.

2.2. Z(B) = {λ1, λ2, . . . }, B(0) �= 0. In the next step, we find bounded
composition operators on KB when B is not zero at the origin and has at least two
distinct zeros. It is easy to see that none of the transformations provided in Theorem
2.1 (except of course ϕ(z) = z), which maps a reproducing kernel to itself, works in this
situation. However, if zeros of B follow a special pattern, we may have some acceptable
symbols ϕ such that Cϕ maps a reproducing kernel to another and thus be bounded
on KB.

LEMMA 2.2. Let B be a finite Blaschke product with B(0) �= 0, and with at least two
distinct zeros. Let ϕ be a rational function, ϕ(z) �= z. Then Cϕ maps KB into itself if and
only if

ϕ(z) = az + b

and the following conditions are fulfilled:
(i) a ∈ � \ {1} is of finite order, i.e. there is an integer n > 1 such that an = 1.

(ii) If λ is a zero of B, then so is η(λ), where η is the Möbius transformation

η(z) = a z

1 − b z
.

(iii) If λ is a zero of B, then the zeros λ, η(λ), . . . , η[n−1](λ) have the same order.

https://doi.org/10.1017/S0017089512000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000341


COMPOSITION OPERATORS 73

Proof. Pick any zero λ	 of B. Then we must have Cϕkλ	
∈ KB. Therefore, by (1.3),

there are some constants cn,k such that

(Cϕkλ	
)(z) = 1

1 − λ	 ϕ(z)
=

N∑
n=1

mn∑
k=1

cn,k

(1 − λn z)k
. (2.1)

If we write ϕ = P/Q, where P and Q are polynomials with no common divisor, then
the above identity puts certain restrictions on the degrees of P and Q. More precisely,
we must have

deg Q < deg P ≤ N0,

with N0 = m1 + · · · + mN being the total number of zeros of B.
Now, we do the iteration. If Cϕ is bounded on KB, so is Cϕ[k] . Hence, it follows that

ϕ[k] must also be a rational function with the same restrictions on the degrees of its
numerator and denominators as above. It is easy to see that the degree of numerator
of ϕ[k] is equal to (deg P)k. Thus, we must have deg P = 1 and deg Q = 0, which means
that ϕ(z) = az + b, for some a, b ∈ �.

Let λ be any zero of B. Then

(Cϕkλ)(z) = 1

1 − λ (az + b)
= 1

1 − λ b
· 1

1 − η(λ) z
.

Hence, we conclude that η(λ) must also be a zero of B and clearly η(λ) �= 0. Since we
have assumed that B has at least two distinct zeros, at this step we are not forced to
assume that η(λ) = λ. In fact, repeating this process shows that, for each k ≥ 1, η[k](λ)
is a zero of B. With this observation, we can say more about the coefficients a and b.
Incidentally, the above calculation also shows that

(Cϕkd
λ)(z) = 1

(1 − λ b)d
· 1

(1 − η(λ) z)d
.

Therefore, if λ is a zero of order d, then the order of η(λ) is at least d. By the periodicity
property (see below), we conclude that they have actually the same order.

If a �∈ �, then η is a loxodromic Möbius transformation and thus the iterates of a
point that is not a fixed point (in our case λ) form an infinite sequence that converge
to one of the absorbing fixed points of η. This is a contradiction.

If a = 1 and b �= 0, then η is parabolic and the situation is similar to the previous
case. As a matter of fact, in this situation, η[k](λ), k ≥ 1, is a sequence of distinct points
that converges to zero.

If a = 1 and b = 0, then ϕ(z) = z, which is acceptable in any situation.
If a ∈ � \ {1}, then η is elliptic. This is an interesting case. Since we are dealing

with the finite Blaschke products, the sequence η[k](λ), k ≥ 1 has to be periodic. This
happens if and only if η is of finite order. But we can write η = T−1 ◦ ρ ◦ T , where
ρ(z) = a z and T(z) = z/(αz + β), where α and β are constants such that α(a − 1) = βb.
Therefore, η is of finite order if and only if so is a. �

For a detailed discussion of fixed points of the Möbius transformation, see [12,
Chapter 3, VII] and [13, Chapter 0].

In Theorem 2.1, we completely characterised Lc(KB). But Lemma 2.2 has a slightly
different nature. More precisely, the constants a and b were not fully specified. We will
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discuss further on this issue in Section 3. Nevertheless, we can still say something about
the algebraic structure of Lc(KB). The following result reveals that Lc(KB) is a finite
cyclic group.

THEOREM 2.3. Let B be a finite Blaschke product with B(0) �= 0, and with at least
two distinct zeros. Then there exists an integer n ≥ 1 and a linear function ϕ(z) = az + b
such that ϕ[n](z) = z and

Lc(KB) = {Cz, Cϕ, Cϕ[2] , . . . , Cϕ[n−1]}.

Proof. If ϕ(z) = az + b, then it is easy to see that

ϕ[k](z) = akz + (ak−1 + ak−2 + · · · + 1)b, (k ≥ 1).

If an = 1, but an−1 �= 1, we have an−1 + an−2 + · · · + 1 = 0. Therefore, Cn
ϕ = Cϕ[n] =

Cz = id. Thus, by Lemma 2.2, we surely have the inclusion

{Cz, Cϕ, Cϕ[2] , . . . , Cϕ[n−1]} ⊂ Lc(KB), (2.2)

and the set on the left side has n distinct elements. In the same token,

η[k](z) = ak z

1 − b (1 + a + · · · + ak−1) z
, (k ≥ 1),

and thus η[n] = id, but η[k] �= id for 1 ≤ k < n. This means that if λ is a zero of B, then
λ, η(λ), . . . , η[n−1](λ) are distinct zeros of B, which have the same order. If we take n
to be the maximal integer with the above properties, then (2.2) turns to an equality. �

Lemma 2.2 is a manifestation of the fact that Lc(KB) has a rich structure provided
that the zeros of B follow a certain pattern. It also provides an algorithm to findLc(KB).
To do so, we first pick all the zeros of order one and construct the Blaschke product
B1. Then we pick all the zeros of order two, without considering the repetition, and
construct the Blaschke product B2 etc. Then we have

Lc(KB) = Lc(KB1 ) ∩ Lc(KB2 ) ∩ · · · . (2.3)

For example, if 0 < |α| < |β| < 1, M ≥ 1, N ≥ 1, and

B(z) =
6∏

n=1

(
αeinπ/3 − z

1 − αe−inπ/3 z

)M

×
15∏

n=1

(
βei2nπ/15 − z

1 − βe−i2nπ/15 z

)N

, (2.4)

then we may define

BM(z) =
6∏

n=1

αeinπ/3 − z
1 − αe−inπ/3 z

and BN(z) =
15∏

n=1

βei2nπ/15 − z

1 − βe−i2nπ/15 z
,

which give

Lc(KBM ) = { Cz, Ceiπ/3z, Cei2π/3z, C−z, Cei4π/3z, Cei5π/3z }
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and

Lc(KBN ) = { Cz, Cei2π/15z, Cei4π/15z, . . . , Cei28π/15z }.
Therefore, by (2.3),

Lc(KB) = Lc(KBM ) ∩ Lc(KBN ) = { Cz, Cei2π/3z, Cei4π/3z }.
If we consider the classical situation and start with an analytic symbol ϕ : � −→ �,

and then try to classify the bounded composition operators on KB, we find ourselves
in a similar situation as in the proof of Lemma 2.2. As a matter of fact, (2.1) reveals
that ϕ has to be a rational function. Hence, in the first place, Lemma 2.2 is applicable
and it puts some restrictions on ϕ. Secondly, the linear function ϕ(z) = az + b maps �

into itself if and only if |a| + |b| ≤ 1 and |b| < 1. Hence, ϕ maps � into itself provided
that b = 0. Therefore, we obtain the following special case.

COROLLARY 2.4. Let B be a finite Blaschke product with B(0) �= 0, and with at least
two distinct zeros, and let ϕ : � −→ � be analytic. Then Cϕ maps KB into itself if and
only if the following conditions hold:

(i) ϕ(z) = az with a ∈ �.
(ii) a is of finite order, i.e. there is an integer n ≥ 1 such that an = 1.

(iii) If λ is a zero of B, then so is aλ.
(iv) The zeros λ, aλ, . . . , an−1λ have the same order.

More explicitly, if a = ei2π/n, n ≥ 2, and

B(z) =
m∏

j=1

(
n∏

k=1

akλj − z

1 − akλj z

)mj

, (λ1, . . . , λm ∈ � \ {0}),

then

Lc(KB) = {Cz, Caz, . . . , Can−1z}.
Otherwise, in the setting of this case, the only operator in Lc(KB) whose symbol maps
� into itself is the identity mapping. However, Lc(KB) might still have other elements.
For example, if B is the finite Blaschke product with simple zeros,

λ1 = 1
2
, λ2 = −1 − 2i

5
, λ3 = −3 + i

10
, λ4 = i

3
,

then ϕ(z) = iz + i fulfills the requirements of Lemma 2.2. Since ϕ[2](z) = −z + i − 1
and ϕ[3](z) = −iz − 1 and ϕ[4](z) = z, we deduce that

Lc(KB) = { Ciz+i, C−z+i−1, C−iz−1, Cz }.
However, the only symbol that maps � into itself is ϕ(z) = z.

2.3. Z(B) = {0, λ}, B′(0) �= 0. In this section, we consider the Blaschke products
that have a simple zero at the origin, and another (may be multiple) zero at λ �= 0.
Since a simple zero at the origin creates a constant term in KB, the treatment of these
types of Blaschke products is a bit different.
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THEOREM 2.5. Let

B(z) = z
(

λ − z

1 − λ z

)n

, (λ �= 0, n ≥ 1).

Then

Lc(KB) = { C az+b
cz+1

: a ∈ �, b ∈ � \ {1/λ}, c = (a − 1) λ + b λ
2 }.

Proof. The proof has the same flavour as the proof of Theorem 2.1. Let Cϕ ∈
Lc(KB). Then, by (1.3), there are some constants ck such that

(Cϕkn
λ)(z) = 1(

1 − λ ϕ(z)
)n = c0 +

n∑
k=1

ck

(1 − λ z)k
.

The first term, c0, makes the difference in this situation. This representation shows that
ϕ is the Möbius transformation that can be normalised as ϕ(z) = (az + b)/(cz + 1).
The rest comes from the identity

(Cϕkλ)(z) = 1

1 − λ (az + b)/(cz + 1)
= αz + β

1 −
(

a λ−c
−b λ+1

)
z
,

where α and β are some constants. This forces

λ = a λ − c

−b λ + 1
.

Hence, on the one hand we must have b �= 1/λ, and on the other hand we obtain the
equation for c. �

Note that if we take a = 1 − λ b, then we obtain the subclass

ϕ(z) = (1 − λ b) z + b, (b ∈ � \ {1/λ}).
Therefore, comparing with Theorem 2.1, we see that the presence of a zero at the
origin in the present situation has enlarged Lc(KB). Moreover, if we pick any arbitrary
b ∈ � \ {1/λ}, and then choose a = −b λ, we would have a = bc, which is a singular
case and gives the acceptable symbol ϕ ≡ b.

COROLLARY 2.6. Let

B(z) = z
(

λ − z

1 − λ z

)n

, (λ �= 0, n ≥ 1),

and let ϕ : � −→ � be analytic. Then Cϕ maps KB into itself if and only if either
ϕ ≡ b ∈ �, or

ϕ(z) = az + b
cz + 1

,

where a ∈ �, b ∈ � and c = (a − 1) λ + b λ
2
, and the constant a and b are such that

|a − bc| + |c − ab| ≤ 1 − |b|2.
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Proof. By Theorem 2.5, we must have ϕ(z) = (az + b)/(cz + 1) with a ∈ �, b ∈
� \ {1/λ}, and c = (a − 1) λ + b λ

2
. Since ϕ(0) = b, in any case b ∈ �.

If a = bc, then this is the degenerate case ϕ ≡ b ∈ �. Now, suppose that a �= bc.
Then ϕ maps � into itself if and only if so does τb ◦ ϕ, where τb is the disc automorphism,

τb(z) = b − z

1 − b z
.

A simple calculation shows that

(τb ◦ ϕ)(z) = (bc − a)z

(c − ab)z + (1 − |b|2)
.

By Schwarz’s lemma, τb ◦ ϕ is a self-map of � if and only if∣∣∣∣ (bc − a)

(c − ab)z + (1 − |b|2)

∣∣∣∣ ≤ 1, (z ∈ �).

This happens if and only if |c − ab| < 1 − |b|2 and |a − bc| ≤ 1 − |b|2 − |c − ab|. But
the second inequality implicitly implies the first one. �

2.4. Z(B) = {0, λ1, λ2, . . . }, B′(0) �= 0. As the passage from Theorems 2.1 to 2.3
revealed that adding extra zeros alters the structure of Lc(KB), in this section we
treat a similar phenomenon by allowing extra distinct zeros to the Blaschke product
considered in Theorem 2.5.

LEMMA 2.7. Let B be a finite Blaschke product with B(0) = 0, B′(0) �= 0, and assume
that B has at least two other distinct zeros. Let ϕ be a rational function, ϕ(z) �= z. Then
Cϕ maps KB into itself if and only if

ϕ(z) = az + b
cz + d

and the following conditions are fulfilled:
(i) We have

−2 <
a + d√
ad − bc

< 2.

(ii) There is an integer n > 1 such that γ n = 1, where γ is given by

√
γ + 1√

γ
= a + d√

ad − bc
.

(iii) If λ �= 0 is a zero of B, then so is η(λ), where η is the Möbius transformation,

η(z) = a z − c

−b z + d
.

(iv) The zeros λ, η(λ), . . . , η[n−1](λ) have the same order.
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Proof. The proof is slightly more complicated than the proof of Theorem 2.5.
Picking any zero λ	 �= 0, by (1.3), there are some constants cn,k such that

(Cϕkλ	
)(z) = 1

1 − λ	 ϕ(z)
= c0 +

N∑
n=1

mn∑
k=1

cn,k

(1 − λn z)k
. (2.5)

Again, the presence of c0 gives certain liberty in this situation. If we write ϕ = P/Q,
where P and Q are polynomials with no common divisor, then we must have

deg Q ≤ N0 − 1 and deg P ≤ N0 − 1,

with N0 = 1 + m1 + · · · + mN being the total number of zeros of B. Now the same
reasoning reveals that the orders of P and Q can be at most one. In other words, ϕ is
the Möbius transformation.

Let λ �= 0 be any zero of B. Then

(Cϕk	
λ)(z) = 1(

1 − λ (az + b)/(cz + d)
)	

= (αz + β)	

(1 − η(λ) z)	
,

where α and β are some appropriate constants. Hence, we conclude that η(λ) must also
be a zero of B and η(λ) �= 0. Repeating this process shows that, for each k ≥ 1, η[k](λ)
is a zero of B with the same order as λ.

Since we are dealing with a finite Blaschke product, there must be an integer n
such that η[n] = id. Therefore, η must be an elliptic transformation of finite order. This
happens if and only if the normalised trace of η is in the interval (–2, 2), i.e.

−2 <
a + d√
a d − b c

< 2,

and the multiplier of η, which is given by the equation

√
γ + 1√

γ
= a + d√

a d − b c
,

is of finite order. Clearly, in both equations the bars may be removed. �
The following result is now immediate. Note that in the light of Lemma 2.10 in

the next section, we did not include the assumption B′(0) �= 0. But we highlight that
there are more restrictions on ϕ in Lemma 2.10, and thus it is more demanding to have
Lc(KB) �= {id} in that situation.

THEOREM 2.8. Let B be a finite Blaschke product with B(0) = 0, and assume that
B has at least two other distinct zeros. Then there exists an integer n ≥ 1 and a Möbius
function ϕ(z) = (az + b)/(cz + d) such that ϕ[n](z) = z and

Lc(KB) = {Cz, Cϕ, Cϕ[2] , . . . , Cϕ[n−1]}.

In this situation if we seek for symbols ϕ : � −→ �, which induce bounded
composition operators on KB, we see that on the one hand the conditions of Lemma
2.7 must be fulfilled, and on the other hand, similar to Corollary 2.6, we have the extra
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requirement

|ad − bc| + |cd − ab| ≤ |d|2 − |b|2.

2.5. Z(B) = {0, λ}, B′(0) = 0. If B has multiple zeros at the origin and just one
other (maybe multiple) zero, then Lc(KB) has a very simple structure.

THEOREM 2.9. Let

B(z) = zm
(

λ − z

1 − λ z

)n

, (λ �= 0, m ≥ 2, n ≥ 1).

Then

Lc(KB) = { Cb : b ∈ �, b �= 1/λ }.

Proof. As in the proof of Theorem 2.5, we see that ϕ should be the Möbius
transformation. But in this case, f (z) = z ∈ KB, and thus we also have the extra
requirement

ϕ(z) = az + b
cz + 1

∈ KB.

Therefore,

c = −λ = (a − 1) λ + b λ
2
,

which implies a = −b λ. This is a degenerate case and gives ϕ ≡ b. �
Note that if B(z) = γ zm, with m ≥ 2, then

KB = Span{ 1, z, . . . , zm−1 },
and thus any symbol ϕ(z) = az + b, with a, b ∈ �, produces a bounded composition
operator on KB. However, if we seek only the symbols ϕ : � −→ �, we end up with
the same characterisation accompanied by extra conditions

|a| + |b| ≤ 1, |b| < 1.

2.6. Z(B) = {0, λ1, λ2, . . . }, B′(0) = 0. This is the last case. If B has multiple
zeros at the origin and at least two other (maybe multiple) zeros, then, similar to the
case of Lemma 2.7, we might have Lc(KB) �= {id}. However, we have more restrictions
in this case.

LEMMA 2.10. Let B be a finite Blaschke product with B(0) = 0. Suppose that the
order of B at the origin is m0 ≥ 2 and that B has at least two other distinct zeros. Let ϕ

be a rational function, ϕ(z) �= z. Then Cϕ maps KB into itself if and only if

ϕ(z) = az + b
cz + d
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and the following conditions are fulfilled:
(i)

−2 <
a + d√
ad − bc

< 2.

(ii) λ = −c/d is a zero of order at least m0 − 1.
(iii) There is an integer n > 1 such that γ n = 1, where γ is given by

√
γ + 1√

γ
= a + d√

ad − bc
.

(iv) If λ �= 0 is a zero of B, then so does η(λ), where η is the Möbius transformation

η(z) = a z − c

−b z + d
.

(v) The zeros λ, η(λ), . . . , η[n−1](λ) have the same order.

Proof. The proof is very similar to the proof of Lemma 2.7. With precisely the
same method, we see that ϕ should be the Möbius transformation. But in this case
f (z) = zm0−1 ∈ KB, and thus we have the extra requirement

ϕ(z) =
(

az + b
cz + d

)m0−1

∈ KB.

Therefore, λ = −c/d is a zero of order of at least m0 − 1 for B. The other conditions
are established as before. �

3. When is Lc(KB) �= {id}?. In the light of Lemma 2.2, we face with the following
natural question. Let � be a finite set, not a singleton, of distinct points in � \ {0}.
Under what conditions there are a ∈ � of finite order and b ∈ � such that � is invariant
under the transformation

η(z) = a z

1 − b z
?

Can we explicitly express a and b in terms of elements of �? In the same token, one
may pose similar questions for Lemmas 2.7 and 2.10.

The case � = {λ1, λ2} is simple. In this situation we must have a2 = 1. Since a �= 1,
we conclude a = −1. To obtain b, we use the relation

λ2 = η(λ1) = −λ1

1 − b λ1

and obtain

b = 1

λ1
+ 1

λ2
.
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Therefore, for any Blaschke product of the form

B(z) =
(

λ1 − z

1 − λ1 z

)n

×
(

λ2 − z

1 − λ2 z

)n

, (λ1 �= λ2 �= 0, n ≥ 1),

we have

Lc(KB) = { Cz, C−z+1/λ1+1/λ2
}.

If � = {λ1, . . . , λn}, the situation is not that straightforward. In the first place, the
ordering in � becomes important. Without loss of generality, we may take a = ei2π/n.
Secondly, if the permutation σ is such that λσ (k+1) = η(λσ (k)), then we must have

b = 1

λσ (k)
− a

λσ (k+1)
, (k ≥ 1).

In other words, the combination on the right-hand side must be independent of k.
Moreover, in the above discussion, we assumed that � has just one cycle. Generally,
this is not necessarily the case. The set � might need to be divided into smaller subsets,
each of these make a cycle for some appropriate a and b. For example, consider the
Blaschke product (2.4) with M = N = 1 and let � be the collection of all its zeros. In
this case, � has seven cycles, each with length three.

4. The image of Cϕ . In the last two sections, we characterised the symbol ϕ such
that the composition operator Cϕ maps KB into itself. As a natural question, we may
fix B and ϕ and then ask about the nature of the image space CϕKB. Of course, in the
light of (1.3), we can say that CϕKB precisely consists of the function

f (z) =
m0−1∑
k=0

c0,k ϕk(z) +
N∑

n=1

mn∑
k=1

cn,k

(1 − λn ϕ(z))k
. (4.1)

However, this subspace is not necessarily invariant under S∗. A simple example
is obtained by taking B(z) = ϕ(z) = z2. In this case, KB = Span{1, z} and CϕKB =
Span{1, z2}. Note that z2 ∈ CϕKB, but z = S∗z2 �∈ CϕKB.

Let us denote by 〈CϕKB〉 the smallest closed S∗-invariant subspace of H2, which
contains CϕKB. Since CϕKB is finite dimensional and ϕ is a rational function, 〈CϕKB〉
is precisely the collection of all elements

f, S∗f, S∗2f, . . . ,

where f runs over CϕKB. Moreover, the above sequence spans a finite dimensional
space, and thus for an appropriate index N, S∗nf would be a linear combination of
{f, S∗f, . . . , S∗Nf }.

In the following, we treat a special case for which we can provide a simple
description for 〈CϕKB〉. We remind that if B1 and B2 are the finite Blaschke products,
so is B1 ◦ B2.
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THEOREM 4.1. Let B and ϕ be finite Blaschke products with B(0) �= 0 and ϕ(0) = 0.
Then the mapping

Cϕ : KB −→ KB◦ϕ
f �−→ f ◦ ϕ

is well defined. Moreover, KB◦ϕ is the smallest closed S∗-invariant subspace of H2, which
contains CϕKB.

Proof. For simplicity, suppose B has simple zeros. The proof for the general case
is similar. Write

B(z) =
N∏

n=1

λn − z

1 − λn z
and ϕ(z) = z

M∏
m=1

μn − z
1 − μn z

.

Then KB is the linear combination of kλ1, . . . , kλN . Hence, CϕKB is a linear combination
of

(Cϕkλn )(z) = 1

1 − λn ϕ(z)
, (1 ≤ n ≤ N).

Either by Frostman’s theorem [6] or by direct verification, we see that

λn − ϕ(z)

1 − λn ϕ(z)

is a finite Blaschke product with the same order as ϕ. Write

λn − ϕ(z)

1 − λn ϕ(z)
= γ

M+1∏
m=1

λn,m − z

1 − λn,m z
. (4.2)

Put z = 0 to deduce λn = γ
∏M+1

m=1 λn,m. The roots λn,m are in fact the solutions of
equation ϕ(z) = λn. Thus, we must also have

λn − ϕ(z) = γ

∏M+1
m=1 (λn,m − z)∏M
m=1(1 − μn z)

. (4.3)

Dividing (4.2) by (4.3) gives

1

1 − λn ϕ(z)
=

∏M
m=1(1 − μn z)∏M+1

m=1 (1 − λn,m z)
.

By doing partial fraction expansion, there are non-zero constants cn,m such that

f (z) = 1

1 − λn ϕ(z)
=

M+1∑
m=1

cn,m

1 − λn,m z
.

It is easy to verify that

S∗kλ = λ kλ.
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Hence, for each 	 ≥ 0,

(S∗	f )(z) =
M+1∑
m=1

cn,m
λ

	

n,m

1 − λn,m z
.

Using the Vandermond determinants, we see that

Span{S∗	f : 	 ≥ 0} = Span{1/(1 − λn,m z) : 1 ≤ m ≤ M + 1}.
Therefore,

〈CϕKB〉 = Span{1/(1 − λn,m z) : 1 ≤ m ≤ M + 1, 1 ≤ n ≤ N} = KB◦ϕ.

�
The assumptions B(0) �= 0 and ϕ(0) = 0 in Theorem 4.1 are not very essential and

can be removed. However, the statement of the theorem becomes more complicated.
We presented just one case. The other cases can be easily formulated.
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