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Centre-valued Index for Toeplitz Operators
with Noncommuting Symbols

John Phillips and Iain Raeburn

Abstract. We formulate and prove a “winding number” index theorem for certain “Toeplitz” op-
erators in the same spirit as Gohberg–Krein, Lesch and others. _e “number” is replaced by a
self-adjoint operator in a subalgebra Z ⊆ Z(A) of a unital C∗-algebra, A. We assume a faithful
Z-valued trace τ on A le� invariant under an action α∶R → Aut(A) leaving Z pointwise ûxed. If
δ is the inûnitesimal generator of α and u is invertible in dom(δ), then the “winding operator” of
u is 1

2πi τ(δ(u)u
−1) ∈ Zsa . By a careful choice of representations we extend (A, Z , τ, α) to a von

Neumann setting (A,Z, τ, α) whereA = A′′ and Z = Z′′. _en A ⊂ A ⊂ A⋊R, the von Neumann
crossed product, and there is a faithful, dual Z-trace on A ⋊ R. If P is the projection in A ⋊ R cor-
responding to the non-negative spectrum of the generator of R inside A ⋊ R and π̃∶A → A ⋊ R is
the embedding, then we deûne Tu = Pπ̃(u)P for u ∈ A−1 and show it is Fredholm in an appropriate
sense and the Z-valued index of Tu is the negative of the winding operator. In outline the proof
follows that of the scalar case done previously by the authors. _e main diõculty is making sense
of the constructions with the scalars replaced by Z in the von Neumann setting. _e construction
of the dual Z-trace on A ⋊ R requires the nontrivial development of a Z-Hilbert algebra theory.
We show that certain of these Fredholm operators ûber as a “section” of Fredholm operators with
scalar-valued index and the centre-valued index ûbers as a section of the scalar-valued indices.

1 Winding Operator

We consider a unital C∗-algebra Awith a unital C∗-subalgebra Z of Z(A), the centre
ofA. We also assume that there exists a faithful, unital, tracial, conditional expectation
τ∶A → Z (a “faithful Z-trace”) and a continuous action α∶R → Aut(A) which leaves
τ invariant, i.e., τ ○ αt = τ for all t ∈ R. _at is, our objects of study are 4-tuples
(A, Z , τ, α) satisfying these conditions.

Under these hypotheses we show that the “winding number theorem” from [PhR]
holds. We will o�en refer to this as a “winding operator”.

_eorem 1.1 Let (A, Z , τ, α) be a 4-tuple so that A is a unital C∗-algebra and Z ⊆
Z(A) is a unital C∗-subalgebra of the centre of A, τ∶A→ Z is a faithful, unital, tracial,
conditional expectation, and α∶R→ Aut(A) is a continuous action leaving τ invariant.
Let δ be the inûnitesimal generator of α. _en a ↦ 1

2πi τ(δ(a)a
−1)∶dom(δ)−1 → Zsa

is a group homomorphism that is constant on connected components and so extends
uniquely to a group homomorphism A−1 → Zsa that is constant on connected compo-
nents and is 0 on Z−1. We denote this map by windα(a).
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Proof It is an easy calculation to see that a ↦ τ(δ(a)a−1)∶dom(δ)−1 → (Z ,+) is a
homomorphism. We next calculate that αt(z) = z for all z ∈ Z and t ∈ R.

τ((αt(z) − z)∗(αt(z) − z)) = ⋅ ⋅ ⋅ = τ(z∗z) − τ(z∗)z − z∗τ(z) + τ(z∗z) = 0.

_erefore, αt(z) − z = 0 since τ is faithful. So Z ⊆ dom(δ) and δ(Z) = {0}. But
then for each z ∈ Z−1 we have τ(δ(z)z−1) = 0.

Now for any a ∈ dom(δ), we have

τ(δ(a)) = τ( lim
h→0

αh(a) − a
h

) = lim
h→0

1
h
τ(αh(a) − a) = 0.

Hence, by the Leibniz rule, for each n ≥ 1,

0 = τ(δ(an)) = τ(
n−1

∑
k=0
akδ(a)a(n−1)−k) =

n−1

∑
k=0

τ(akδ(a)a(n−1)−k)

=
n−1

∑
k=0

τ(an−1δ(a)) = nτ( an−1δ(a)) .

_us, for each a ∈ dom(δ) and each k ≥ 0 we have τ(δ(a)ak) = τ(akδ(a)) = 0.
Now if a ∈ dom(δ) and ∥1 − a∥ < 1, then a is invertible and a−1 = ∑∞k=0(1 − a)k

which converges in norm. Since δ(1) = 0, we have

τ(δ(a)a−1) = −τ(δ(1 − a)a−1) = −τ(δ(1 − a)
∞
∑
k=0

(1 − a)k)

= −
∞
∑
k=0

τ(δ(1 − a)(1 − a)k) = 0.

To see that the map is constant on connected components, we use the previous
paragraph to show that it is locally constant. So we ûx a ∈ dom(δ)−1 and suppose
b ∈ dom(δ)−1 where ∥b − a∥ < 1/∥a−1∥. _en ∥ba−1 − 1∥ ≤ ∥b − a∥ ∥a−1∥ < 1, so that

0 = τ(δ(ba−1)(ba−1)−1) = τ(δ(b)b−1) + τ(δ(a−1)a) = τ(δ(b)b−1) − τ(δ(a)a−1)
as required.
Finally, to see that τ(δ(a)a−1) ∈ iZsa , we ûrst observe that dom(δ) is a ∗-sub-

algebra of A, so a ∈ dom(δ)−1 implies that a∗a ∈ dom(δ)−1. _us,

t ↦ t1 + (1 − t)a∗a
deûnes a path of invertible elements in dom(δ)−1 connecting 1 to a∗a. Hence,

τ(δ(a∗a)(a∗a)−1) = τ(δ(1)1) = 0.

Since themap is a homomorphism, this implies that τ(δ(a∗)(a∗)−1) = −τ(δ(a)a−1).
But then

[τ(δ(a)a−1)]∗ = τ((a∗)−1δ(a∗)) = τ(δ(a∗)(a∗)−1) = −τ(δ(a)a−1)
as required.

Since dom(δ) is a dense ∗-subalgebra of A and A−1 is open, dom(δ)−1 is dense in
A−1 and so themap extends uniquely to A−1.
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Deûnition 1.2 (Morphism) For i = 1, 2 let (A i , Z i , τ i , α i) be two such 4-tuples
where A i is a unital C∗-algebra and Z i is a unital C∗-subalgebra of the centre of
A i , etc. A morphism from (A1 , Z1 , τ1 , α1) to (A2 , Z2 , τ2 , α2) is given by a unital
∗-homomorphism φ∶A1 → A2 that maps Z1 → Z2 and makes all the appropriate
diagrams commute:

A1

τ1

��

φ // A2

τ2
��

Z1 φ
// Z2

A1

α1
t
��

φ // A2

α2t
��

A1 φ
// A2

Proposition 1.3 If φ∶A1 → A2 is amorphism from (A1 , Z1 , τ1 , α1) to (A2 , Z2 , τ2 , α2)
and if a ∈ A−1

1 ∩ (dom(δ1)), then φ(a) ∈ A−1
2 ∩ (dom(δ2)) and windα1(a) ∈ (Z1)sa ,

while windα2(φ(a)) ∈ (Z2)sa and also φ(windα1(a)) = windα2(φ(a)).

Proof We ûrst show that a ∈ dom(δ1) implies φ(a) ∈ dom(δ2) and that φ(δ1(a)) =
δ2(φ(a)). So if a ∈ dom(δ1), then

φ(δ1(a)) = φ( lim
t→0

α1
t(a) − a

t
) = lim

t→0
φ( α

1
t(a) − a

t
) = lim

t→0

α2
t (φ(a)) − φ(a)

t
.

So the right-hand limit exists and deûnes δ2(φ(a)), that is, φ(δ1(a)) = δ2(φ(a)) .
Now for a ∈ A−1

1 ∩ (dom(δ1)),

φ(windα1(a)) = 1
2πi

φ( τ1(δ1(a)a−1)) = 1
2πi

τ2(φ(δ1(a)a−1))

= 1
2πi

τ2(φ(δ1(a))φ(a)−1)) = 1
2πi

τ2(δ2(φ(a))φ(a)−1))

= windα2(φ(a)) .

2 Extension to an Enveloping von Neumann Algebra

Key Idea 1 Since the range of our C∗-algebra trace, Z (an abelian C∗-algebra), is no
longer restricted to being the scalars, the index of our generalized Toeplitz operators
will necessarily take values in an abelian von Neumann algebra, say Z, containing
Z. Unless Z is ûnite-dimensional (a relatively trivial extension of the scalar-valued
trace), we will generally have Z /= Z (if Z is separable but not ûnite-dimensional we
must have Z /= Z).

Wewant our unitalC∗-algebraA to be concretely represented on aHilbert spaceH
in such a way that the following nontrivial conditions hold. Let A = A′′ and Z = Z′′.
● _ere exists a necessarily unique faithful, tracial, ultraweakly continuous, condi-

tional expectation, τ∶A → Z extending τ. We will refer to this as a Z-trace. Hence-
forth, we will abbreviate this to uw-continuous.

● _e continuous action α∶R → Aut(A), which leaves τ invariant extends to an ul-
traweakly continuous action α∶R→ Aut(A) that leaves τ invariant.
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To achieve this we will assume that Z has a faithful state ω (this is automatically
true if Z is separable). We will use the following proposition to deûne a concrete rep-
resentationwhere these conditions obtain. We emphasize that the extension depends
on the choice of the faithful state on Z. However, our notation will not show the de-
pendence on this state. Of course, if Z = C, the state is unique. If φ is a morphism
from (A1 , Z1 , τ1 , α1) to (A2 , Z2 , τ2 , α2),wewill assume that φ carries the faithful state
ω1 on Z1 to ω2 on Z2, that is, ω1 = ω2 ○ φ restricted to Z1.

Proposition 2.1 Let (A, Z , τ, α) be a 4-tuple and let ω be a faithful state on Z. _en
ω ∶= ω ○ τ is a faithful tracial state on A which is le� invariant by the action α. If we
let (π,H, ξ0) be the GNS representation of A aòorded by ω with cyclic separating trace
vector ξ0, then there is a continuous unitary representation {Ut} of R on H so that
(π,U) is covariant for α on A. _en {Ut} implements a uw-continuous extension of α
to α acting on A = π(A)′′. Moreover, letting Z = π(Z)′′, there exists a unique, faithful,
unital, uw-continuous Z-trace τ∶A→ Z extending τ, and α leaves τ invariant.

Proof Denoting the image of a ∈ A in Hω ∶= H by â, it is completely standard
that Ut(â) ∶= α̂t(a) deûnes a continuous unitary representation of R on A so that
(π,U) is covariant for α. Hence, {Ut} implements a uw-continuous extension of α
to α acting on A = π(A)′′. It is also standard that the cyclic and separating vector
ξ0 = 1̂ gives an extension of the trace ω to a faithful uw-continuous trace on A. By
an abuse of notation we will drop the notation π for the representation of A and just
assume that A acts directly on H. In this way we will also write the extended scalar
trace (given by ξ0) on A as ω.

With this notation, we invoke [U] to obtain a uw-continuous conditional expec-
tation E∶A → Z deûned by the equation ω(E(x)y) = ω(xy) for x ∈ A, y ∈ Z. For
x = a ∈ A and y = z ∈ Z, we have

ω(τ(a)z) = ω(τ(τ(a)z)) = ω(τ(a)z) = ω(τ(az)) = ω(az).

Since Z is uw-dense in Z, we can replace the z ∈ Z by any y ∈ Z in the previous
equation. _at is, for a ∈ A we have E(a) = τ(a) and so E is just an extension of τ
by uw-continuity. We now use the notation τ in place of E, and observe that since τ
is tracial, so is τ. To see that τ is faithful, suppose x ∈ A and τ(x∗x) = 0. _en by the
deûning equation for τ we have 0 = ω(τ(x∗x)1) = ω(x∗x), and since ω is faithful,
x = 0.
Finally, to see that α leaves τ invariant, we let x ∈ A and t ∈ R. Choose a bounded

net {a i} in A that converges to x ultraweakly. _en since α t is spatial, we have
αt(a i) = α t(a i)→ α t(x) ultraweakly. Hence,

τ(α t(x)) = lim
i

τ(αt(a i)) = lim
i

τ(αt(a i)) = lim
i

τ(a i) = lim
i

τ(a i) = τ(x).

Examples (4-tuples) 1. Kronecker (scalar trace) Example. Let A = C(T2), the C∗-
algebra of continuous functions on the 2-torus,with the usual scalar trace τ0 given by
integration against theHaarmeasure onT2. We let αµ ∶R→ Aut(A) be theKronecker
�ow on A determined by the real number µ (note that µ is not a power, merely a
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superscript). _at is, for s ∈ R, f ∈ A, and (z,w) ∈ T2, we have (αµ
s ( f ))(z,w) =

f (e−2πi s z, e−2πiµs w).
In terms of the two commuting unitaries that generate A = C(T2), namely

U(z,w) = z and V(z,w) = w, we have αµ
s (U) = e−2πi sU and αµ

s (V) = e−2πi sµV . Of
course, this action leaves our scalar trace τ0 invariant. In the case where Z = C, the
faithful state ω on Z = C is just the identity mapping and so ω ∶= ω ○ τ0 = τ0. _at
is, Hω = Hτ0 = L2(T2) with the obvious representation of A on Hτ0 . In this case,
Z = Z = C and so A = L∞(T2). Clearly τ0 and α extend to τ0 and α as required.

One easily calculates thewinding numbers of the generators: windαµ(U) = −1 and
windαµ(V) = −µ.

1.a. NoncommutativeTori. We quickly observe that the previous construction can
be carried over almost verbatim to noncommutative tori. For θ ∈ [0, 1) let

Aθ = C∗(U ,V ∣ VU = e2πiθUV)
be the universal C∗-algebra generated by two unitariesU ,V satisfying the above rela-
tion. For θ = 0, the algebra Aθ is naturally isomorphic to A = C(T2)withU(z,w) = z
and V(z,w) = w. For θ irrational, these algebras are of course the irrational rotation
algebras which are simple C∗-algebras. We let αµ ∶R → Aut(A) be the �ow on Aθ
determined by the real number µ, that is, for s ∈ R andU ,V , the generators of Aθ ,we
have αµ

s (U) = e−2πi sU and αµ
s (V) = e−2πi sµV . Since αs(U) and αs(V) satisfy the

same relation as U and V , this is a well-deûned �ow on Aθ .
_e scalar trace τθ on Aθ on the dense subalgebra of ûnite linear combinations of

UnVm for m, n in Z satisûes

τθ(UnVm) =
⎧⎪⎪⎨⎪⎪⎩

0 if n /= 0 or m /= 0,
1 if n = 0 = m.

Again, one easily calculates the winding numbers of the generators:

windαµ(U) = −1, windαµ(V) = −µ.
2. Generalized Kronecker and Generalized Noncommutative Tori Examples.

We show that any self-adjoint element in any unital commutative C∗-algebra (with
a faithful state) can be used as a replacement for the scalar µ in Examples 1 and
1.a to obtain a non-scalar example. Let Z = C(X) be any commutative unital C∗-
algebra with a faithful state and let η ∈ Zsa be any self-adjoint element in Z. Let
A = Z ⊗ C(T2) = C(X ,C(T2)) (respectively, A = Z ⊗ Aθ = C(X ,Aθ)) and let
τ∶A → Z be given by the “slice-map” τ = idZ ⊗τθ where τθ for θ = 0 is the standard
trace on C(T2) given by Haar measure (respectively, the usual scalar trace τθ on Aθ
deûned above). _en τ is a faithful, tracial, conditional expectation of A onto Z. In
particular, for f ∈ A = Z⊗C(T2) ≅ C(T2 , Z)we have τ( f ) = ∫T2 f (z,w) d(z,w) ∈ Z.
In this casewe note that for A = Z⊗C(T2),we have Z(A) = A and hence Z is strictly
contained in Z(A). On the other hand, for θ irrational, Z(A) = Z(Z⊗Aθ) = Z since
Aθ is simple. In either case we use the element η ∈ Zsa to deûne a τ-invariant action
{αηt } of R on A: αηt ( f )(x) = αη(x)t ( f (x)), for f ∈ A, t ∈ R, x ∈ X (again, η and η(x)
are not powers, but merely superscripts). It is clear that (A, Z , τ, αη) is a 4-tuple.

In both these cases one calculates the following winding operators:

windαη(1⊗U) = −1⊗ 1, windαη(1⊗ V) = −η ⊗ 1.
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Using the faithful state ω on Z, we deûne a faithful (tracial) state ω on A via
ω ∶= ω ○ τ. By Proposition 2.1, ω is a faithful (tracial) state on A which is le� in-
variant by α and if (π,H) is the GNS representation of A induced by ω, then there
is a continuous unitary representation {Ut} of R on H so that (π,U) is covariant
for α on A. Also {Ut} implements a uw-continuous extension of α to α acting on
A ∶= π(A)′′. Moreover, letting Z ∶= π(Z)′′, there exists a unique, faithful, unital,
uw-continuous Z-trace τ∶A→ Z extending τ, and α leaves τ invariant.

3. C∗-algebra of the Integer Heisenberg Group
Let A be the C∗-algebra C∗(H) of the integer Heisenberg group H.

H =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1 m p
0 1 n
0 0 1

⎤⎥⎥⎥⎥⎥⎦
∣m, n, p ∈ Z

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We viewA = C∗(H) as the universalC∗-algebra generated by three unitariesU ,V ,W
satisfying WU = UW , WV = VW , and UV = WVU . Here U ,V ,W correspond
respectively to the three generators of H:

u =
⎡⎢⎢⎢⎢⎢⎣

1 1 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
v =

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
w =

⎡⎢⎢⎢⎢⎢⎣

1 0 1
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

Proposition 2.2 If H is a discrete group with subgroup C, then the map l 1(H) →
l 1(C) deûned by f ↦ f∣C extends to a faithful, conditional expectation τ from
Cr

∗(H) → Cr
∗(C). If C is the centre of H, then τ is also tracial. Combining τ with

the canonical ∗-homomorphism C∗(H) → Cr
∗(H), we see that we can also view τ as

a trace on C∗(H).

Proof Let f ↦ πH( f ) and g ↦ πC(g) denote the le� regular representations of
l 1(H) and l 1(C) on l 2(H) and l 2(C), respectively. _en for η ∈ l 2(C) ⊆ l 2(H) we
have

πH( f )(η)(c) = ∑
h∈H

f (ch−1)η(h) = ∑
h∈C

f (ch−1)η(h)

= ∑
h∈C

f∣C (ch−1)η(h) = πC( f∣C )(η)(c).

In other words, for each η ∈ l 2(C), πH( f )(η) = πC( f∣C )(η), so that πH( f )∣l2(C) =
πC( f∣C). We let E∶ l 2(H) → l 2(C) denote the canonical projection. _en all η ∈
l 2(C) have the form η = E(ξ) for ξ ∈ l 2(H), and we have

πC( f∣C )E(ξ) = EπC( f∣C )E(ξ) = EπH( f )E(ξ).

We now deûne τ(πH( f )) = πC( f∣C ). To see that τ is bounded in operator norm,

∥πC( f∣C )∥ = ∥EπH( f )E∥ ≤ ∥πH( f )∥.

_us τ extends by continuity to τ∶Cr
∗(H) → Cr

∗(C). For general x ∈ Cr
∗(H) we

have τ(x) = EπH(x)E, so that the extended τ is clearly completely positive, onto, and
has norm 1, that is, it is a conditional expectation by Tomiyama’s theorem.
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Now for f ∈ l 1(H) we have τ(πH( f )) = πC( f∣C ), so that if C is the centre of H,
then in order to see that τ is tracial, it suõces to see that for f , g ∈ l 1(H), ( f ∗ g)∣C =
(g ∗ f )∣C . So for c ∈ C we have

( f ∗ g)(c) = ∑
h∈H

f (ch−1)g(h) = ∑
h∈H

g(h) f (h−1c) = (g ∗ f )(c).

In our examplewhereH is theHeisenberg group, its centre is C = {wn ∣ n ∈ Z}. In
our realization ofA = C∗(H) as a universalC∗-algebra, the centre ofA is Z = C∗(W).
Now the dense ∗-subalgebra of A generated by U ,V ,W has as a basis all elements of
the form W pV nUm , each of which corresponds uniquely to the group element

w pvnum =
⎡⎢⎢⎢⎢⎢⎣

1 m p
0 1 n
0 0 1

⎤⎥⎥⎥⎥⎥⎦
in H. In this notation τ∶A→ Z is given by

τ(W pV nUm) =
⎧⎪⎪⎨⎪⎪⎩

0 if n /= 0 or m /= 0,
W p if n = 0 = m.

In order to deûne our action α∶R → Aut(A), we ûrst ûx an element η ∈ Zsa . For an
explicit example, we arbitrarily choose η = (µ/3)(W + 1 +W∗), where µ is a ûxed
real number. For this ûxed η we deûne the action α via

αt(U) = e−2πi tU , αt(V) = e−2πi tηV , αt(W) =W .

So on the basis elements we get

αt(W pV nUm) = e−2πintηe−2πimtW pV nUm = e−2πi t(nη+m)W pV nUm .

One easily checks that for ûxed t the operators Ut ∶= αt(U), Vt ∶= αt(V), andWt ∶=
W satisfy the same relations as U ,V ,W , namely,

WtUt = UtWt , WtVt = VtWt , UtVt =WtVtUt .

Hence, αt deûnes a ∗-representation of H in A = C∗(H) and so extends to a ∗-repre-
sentation of C∗(H) inside C∗(H). Now W is in the range of this ∗-representation
and so C∗(W) is in the range of this ∗-representation. Hence e2πi tη is in the range of
this ∗-representation for any t ∈ R. Hence V = e2πi tηVt is in the range also. Similarly,
U is in the range so that αt(C∗(H)) = C∗(H) since it is dense and closed. Since α−t is
the inverse of αt , αt is one-to-one and hence an automorphism of C∗(H). One easily
checks that αt+s = αtαs using the fact that e−2πi sη is in the centre. _e point-norm
continuity of t ↦ αt(a) is clear.

_us we have an action α∶R→ Aut(A) that ûxes Z = C∗(W) = C∗(C) and leaves
the Z-valued trace τ invariant. _at is, (C∗(H),C∗(C), τ, α) is a 4-tuple. Now the
le� regular representation of C∗(C) on l 2(C) gives a faithful vector state ω(x) =
⟨x(δ1), δ1⟩, which for x ∈ l 1(C) is just ω(x) = x(1). _en the state ω on C∗(H)
is given for x ∈ l 1(H) by ω(x) = (ω ○ τ)(x) = ω(x∣C ) = x∣C (1) = x(1). Now if
x , y ∈ l 1(H), then the inner product induced by ω is

⟨x , y⟩ω = ω(x ⋅ y∗) = (x ⋅ y∗)(1) = ∑
h∈H

x(1h)y∗(h−1) = ∑
h∈H

x(h)y(h) = ⟨x , y⟩.
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_at is,Hω = l 2(H) and the representation of C∗(H) on Hω = l 2(H) is just the le�
regular representation. So in this case A = W∗

r (H), the le� regular von Neumann
algebra of H.

Now l 2(H) = ⊕X l 2(C ⋅ X) over all the cosets C ⋅ X of C. Moreover, each coset,
C⋅(W pV nUm) = C⋅(V nUm) is uniquelydetermined by thepairof integers (n,m), so
that l 2(H) =⊕(n ,m) l 2(C ⋅V nUm). Clearly the le� action ofC (and hence, ofC∗(C))
on each coset space is unitarily equivalent to the le� regular representation of C∗(C)
on l 2(C). Hence, the le� action ofC∗(C)on l 2(H) is just a countably inûnitemultiple
of the le� regular representation of C∗(C) on l 2(C). _at is, Z = 1Z2 ⊗W∗

r (C).
_us the map τ∶C∗(H) → C∗(C) with both acting on l 2(H) becomes τ(x) =

1Z2 ⊗ExE where E is the projection from l 2(H) onto l 2(C). It is clear that thismap is
weak-operator continuous and so extends by the same formula to a tracial expectation
τ∶A→ Z. It is also clear that α extends to α as needed.

In this example one calculates the following winding operators in Z = C∗(W):

windα(U) = −1, windα(V) = −µ/3(W + 1 +W∗), windα(W) = 0.

Examples (Morphisms) 1. GeneralizedKronecker to Kronecker Morphisms. We
let A1 = C(X)⊗C(T2) and Z1 = C(X)⊗1. We let τ1 = idC(X)⊗τ0 where τ0∶C(T2)→
C is given by integration with respect to Haar measure on T2. We arbitrarily ûx an
η ∈ (Z1)sa = (C(X)⊗ 1)sa . We also deûne α1∶R→ Aut(A1) via

α1
t(h)(x , z,w) = h(x , e−2πi tz, e−2πi tη(x)w).

As before we let u ∈ A1 be the unitary u(x , z,w) = w.
We let A2 = C(T2) and Z2 = C1 and τ2 = τ0∶A2 → Z2. We arbitrarily ûx an

x0 ∈ X and deûne the evaluation ∗-homomorphism φ∶A1 → A2 via φ(h)(z,w) =
h(x0 , z,w). We let µ = η(x0) and deûne α2

t (h)(z,w) = h(e−2πi tz, e−2πi tµw). One
easily checks that φ deûnes a morphism from (A1 , Z1 , τ1 , α1) to (A2 , Z2 , τ2 , α2) and
that φ(u) = v where v(z,w) = w.

1a. Generalized Noncommutative tori to Kronecker Morphisms. We previously
deûned A = C(X) ⊗ Aθ and Z = C(X) ⊗ 1. We also let τ1 = idC(X)⊗τθ where
τθ ∶Aθ → C is deûned above. We arbitrarily ûxed an η ∈ (Z)sa = (C(X) ⊗ 1)sa and
then deûned α∶R → Aut(A) via (αt( f ))(x) = αη(x)t ( f (x)) for f ∈ A, t ∈ R, and
x ∈ X. We let v ∈ A1 be the constant unitary v(x) = V .

We now consider Aθ and Z = C1 and τθ ∶Aθ → Z. We arbitrarily ûx an x0 ∈ X and
consider the action of R on Aθ deûned by the real number η(x0), that is, αη(x0). _is
gives us a 4-tuple, (Aθ ,C, τθ , αη(x0)). We now have the evaluation ∗-homomorphism
φ∶A → Aθ via φ(h) = h(x0). One easily checks that φ deûnes a morphism from
(A, Z , τ1 , α) to (Aθ ,C, τθ , αη(x0)). Moreover, φ(v) = V .

2. Heisenberg to Kronecker Morphisms. We let A1 = C∗(H) and Z1 = C∗(W) =
C∗(C) ≅ C∗(Z) ≅ C(T) and recall that

τ1(W pV nUm) =
⎧⎪⎪⎨⎪⎪⎩

0 if n /= 0 or m /= 0,
W p if n = 0 = m,
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deûnes a trace τ1∶A1 → Z1. Recall thatwe (arbitrarily) chose θ = (µ/3)(W+1+W∗) ∈
(Z1)sa and deûned our automorphism group by

α1
t(W pV nUm) = e−2πintθ e−2πimtW pV nUm = e−2πi t(nθ+m)W pV nUm .

We let A2 = C∗(H/C) ≅ C∗(Z2) ≅ C(T2) where the two isomorphisms are given
by

Coset(W pV nUm) = C ⋅ (W pV nUm) = C ⋅ (V nUm)↦ (n,m)↦ znwm .

We let Z2 = C1 ⊂ A2 and deûne τ2∶A2 → Z2 = C1 to be the composition of these
isomorphismswith the trace onC(T2) given by theHaar integral. _is clearly implies
that

τ2(C ⋅ (V nUm)) =
⎧⎪⎪⎨⎪⎪⎩

0 if n /= 0 or m /= 0,
1 if n = 0 = m.

We now deûne α2
t ∈ Aut(A2) via

α2
t ((C ⋅ V)n(C ⋅U)m) = e−2πi tnµ(C ⋅ V)ne−2πi tm(C ⋅U)m

= e−2πi t(nµ+m)(C ⋅ V)n(C ⋅U)m .

Clearly, (A2 , Z2 , τ2 , α2) is isomorphic to the Kronecker example with scalar µ.
We now deûne a ∗-homomorphism φ∶A1 = C∗(H) → A2 = C∗(H/C) as the

unique extension of the canonical group homomorphism H → H/C. So

φ(W pV nUm) = (C ⋅ V)n(C ⋅U)m .

In particular, φ(W p) = (C ⋅1) = 1 ∈ H/C. One easily checks that φ deûnes amorphism
from (A1 , Z1 , τ1 , α1) to (A2 , Z2 , τ2 , α2) and that φ(W pV nUm) = (C ⋅ V)n(C ⋅U)m .
Hence, φ(θ) = φ((µ/3)(W−1 + 1 +W)) = µ by our choice of θ.

3 Hilbert Algebras Over an Abelian von Neumann Algebra

Key Idea 2 While centre-valued traces are well known (e.g., the Traces Opérato-
rielles of [Dix]) a completely general construction of such traces suitable for use with
crossed-products has not, to our knowledge, been attempted before now.

In this section we combine the theory of Hilbert modules [Pa,R] with the theory
ofHilbert algebras [Dix] in order to construct centre-valued traces on certain crossed
product von Neumann algebras. Although the outline is similar to the usual Hilbert
algebra theory, the details are rather subtle. _e main diõculties arise because the
usual norm completion of these new “Hilbert algebras” is not self-dual in the sense of
Paschke [Pa].

Deûnition 3.1 Let B be a von Neumann algebra. A complex vector space X is a
(right) pre-Hilbert B-module if there exists aB-valued inner product ⟨ ⋅ , ⋅ ⟩ which is
linear in the second co-ordinate satisfying the following.
(a) ⟨x , x⟩ ≥ 0 and ⟨x , x⟩ = 0↔ x = 0 for each x ∈ X.
(b) ⟨x , y⟩∗ = ⟨y, x⟩ for all x , y ∈ X.
(c) ⟨x , ya⟩ = ⟨x , y⟩a for all x , y ∈ X and a ∈B.
(d) span{⟨x , y⟩ ∣ x , y ∈ X} is uw-dense in B.
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Key Idea 3 In the following we consider boundedmodulemappings between Hil-
bert modules but we do not assume that thesemappings are adjointable. As pointed
out by Lance [L], this is too severe a restriction, since for Hilbert modules all such
maps arise from inner products. However, most Hilbert modules are not self-dual;
self-dual modules Y have the property that L(Y) is a von Neumann algebra. In the
examples thatwe use later, the Paschke dual X† of a pre-HilbertB-module X is a self-
dual module that is usually much larger than X. We need these self-dual modules in
order to work in the von Neumann algebra L(X†).

Deûnition 3.2 We follow Paschke [Pa] by deûning the dual of a pre-HilbertB-mo-
duleX to be the spaceX† = {θ∶X →B ∣ θ is a boundedB-modulemap}. In order to
make the embedding of X into X† linear, Paschke deûnes scalar multiplication on X†

by (λθ)(x) ∶= λθ(x) for λ ∈ C, θ ∈ X†, and x ∈ X. Similarly, module multiplication
on X† is given by (θ ⋅ a)(x) ∶= (a∗θ(x)) for θ ∈ X†, a ∈B, and x ∈ X.

_erefore, we can identify X in X† via x ↦ x̂ where x̂(y) = ⟨x , y⟩ for x , y ∈ X.
SinceB is a von Neumann algebra, Paschke shows how to extend theB-valued inner
product on X to an inner product on X† so that X† becomes self-dual [Pa, _eorem
3.2]. _is theorem is not trivial.

We recall Paschke’s construction [Pa, p. 450]: let B∗ be the space of ultraweakly
continuous linear functionals on B, that is, the predual ofB. Now for each positive
functional ω in B∗ we have that for Nω = {x ∈ X ∣ ω(⟨x , x⟩) = 0}, the space X/Nω
is a pre-Hilbert space with inner product ⟨x + Nω , y + Nω⟩ω = ω(⟨x , y⟩). Moreover,
for each θ ∈ X†, the mapping x + Nω ↦ ω(θ(x)) is a well-deûned bounded linear
functional onX/Nω satisfying ∣ω(θ(x))∣ ≤ ∥ω∥1/2∥θ∥ ∥x +Nω∥ω . Hence, there exists
a unique vector θω in Hω , the Hilbert space completion of X/Nω , with ω(θ(x)) =
⟨θω , x + Nω⟩ω for all x ∈ X, and ∥θω∥ω ≤ ∥ω∥1/2∥θ∥. _us, ∥x∥ω ∶= ω(⟨x , x⟩)1/2 is a
well-deûned seminorm on X which extends naturally to X† via ∥θ∥ω = ⟨θω , θω⟩1/2ω .
Moreover, for all ω ∈B+

∗ , θ ∈ X†, and x ∈ X we have

∣⟨θω , x + Nω⟩ω ∣ ≤ ∥θω∥ω∥x + Nω∥ω

≤ ∥ω∥1/2∥θ∥ ∥ω∥1/2∥x∥ = ∥ω∥ ∥θ∥ ∥x∥.

We recall [Pa, Proposition 3.8 ] that X† is a dual space with the weak∗-topology
given by the linear functionals θ ↦ ω(⟨τ, θ⟩) for ω ∈B∗ , τ ∈ X†.

Proposition 3.3 LetB be a von Neumann algebra and let X be a pre-HilbertB-mo-
dule.
(i) _e unit ball of X† is complete in the topology given by the family of seminorms,

{∥ ⋅ ∥ω ∣ ω ∈B+
∗};

(ii) X is dense in X† in this topology; and hence
(iii) X is weak∗ dense in X†.
(iv) For each ω ∈B+

∗ , θ ∈ X†, and є > 0 there exists an x ∈ X with

∥θ − x∥2
ω = ω(⟨θ − x , θ − x⟩) < є2 .
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Proof (i) Let {θα} be a Cauchy net in the unit ball of X†. _en for a ûxed ω ∈ B+
∗ ,

the net {(θα)ω} is a Cauchy net in the norm ∥ ⋅ ∥ω onHω by deûnition. Hence, there
exists an element θω ∈Hω with ∥(θα)ω − θω∥→ 0. Moreover,

∥θω∥ ≤ lim sup
α

∥(θα)ω∥ ≤ ∥ω∥1/2∥θα∥ ≤ ∥ω∥1/2 .

Now for ûxed x ∈ X, {θα(x)} is a bounded net in B. Moreover, for each ω ∈B+
∗

lim
α

ω(θα(x)) = lim
α

⟨(θα)ω , x + Nω⟩ω = ⟨θω , x + Nω⟩ω .

_us for every ω ∈ B∗, the net {ω(θα(x))} converges in C. Clearly, this limit is
linear in ω, that is, the bounded net {θα(x)} of linear functionals on B∗ converges
pointwise to a linear functional onB∗ which is therefore bounded by the same bound,
∥x∥. _at is, the pair (x , {θω ∣ω ∈B+

∗}) deûnes an element in (B∗)∗ =B via

ω ↦ ⟨θω , x + Nω⟩ω .

If we call this element θ(x), then by deûnition

ω(θ(x)) = ⟨θω , x + Nω⟩ω = lim
α

ω(θα(x)) and ∥θ(x)∥ ≤ ∥x∥.

By this formula, θ(x) is clearly linear in x, and so θ∶X →B is linear. By construc-
tion, θα(x) converges ultraweakly to θ(x), and since each θα is aB-modulemap, so
is θ. Clearly, ∥θ∥ ≤ 1, so θ is in the unit ball of X†, and θα converges to θ. _at is, the
unit ball of X† is complete as claimed.

(ii) To see that X is dense in X†, ûx θ ∈ X† and є > 0. Let {ω1 ,ω2 , . . . ,ωm} be a
ûnite set of functionals inB+

∗ . Given this data, we let ω = ω1 + ⋅ ⋅ ⋅ + ωm . Now ω ≥ ω i
for each i = 1, 2, . . . ,m and so by [Pa, Proposition 3.1 ], themap x + Nω ↦ x + Nω i is
a well-deûned contraction which extends to a contractionHω →Hω i carrying θω to
θω i . We choose x ∈ X so that ∥(x +Nω)− θω∥ω < є. _en for each i = 1, 2, . . . ,m, we
have ∥x − θ∥ω i ∶= ∥(x + Nω i ) − θω i ∥ω i ≤ ∥(x + Nω) − θω∥ω < є.

(iii) Now ûx θ ∈ X† and let є > 0, {τ1 , . . . , τn} ⊆ X†, {ω1 , . . . ,ωm} ⊆ B∗ deûne a
basicweak∗-neighbourhood of θ. Since every element ofB∗ is expressible as a linear
combination of four elements inB+

∗ , we can assume that ω1 , . . . ,ωm are positive. Let
ω = ω1 + ⋅ ⋅ ⋅ + ωm and choose x ∈ X with

∥(x + Nω) − θω∥ω < є
∥τ1∥ + ⋅ ⋅ ⋅ + ∥τn∥

.

_en for each i = 1, . . . ,m and k = 1, . . . , n, we have

∣ω i⟨τk , x − θ⟩∣ = ∣⟨τk , x − θ⟩ω i ∣ ≤ ∥τk∥ω i ∥x − θ∥ω i

≤ ∥τk∥ω∥x − θ∥ω ≤ ∥τk∥ ∥(x + Nω) − θω∥ω < є.

(iv) _is is just a restatement of the fact that X/Nω is dense in its Hilbert space
completion Hω as described in the remarks a�er Deûnition 3.2.

Remark In the following class of examples we can more or less explicitly calcu-
late X†.
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Example 3.4 Let H be a Hilbert space with orthonormal basis {ξn}, let B be a von
Neumann algebra, and let X be the algebraic tensor product X =H⊗Bwith the obvious
B-valued inner product. _en X is a pre-Hilbert B-module and we can identify X† as

X† = {∑
n
ξn ⊗ bn ∣ bn ∈B and ∃M > 0 with ∥∑

n∈F
b∗nbn∥ ≤ M , ∀ ûnite F} .

Such a formal sum deûnes a boundedB-modulemapping θ on X as follows:

θ(
N
∑
k=1
ηk ⊗ ak) =

N
∑
k=1
∑
n
⟨ξn , ηk⟩b∗nak ,

where the right-hand side converges in norm.

Proof First let θ denote an arbitrary element in X†. Deûne b∗n ∶= θ(ξn ⊗ 1). Since θ
is also deûned on the norm closure of X, we see that θ is deûned on each element of
the form∑n ξn ⊗ an where∑n a∗nan converges in norm in B. In particular, if η ∈H
so that η = ∑n⟨ξn , η⟩ξn converges in norm, then η⊗ a = ∑n ξn ⊗ ⟨ξn , η⟩a converges
in norm, and so

θ(η ⊗ a) =∑
n

θ(ξn ⊗ ⟨ξn , η⟩a) =∑
n
⟨ξn , η⟩θ(ξn ⊗ 1)a

=∑
n
⟨ξn , η⟩b∗na =∑

n
⟨ξn , η⟩b∗na.

Hence for any element x = ∑N
k=1 ηk⊗ak ∈ X we have that x = ∑N

k=1∑n ξn⊗⟨ξn , ηk⟩ak
converges in norm and

θ(
N
∑
k=1
ηk ⊗ ak) =

N
∑
k=1

θ(ηk ⊗ ak) =
N
∑
k=1
∑
n
⟨ξn , ηk⟩b∗nak ,

as claimed. To see that the bn ’s satisfy the boundedness condition, let F be any ûnite
set of indices. _en

∥∑
n∈F
b∗nbn∥ = ∥θ(∑

n∈F
ξn ⊗ bn)∥ ≤ ∥θ∥ ⋅ ∥∑

n∈F
ξn ⊗ bn∥

= ∥θ∥ ⋅ ∥⟨∑
n∈F

ξn ⊗ bn ,∑
n∈F

ξn ⊗ bn⟩B∥ 1/2 = ∥θ∥ ⋅ ∥∑
n∈F
b∗nbn∥

1/2
.

_at is, ∥∑n∈F b∗nbn∥1/2 ≤ ∥θ∥ for all ûnite F, so we can choose M = ∥θ∥2.
On the other hand, ifwe have such a formal sum∑n ξn⊗bn , thenwewill show that

the ûnite partial sums∑n∈F ξn⊗bn form a Cauchy net (in the family of seminorms of
Proposition 3.3) in the ball of radius

√
M in X, and invoke the previous proposition

to conclude that they converge pointwise ultraweakly to an element in X† of norm at
most

√
M.

To this end let ω ∈ B+
∗ and let є > 0. Since the ûnite sums {∑n∈F b∗nbn}F form

a bounded increasing net of positive operators in B, they converge strongly to an
element of B. Hence the net {∑n∈F ω(b∗nbn)}F converges to a ûnite nonnegative
number. _us, there exists a large ûnite set F0 so that if F0∩F = ϕ, then∑F ω(b∗nbn) <
є/2.
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_us if F0 ⊂ F1 and F0 ⊂ F2, we have

∥∑
F1

ξn ⊗ bn −∑
F2

ξn ⊗ bn∥
2
ω

= ∥ ∑
F1∼F2

ξn ⊗ bn − ∑
F2∼F1

ξn ⊗ bn∥
2
ω

= ω(⟨( ∑
F1∼F2

ξn ⊗ bn − ∑
F2∼F1

ξn ⊗ bn) , ( ∑
F1∼F2

ξn ⊗ bn − ∑
F2∼F1

ξn ⊗ bn)⟩
B
)

= ω( ∑
F1∼F2

b∗nbn) + ω( ∑
F2∼F1

b∗nbn) < є/2 + є/2 = є.

Hence, the ûnite sums ∑F ξn ⊗ bn converge to an element θ ∈ X† ,that is, for each
x ∈ X, θ(x) = uw-limF⟨∑F ξn ⊗ bn , x⟩. Now for x = ∑N

k=1 ηk ⊗ ak ∈ X we have by the
ûrst part of the proof that x = ∑N

k=1∑n ξn ⊗ ⟨ξn , ηk⟩ak converges in norm. Since θ is
bounded, θ(x) = ∑N

k=1∑n⟨ξn , ηk⟩θ(ξn ⊗ ak) also converges in norm. But then

θ(ξn ⊗ ak) = uw-lim
F

⟨∑
m∈F

ξm ⊗ bm , ξn ⊗ ak⟩B = b∗nak .

And so, indeed, θ(∑N
k=1 ηk ⊗ ak) = ∑N

k=1∑n⟨ξn , ηk⟩b∗nak converges in norm.

Key Idea 4 In the deûnition below of a Z-Hilbert algebraA, a key idea is the use of
the topology given by the seminorms in Proposition 3.3 to replace the norm topology
on HA ∶= A† when Z is not C.

Hence, axiom (h) below seems to us themost natural replacement for the usual ax-
iom of the norm-density ofA2 inA. Whenwe come to apply this axiom to the crossed
product examples that we construct, we are actually able to show that a stronger con-
dition holds. However, in order to prove that the algebra of bounded elements Ab
also satisûes axiom (h), we need the weaker version below. Moreover, in the converse
construction of a Z-Hilbert algebra from a given Z-trace one also needs the weaker
version of axiom (h) below.

Deûnition 3.5 Let Z be an abelian von Neumann algebra. A complex ∗-algebra A
is called a Z-Hilbert algebra if A is a right pre-Hilbert Z-module which satisûes the
further four axioms.
(e) ⟨a∗ , b∗⟩ = ⟨b, a⟩ for a, b ∈ A.
(f) ⟨ab, c⟩ = ⟨b, a∗c⟩ for a, b, c ∈ A.
(g) b ↦ ab∶A→ A is bounded in the Z-module norm for each ûxed a ∈ A.
(h) _e space A2 = span{ab ∣ a, b ∈ A} is dense in A in the topology given by the

family of seminorms {∥ ⋅ ∥ω ∣ ω ∈ Z+∗} deûned above.

Remark It is easy to see that if A2 is norm-dense in A in the Z-module norm,
∥a∥2 = ∥⟨a, a⟩∥, then axiom (h) is satisûed.

Example 3.6 Let A be a von Neumann algebra and let Z be a von Neumann subal-
gebra of the centre of A. Suppose τ∶A → Z is a faithful, unital, uw-continuous Z-trace.
_en for a, b ∈ A the following inner product makes A into a Z-Hilbert algebra:

⟨a, b⟩Z ∶= τ(a∗b).
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Proof _e only axioms that are not completely trivial are (c) and (g). Axiom (c)
follows from the Z-linearity of τ, while axiom (g) follows from the calculation

∥ab∥2
A = ∥⟨ab, ab⟩Z∥Z = ∥τ(b∗a∗ab)∥Z
≤ ∥τ(∥a∗a∥opb∗b)∥Z = ∥a∥2

op∥b∥2
A .

Since τ is unital, it is easy to see that ∥1∥A = 1 and so ∥a∥A ≤ ∥a∥op for all a ∈ A.

Of course, even if Z = C, one usually has strict containment A ⊂ A† ∶=HA.

Remarks We denote by π(a) the operator “le� multiplication by a” and note that
by axioms (f) and (g), π(a) is adjointable with adjoint π(a∗) and hence π(a) is a
Z-modulemapping. _at is, a(bz) = (ab)z f or a, b ∈ A , z ∈ Z.

We denote by π′(a) the operator “right multiplication by a” and note that by ax-
ioms (e), (f), and (g), π′(a) is also bounded and adjointable with adjoint π′(a∗) and
therefore is also a Z-module mapping. _at is, (bz)a = (ba)z for a, b ∈ A, z ∈ Z.
A little playing with the axioms and using the fact that Z is abelian yields the further
useful identity, (az)∗ = a∗z∗ for a ∈ A, z ∈ Z.

WheneverA is aZ-Hilbert algebra,wewill use the suggestive notationHA in place
ofA† for the Paschke dual ofA. _at is,

HA = A† = {θ ∶ A→ Z ∣ θ is a bounded Z-modulemap}.

By [Pa,_eorem 3.2],HA is a self-dual Hilbert Z-module. For ξ ∈HA and a ∈ A we
have ξ(a) = ⟨ξ, â⟩ where â ∈ HA is given by â(b) = ⟨a, b⟩ for b ∈ A. We identify
a with â ∈ HA so that A ⊆ HA and so, of course, A− ⊆ HA. By [Pa, Corollary 3.7]
each π(a) (respectively, π′(a)) extends uniquely to an element of L(HA) which we
will also denote by π(a) (respectively, π′(a)) andmoreover, themap

A
π→ L(HA)

is a ∗-monomorphism. Similarly, themap

A
π′→ L(HA)

is a ∗-anti-monomorphism.
We note that with this notation, axiom (h) ensures that A2 is weak∗-dense inHA

by Proposition 3.3 (iii).

Proposition 3.7 Let A be a Z-Hilbert algebra where Z is an abelian von Neumann
algebra. For z ∈ Z and ξ ∈HA themapping ξ ↦ z ⋅ ξ ∶= ξz embeds Z intoL(HA). With
this embedding we have Z = Z(L(HA)), the centre of L(HA). Moreover, L(HA) is
a Type I von Neumann algebra.

Proof It is easy to check that this mapping embeds Z into L(HA) and since each
T ∈ L(HA) is Z-linear, we have that Z ↪ Z(L(HA)). Now by [R, Corollary 7.10],
Z and L(HA) areMorita equivalent in the sense of [R] and so by [R,_eorem 8.11],
L(HA) is a Type I von Neumann algebra.

Now by the construction of [R, Corollary 7.10],HA becomes a le�HilbertL(HA)-
module with the inner product ⟨ξ, η⟩L(HA)(µ) = ξ⟨η, µ⟩Z for ξ, η, µ ∈ HA. _at is,
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⟨ξ, η⟩L(HA) is the “ûnite-rank” operator ξ⊗η inL(HA). _en for T ∈ Z(L(HA)) ,
⟨T ξ, η⟩L(HA) = (T ξ)⊗ η = T(ξ ⊗ η)

= (ξ ⊗ η)T = ξ ⊗ T∗η = ⟨ξ, T∗η⟩L(HA) .

_us, such a T is adjointable and clearlyL(HA)-linear. By [R, Corollary 7.10], T must
be of the form T ξ = ξz = z ⋅ ξ for some z ∈ Z, that is, Z = Z(L(HA)).

Key Idea 5 _e fact thatL(HA) is a Type I von Neumann algebra with centre Z is
one key idea which makes the theory of Z-Hilbert algebras possible. _at is, ifR is a
∗-subalgebra ofL(HA)which contains Z, thenR is uw-closed if and only ifR =R′′

where ′ denotes commutant within L(HA). _is follows from [Dix, complément
13, III.7] and allows us to use commutation (pure algebra) to determine inclusion or
equality of certain algebras.

4 Commutation Theorem for Z-Hilbert Algebras

_roughout this section Z is an abelian von Neumann algebra and A is a Z-Hilbert
algebrawith Paschke dualHA. Given themachinerywe have developed forZ-Hilbert
algebras, the proof of the commutation theorem below follows the outline of the clas-
sical case quite closely.

Lemma 4.1 If T is a nonzero operator in L(HA), then there exists a ∈ A with
Tπ(a) /= 0.

Proof If T(A2) = {0}, then for all ξ ∈ HA, ⟨T∗ξ, ab⟩ = ⟨ξ, T(ab)⟩ = 0. Hence,
for each positive ω ∈ Z∗ we have 0 = ω(⟨ab, T∗ξ⟩) = ⟨ab, T∗ξ⟩ω . _en by Deû-
nition 3.5 (h) and Proposition 3.3 (b) we must have T∗ξ = 0 for all ξ ∈ HA, that
is, T∗ = 0 and hence T = 0. _erefore, there exists a, b ∈ A with 0 /= T(ab) =
T(π(a)b) = (Tπ(a))(b). So Tπ(a) /= 0.

SinceL(HA) is a von Neumann algebra, it has a natural ultraweak (uw) topology.
_is is the topology we refer to in the following lemma.

Lemma 4.2 With the standing assumptions of this section, we have
(i) (π(A))− uw = (π(A))′′,
(ii) Z ⊆ (π(A))− uw.

Proof Since Z is the centre of L(HA), by Proposition 3.7 we see that

(π(A))′ = [alg{π(A),Z}]′ .
Moreover, since L(HA) is Type I with centre Z and Z ⊆ alg(π(A),Z), we have by
[Dix, complément 13, III.7] that [alg(π(A),Z)]′′ = [alg(π(A),Z)]− uw. Hence,

(4.1) (π(A))′′ = [alg(π(A),Z)]′′ = [alg(π(A),Z)]− uw .

Now π(A) is a∗-ideal in the∗-algebra alg(π(A),Z) so that (π(A))− uw is a∗-ideal
in [alg(π(A),Z)]− uw so that there exists a central projection E in

[alg(π(A),Z)]− uw
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with (π(A))−uw = E[alg(π(A),Z)]− uw. If E /= 1, then 1 − E /= 0 but (1 − E)π(A) =
{0}, contradicting the previous lemma. Hence,

(4.2) (π(A))−uw = [alg(π(A),Z)]− uw .

Equations (4.1) and (4.2) imply part (i). Part (ii) follows since Z is contained in any
commutant.

Lemma 4.3 _e map ∗ extends to a conjugate-linear isometry ofHA (also denoted
by ∗) by deûning ξ∗(a) ∶= (ξ(a∗))∗ for ξ ∈HA and a ∈ A. _is extension satisûes

⟨ξ, η⟩∗ = ⟨ξ∗ , η∗⟩ = ⟨η, ξ⟩,

for all ξ, η ∈HA.

Proof It is easy to see that ξ∗ is a boundedZ-modulemap and that ∥ξ∗∥ ≤ ∥ξ∥. Since
ξ∗∗ = ξ, we see that ∗ is isometric onHA. By axioms (b) and (e)we have for a, b ∈ A,

(b̂)∗(a) = (b̂(a∗))∗ = ⟨b, a∗⟩∗ = ⟨a∗ , b⟩ = ⟨b∗ , a⟩ = b̂∗(a),

so that this ∗ really is an extension from A to HA. Moreover, using the deûnition of
module multiplication given in Deûnition 3.2, it is easy to check that (ξz)∗ = ξ∗z∗
for all z ∈ Z and ξ ∈HA.

We observe that Z is a self-dual Hilbert Z-modulewith the inner product ⟨z1 , z2⟩ =
z∗1 z2. For if θ∶Z→ Z is a bounded Z-modulemap, then θ(z) = θ(1)z = ⟨θ(1)∗ , z⟩.

Now if ξ ∈ HA, then by [Pa, Proposition 3.6], ξ extends uniquely to a bounded
Z-module mapping: HA → Z. But using the ûrst paragraph of the proof one checks
that η ↦ ⟨ξ, η⟩ and η ↦ ⟨ξ∗ , η∗⟩∗ are two such extensions. Hence, ⟨ξ, η⟩ = ⟨ξ∗ , η∗⟩∗
as claimed.

_e equality ⟨ξ, η⟩∗ = ⟨η, ξ⟩ follows from axiom (b) since HA is a (self-dual)
Hilbert Z-module by [Pa,_eorem 3.2 ].

Deûnition 4.4 _e isometry η ↦ η∗∶HA → HA of the previous lemma will be
denoted by J, that is, J(η) = η∗ for all η ∈H.

Remarks _e unique extension of [Pa, Proposition 3.6] used in the previous proof
will be used several more times in this paper under the name “unique extension prop-
erty.”

Lemma 4.5 With the standing assumptions of this section, we have the following.
(i) Z ⊆ (π′(A))− uw = (π′(A))′′.
(ii) π(A) ⊆ (π′(A))′.
(iii) π′(A) ⊆ (π(A))′.

Proof (i) _is is the same proof as Lemma 4.2.
(ii) and (iii) By the unique extension property, it suõces to see that π′(a)π(b) =

π(b)π′(a) on the spaceA ⊆HA. _is is trivial to check.

https://doi.org/10.4153/CJM-2015-038-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-038-7


Centre-valued Index for Toeplitz Operators with Noncommuting Symbols 1039

4.1 Bounded Elements in HA

Let ξ ∈ HA and suppose that the map a ↦ π′(a)ξ∶A → HA is bounded. We note
that by the remarks following Example 3.6, π(az) = π(a)z = zπ(a) and π′(az) =
π′(a)z = zπ′(a), for all a ∈ A and z ∈ Z. _erefore,

(az)↦ π′(az)ξ = zπ′(a)ξ = (π′(a)ξ)z,
so that this bounded map is also Z-linear. Hence, by the unique extension property
this map extends uniquely to a boundedmodulemapping HA → HA which we de-
note by π(ξ), that is, π(ξ)a = π′(a)ξ for all a ∈ A. By [Pa, Proposition 3.4] π(ξ)
is adjointable and π(ξ) ∈ L(HA). Such an element ξ ∈ HA is called “le�-bounded”
and the set of all such elements is denotedAl . Clearly,A ⊆ Al .

Similarly, we let Ar = {η ∈ HA ∣ π′(η) ∈ L(HA)} where, of course, π′(η)a =
π(a)η for all a ∈ A.

Proposition 4.6 With the standing assumptions of this section:
(i) π(Al) ⊆ (π′(A))′ and similarly π′(Ar) ⊆ (π(A))′ ,
(ii) π(Al) is a le� ideal in (π′(A))′ and Tπ(ξ) = π(T ξ) for ξ ∈ Al and T ∈

(π′(A))′. In particular, π(η)π(ξ) = π(π(η)ξ) for η, ξ ∈ Al . Similarly, π′(Ar)
is a le� ideal in (π(A))′, etc.

(iii) Al is an associative algebra with the multiplication ξη = π(ξ)η and π∶Al →
L(HA) is amonomorphism. Similarly,Ar is an associative algebrawith themul-
tiplication ξη = π′(η)ξ, and π′ is an anti-monomorphism.

(iv) Al is invariant under ∗ and π(ξ∗) = π(ξ)∗ so that π(Al) is a ∗-ideal in (π′(A))′
and π is a ∗-monomorphism. A similar statement holds for Ar .

Proof (i) By the unique extension property, it suõces to check that if ξ ∈ Al and
b ∈ A, then π(ξ)π′(b) = π′(b)π(ξ) on the spaceA. To this end let a ∈ A. _en

(π(ξ)π′(b))(a) = π(ξ)(ab) = π′(ab)(ξ) = π′(b)π′(a)(ξ) = π′(b)π(ξ)(a),
as required.

(ii) If ξ ∈ Al , T ∈ (π′(A))′, and a ∈ A, then π(T ξ)a = π′(a)T ξ = Tπ′(a)ξ =
Tπ(ξ)a, that is, T ξ ∈ Al and π(T ξ) = Tπ(ξ) by the unique extension property.

(iii) By (ii), ξη ∶= π(ξ)η is in Al if ξ, η ∈ Al . Moreover, by (2) π(ξη) = π(ξ)π(η).
Since π∶Al → L(HA) is clearly linear, it suõces to see that π is also one-to-one. But
if π(ξ) = 0, then for all a, b ∈ A we have 0 = ⟨π(ξ)a, b⟩ω = ⟨π′(a)ξ, b⟩ω = ⟨ξ, ba∗⟩ω
for all positive ω ∈ Z∗, that is, ξ = 0 by axiom (h) and Proposition 3.3.

(iv ) Let ξ ∈ Al and let a, b ∈ A. Using Lemma 4.3 and the fact thatHA is aHilbert
Z-module, we get the following calculation:

⟨π(ξ)∗a, b⟩ = ⟨b, π(ξ)∗a⟩∗ = ⟨π(ξ)b, a⟩∗ = ⟨π′(b)ξ, a⟩∗

= ⟨ξ, ab∗⟩∗ = ⟨ξ∗ , ba∗⟩ = ⟨ξ∗ , π′(a∗)b⟩ = ⟨π′(a)ξ∗ , b⟩
= ⟨π(ξ∗)a, b⟩.

_us, asmodulemaps π(ξ)∗a and π(ξ∗)a agree for all b ∈ A and so π(ξ)∗a = π(ξ∗)a
for all a ∈ A, that is, ξ∗ is le�-bounded and π(ξ∗) = π(ξ)∗. Moreover, for ξ, η ∈ Al

π((ξη)∗) = [π(ξη)]∗ = [π(ξ)π(η)]∗ = π(η)∗π(ξ)∗ = π(η∗)π(ξ∗) = π(η∗ξ∗)
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and so (ξη)∗ = η∗ξ∗ as π is one-to-one.

Corollary 4.7 With the standing assumptions of this section, we have
(i) (π(Al))′′ = π(Al)− uw = (π′(A))′,
(ii) (π′(Ar))′′ = π′(Ar)− uw = (π(A))′.

Proof (i) By Proposition 4.6, π(Al)− uw is a ∗-ideal in (π′(A))′. But by Lemma
4.2, 1 ∈ Z ⊆ π(A)−uw ⊆ π(Al)− uw and so π(Al)− uw = (π′(A))′. Now since Z ⊆
(π(Al))− uw, we have [Dix, complément 13, III.7] that (π(Al)− uw)′′ = π(Al)− uw.
But since commutants are always ultraweakly closed,

(π(Al))
′′ = (π(Al)′′)

− uw ⊇ (π(Al))
− uw = (π(Al)− uw)′′ ⊇ (π(Al))′′ .

_e proof of (ii) is similar.

Proposition 4.8 With the standing assumptions of this section, we haveAl = Ar and
(i) π′(ξ)a = [π(ξ∗)a∗]∗ for ξ ∈ Al , a ∈ A.
(ii) π(ξ)a = [π′(ξ∗)a∗]∗ for ξ ∈ Ar , a ∈ A.

Proof (i) Let ξ ∈ Al . _en for a, b ∈ A

⟨π′(ξ)a, b⟩ = ⟨π(a)ξ, b⟩ = ⟨ξ, a∗b⟩
= ⟨ξ∗ , b∗a⟩∗ = ⟨π′(a∗)ξ∗ , b∗⟩∗ = ⟨π(ξ∗)a∗ , b∗⟩∗

= ⟨[π(ξ∗)a∗]∗ , b⟩.

_erefore, ξ ∈ Ar so thatAl ⊆ Ar and (i) holds. Similarly,Ar ⊆ Al and (ii) holds.

Corollary 4.9 For all ξ ∈ Al = Ar and η ∈HA

(i) π′(ξ)η = [π(ξ∗)η∗]∗,
(ii) π(ξ)η = [π′(ξ∗)η∗]∗.

Proof (i) Recall J∶HA → HA is the conjugate-linear isometry Jη = η∗. As noted
in the proof of Lemma 4.3, J(ηz) = (Jη)z∗ for z ∈ Z. Now by Proposition 4.8 (i), we
see that for ξ ∈ Al = Ar , π′(ξ) and Jπ(ξ∗)J agree onA. Since both of thesemaps are
bounded Z-modulemaps they agree onHA by uniqueness. _is proves (i); the proof
of (ii) is similar.

Proposition 4.10 Let ξ, η ∈ Al = Ar .
(i) π(ξ)η = π′(η)ξ, so that the two multiplications of Proposition 4.6 agree.
(ii) π(ξ)π′(η) = π′(η)π(ξ).

Proof (i) Fix a ∈ A. _en

⟨π(ξ)η, a⟩ = ⟨(π(ξ)η)∗ , a∗⟩∗ = ⟨π′(ξ∗)η∗ , a∗⟩∗ = ⟨η∗ , π′(ξ)a∗⟩∗ = ⟨η∗ , π(a∗)ξ⟩∗

= ⟨π(a)η∗ , ξ⟩∗ = ⟨π′(η∗)a, ξ⟩∗ = ⟨a, π′(η)ξ⟩∗ = ⟨π′(η)ξ, a⟩

so that (i) holds.
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(ii) Again ûx a ∈ A. _en

π(ξ)π′(η)a = π(ξ)π(a)η = π(π(ξ)a)η by Proposition 4.6 (ii)

= π′(η)(π(ξ)a) = π′(η)π(ξ)a.

Notation SinceAl = Ar (even as∗-algebras),wenow use thenotationAb to denote
the ∗-algebra of bounded elements in HA.

_eorem 4.11 (Commutation_eorem) LetA be aZ-Hilbert algebra over the abelian
von Neumann algebra Z. _en
(i) π(A)− uw = (π(A))′′ = (π(Ab))′′ = π(Ab)− uw = (π′(Ab))′ = (π′(A))′,
(ii) π′(A)− uw = (π′(A))′′ = (π′(Ab))′′ = π′(Ab)− uw = (π(Ab))′ = (π(A))′.

Proof (i) By Corollary 4.7 (i) we have

(π(Ab))
− uw = (π(Ab))

′′ = (π′(A)) ′ ⊇ (π′(Ab))
′
.

However, byCorollary 4.9 (ii)we have (π(Ab))′′ ⊆ (π′(Ab))′′′ = (π′(Ab))′. Hence,

(π(Ab))
− uw = (π(A)) ′′ = (π′(A)) ′ = (π′(Ab))

′
.

On the other hand, by Corollary 4.7 (ii) (π(A))′′ = (π′(Ab))′′′ = (π′(Ab))′. Since
π(A)− uw = (π(A))′′, by Lemma 4.2, we are done.

_e proof of (ii) is similar.

Deûnition 4.12 We deûne the le� von Neumann algebra ofA to be

U(A) ∶= (π(A))′′ .

We deûne the right von Neumann algebra ofA to be V(A) ∶= (π′(A))′′.

Corollary 4.13 Let A be a Z-Hilbert algebra over the abelian von Neumann algebra
Z. _en for all ξ, η ∈ Ab , with J as in Deûnition 4.4
(i) Jπ(ξ)J = π′(Jξ) and Jπ′(ξ)J = π(Jξ),
(ii) JU(A)J = V(A) and JV(A)J = U(A).

Proof Item (i) is just Corollary 4.7.
To see item (ii), let T ∈ U(A) = (π′(Ab))′. _en for ξ ∈ Ab and η ∈HA we get

JT Jπ(ξ)η = JT Jπ(ξ)Jη∗ = JTπ′(Jξ)η∗ = Jπ′(Jξ)Tη∗

= Jπ′(Jξ)J JT Jη = π(ξ)JT Jη.

_erefore, JU(A)J ⊆ (π(Ab))′ = V(A). Similarly, JV(A)J ⊆ U(A). Since J2 = 1, we
are done.

Remarks At this point we could show that Ab is a Z-Hilbert algebra satisfying
HAb = HA, U(Ab) = U(A), and V(Ab) = V(A). Since we do not appear to need
this now, we defer the statement and proof to Proposition 6.4.
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5 Centre-valued Traces

With the same hypotheses and notation of the previous section we show how to con-
struct a natural Z-valued trace on the von Neumann algebra, U(A). We ûrst re-
mind the reader of Paschke’s results that both HA and L(HA) are dual spaces, and
that since L(HA) is a von Neumann algebra, its weak∗-topology must also be its
uw-topology, since pre-duals for von Neumann algebras are unique.

Key Idea 6 _eproblemof convergence is one of ourmain headaches. _e topology
of Proposition 3.3 (closely related to a topology introduced by Paschke [Pa]) and [Pa,
Proposition 3.10] are exactly what is needed to prove the following result, which is
used several times in the remainder of this paper.

Proposition 5.1 If A is a pre-Hilbert Z-module (not necessarily a Z-Hilbert algebra)
with Paschke dual HA, then
(i) a bounded net {ξα} in HA converges weak∗ to ξ ∈HA if and only if

⟨η, ξα⟩→ ⟨η, ξ⟩
ultraweakly in Z for all η ∈HA,

(ii) a net {Tα} in L(HA) converges ultraweakly to T ∈ L(HA) if and only if

⟨Tα ξ, η⟩→ ⟨T ξ, η⟩
ultraweakly in Z for all ξ, η ∈HA,

(iii) a bounded net {Tα} in L(HA) converges ultraweakly to T ∈ L(HA) if and only
if ⟨Tαa, b⟩→ ⟨Ta, b⟩ ultraweakly in Z for all a, b ∈ A.

Proof (i) is just [Pa, Remark 3.9] and works for any self-dual Hilbert module over a
von Neumann algebra.

(ii) follows immediately from the deûnition of the weak∗-topology on L(HA) in
Remark 3.9 and the proof of Proposition 3.10 of [Pa]. _is result also holds for any
self-dual Hilbert module over a von Neumann algebra.

(iii) follows from item (ii) and the usual є/3-argument using Proposition 3.3 (iv).

Since π(A2
b) is going to be the domain of deûnition of ourZ-valued trace onU(A),

we need a condition on an operator T ∈ U(A) (involving Z-valued inner products)
to be an element of π(Ab).

Remark In Example 3.6 where our Z-Hilbert algebra is itself a von Neumann alge-
braAwith Z ⊆ Z(A) and a faithful, tracial, uw-continuous Z-trace τ∶A→ Z, one can
use Proposition 5.1 (iii) to show that π(A) = (π(A))′′, as expected.

Proposition 5.2 If T ∈ U(A), then T ∈ π(Ab) if and only if

{⟨T ξ, T ξ⟩ ∣ ξ ∈ Ab and ∥π(ξ)∥ ≤ 1}
is bounded above in Z+. In this case, T = π(η) where z = ⟨η, η⟩ and z is the supremum
of this set in Z+.
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Proof (⇐) Let z be an upper bound for this set inZ+. Let {π(ξα)} be anet in π(Ab)
converging ultraweakly to 1 and norm bounded by 1. _en

∥T ξα∥ = ∥⟨T ξα , T ξα⟩∥1/2 ≤ ∥z∥1/2 ,

so that {T ξα} is a bounded net in the dual space HA and so we can assume that it
converges weak∗ to some η ∈HA, that is,

T ξα
w∗→ η and π(T ξα) = Tπ(ξα)

uw→ T .

By Proposition 5.1 we see that for all a ∈ A and all µ ∈HA

⟨Ta, µ⟩ = lim
α

⟨π(T ξα)a, µ⟩ = lim
α

⟨π′(a)T ξα , µ⟩ = lim
α

⟨T ξα , π′(a∗)µ⟩

= ⟨η, π′(a∗)µ⟩ = ⟨π(η)a, µ⟩.

So Ta = π(η)a for all a ∈ A and hence T = π(η) where η ∈ Ab .
(⇒) On the other hand, if T = π(η) for some η ∈ Ab , then for all ξ ∈ Ab with

∥π(ξ)∥ ≤ 1 we get by x [Pa, Remark 3.9].

⟨T ξ, T ξ⟩ = ⟨ηξ, ηξ⟩ = ⟨ξ∗η∗ , ξ∗η∗⟩
= ⟨π(ξξ∗)η∗ , η∗⟩ ≤ ∥π(ξξ∗)∥⟨η, η⟩ ≤ ⟨η, η⟩ ∈ Z.

Now since Z is abelian, the supremum of any ûnite set of self-adjoint elements
exists and so the supremum of the bounded set {⟨T ξ, T ξ⟩ ∣ ξ ∈ Ab and ∥π(ξ)∥ ≤ 1}
can bewritten as the limit of a bounded increasing net of elements in Z+,which exists
(inZ+) byVigier’s_eorem. We let z0 be this supremum. _en if T = π(η) for η ∈ Ab ,
we see by the second part of the above argument that z0 ≤ ⟨η, η⟩.

On the other hand, If we choose the net {ξα} as in the ûrst part of the above argu-
ment to also satisfy ξ∗α = ξα , then

⟨T ξα , T ξα⟩ = ⟨ηξα , ηξα⟩ = ⟨ξαη∗ , ξαη∗⟩

= ⟨π(ξα)2η∗ , η∗⟩ uwÐ→ ⟨η∗ , η∗⟩ = ⟨η, η⟩.

_at is, ⟨η, η⟩ ≥ z0 and we are done.

Lemma 5.3 Let I = π(Ab)2 ∶= span{π(ξ)π(η) ∣ ξ, η ∈ Ab}. _en I is a uw dense
∗-ideal in U(A) and I+ = {π(ξ∗)π(ξ) ∣ ξ ∈ Ab}.

Proof It follows from Proposition 4.6 and_eorem 4.11 that I is a uw dense ∗-ideal
in U(A). Let I0 = {π(ξ∗)π(ξ) ∣ ξ ∈ Ab}. We verify that I0 satisûes the conditions
(i)–(iii) of Lemme 1 of [Dix, I.1.6 ].

(i) I0 is unitarily invariant in U(A) since π(Ab) is an ideal in U(A).
(ii) Let η ∈ Ab and let T ∈ U(A)+ with 0 ≤ T ≤ π(η∗)π(η). _en for each ξ ∈ Ab

with ∥π(ξ)∥ ≤ 1 we get:

⟨T 1/2ξ, T 1/2ξ⟩ = ⟨T ξ, ξ⟩ ≤ ⟨π(η∗)π(η)ξ, ξ⟩
= ⟨ηξ, ηξ⟩ = ⟨ξ∗η∗ , ξ∗η∗⟩ ≤ ∥π(ξ∗)∥2⟨η∗ , η∗⟩ ≤ ⟨η, η⟩.

By Proposition 5.2, T 1/2 = π(µ) for some µ ∈ Ab . _at is, T = π(µ∗)π(µ) ∈ I0.
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(iii) If S = π(η∗η) and T = π(µ∗µ) are in I0, then for all ξ ∈ Ab with ∥π(ξ)∥ ≤ 1
we have

⟨(S + T)1/2ξ, (S + T)1/2ξ⟩ = ⟨Sξ, ξ⟩ + ⟨T ξ, ξ⟩
= ⟨π(η∗η)ξ, ξ⟩ + ⟨π(µ∗µ)ξ, ξ⟩ ≤ ⋅ ⋅ ⋅ ≤ ⟨η, η⟩ + ⟨µ, µ⟩.

Again by Proposition 5.2, (S+T)1/2 = π(γ) for some γ ∈ Ab , and so S+T = π(γ∗γ) ∈
I0. Hence, I0 = J+ the positive part of an ideal J with J = span I0. Clearly, J ⊆ I. On
the other hand, if ξ, η ∈ Ab , then π(ξ)π(η∗) = 1

4 ∑
3
k=0 ikπ(ξ+ ikη)π((ξ+ ikη)∗) is in

J. _us, I ⊆ J, and so they are equal, that is, {π(ξ∗)π(ξ) ∣ ξ ∈ Ab} = I0 = J+ = I+.

Corollary 5.4 With the above hypotheses,

I ∶= span{π(ξ)π(η) ∣ ξ, η ∈ Ab} = {π(ξ)π(η) ∣ ξ, η ∈ Ab}.

Proof Let T ∈ I and T = V ∣T ∣ be the polar decomposition of T in U(A). _en
∣T ∣ = V∗T ∈ I+. Hence, T = V ∣T ∣ = Vπ(ξ)π(ξ∗) = π(Vξ)π(ξ∗) by Proposition 4.6
(ii).

Remarks At this point we can deûne a “trace” on the ideal I in the usual way,

τ(π(ξη)) ∶= ⟨ξ∗ , η⟩,
as in the following theorem. However, in order to connect this up with Dixmier’s
“trace opératorielle” [Dix] which includes unbounded operators aõliated with Z in
its range (and also includes a notion of normal) we are forced to work a little harder.

_eorem 5.5 Let A be a Z-Hilbert algebra over the abelian von Neumann algebra
Z. Let I = π(A2

b) be the canonical uw-dense ∗-ideal in U(A) = (π(A))′′, the le� von
Neumann algebra of A. _en τ∶ I → Z deûned by τ(π(ξη)) = ⟨ξ∗ , η⟩ is a well-deûned
positive Z-linear mapping which is
(i) faithful, i.e., τ(T) = 0 and T ≥ 0⇒ T = 0,
(ii) tracial, i.e., τ(TS) = τ(ST) for T ∈ U(A) and S ∈ I.

Proof To see that τ iswell deûned, ûx a net {ξα} inAb with π′(ξα)→ 1 ultraweakly.
Let T = π(ξη) ∈ I. _en the element ξη ∈ A2

b is unique since π is one-to-one (of
course, its representation as a product is not unique). Now

τ(T) = ⟨ξ∗ , η⟩ = uw-lim
α

⟨π′(ξα)ξ∗ , η⟩ = uw-lim
α

⟨ξα , ξη⟩,

that is, τ(T) is uniquely determined by T . _us, τ(T) is well deûned and Z-linear.
If T ∈ I+, then T = π(ξ∗ξ) by Lemma 5.3 and τ(T) = ⟨ξ, ξ⟩ ≥ 0 so that τ is

positive. Clearly, τ(T) = 0⇒ ξ = 0⇒ π(ξ) = 0⇒ T = 0, that is, τ is faithful.
To see that τ is tracial, let S = π(ξη) ∈ I and let T ∈ U(A). _en

τ(TS) = τ(Tπ(ξ)π(η)) = τ(π(T ξ)π(η)) = ⟨(T ξ)∗ , η⟩ = ⟨T ξ, η∗⟩∗

= ⟨ξ, T∗(η∗)⟩∗ = ⟨ξ∗ , (T∗(η∗))∗⟩ = τ(π(ξ)π(T∗(η∗))∗)
= τ(π(ξ)[T∗π(η∗)]∗) = τ(π(ξ)π(η)T) = τ(ST).
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6 Traces Opératorielles

We recall here J. Dixmier’s deûnition of a “Z-trace” [Dix]. We begin by paraphrasing
(and translating) Dixmier’s discussion of the formal set-up.

Let A be a von Neumann algebra and let Z be a von Neumann subalgebra of the
centre of A. In this section we ûx a locally compact Hausdorò space X, a positive
measure ν on X, and an isomorphism of L∞(X , ν) with Z (see [Dix, théorème 1 of
I.7]). _en Z+ is embedded in the set Ẑ+ of nonnegative measurable functions on X
which are not necessarily ûnite-valued. Of course, we identify functions in Ẑ+ which
are equal ν-almost everywhere. As mentioned before, any bounded increasing net in
Z+ has a supremum in Z+. It is clear that the same thing holds for the set Ẑ+.

Deûnition 6.1 With the above notation,we deûne a Z-trace onA+ to be amapping
ϕ∶A+ → Ẑ+ that satisûes the following.
(i) If S , T ∈ A+, then ϕ(S + T) = ϕ(S) + ϕ(T).
(ii) If S ∈ A+ and T ∈ Z+, then ϕ(TS) = Tϕ(S).
(iii) If S ∈ A+ and U is a unitary in A, then ϕ(USU∗) = ϕ(S).

We call ϕ faithful if S ∈ A+ and ϕ(S) = 0 ⇒ S = 0. We call ϕ ûnite if ϕ(S) ∈ Z+
for all S ∈ A+. We call ϕ semiûnite if for each nonzero S ∈ A+ there exists a nonzero
T ∈ A+ with T ≤ S and ϕ(T) ∈ Z+. We call ϕ normal if for every bounded increasing
net {Sα} in A+ with supremum S ∈ A+, ϕ(S) is the supremum of the increasing net
{ϕ(Sα)} in Ẑ+.

We now show that ifA is a Z-Hilbert algebra, then there is a natural Z-trace on the
von Neumann algebra U(A) constructed in the usual way.

_eorem 6.2 ([Dix,_éorème 1, I.6.2]) LetA be a Z-Hilbert algebra over the abelian
von Neumann algebra Z and let τ∶ I = π(A2

b) → Z be the tracial mapping deûned in
_eorem 5.5. _en τ restricted to I+ extends to amapping τ∶U(A)+ → Ẑ+ via τ(T) =
sup{τ(S) ∣ S ∈ I+ , S ≤ T}. _is extension is a faithful, normal, semiûnite Z-trace in
the sense of Dixmier and moreover, {T ∈ U(A)+ ∣ τ(T) ∈ Z+} = I+. Clearly, τ is the
unique normal extension of τ.

Proof _is proof is similar in outline to _éorème 1, I.6.2 of [Dix]. However, there
are many complications (some subtle) in this degree of generality. At least it is clear
that τ extends τ.

(i) τ is additive. Trivially we have for T1 , T2 ∈ U(A)+, τ(T1) + τ(T2) ≤ τ(T1 + T2).
On the other hand, let T = T1 + T2 for T1 , T2 ∈ U(A). _en by [Dix, p. 86 ], T 1/2

1 =
AT 1/2 and T 1/2

2 = BT 1/2 for A, B ∈ U(A) and E = A∗A + B∗B is the range projection
of T . Now if 0 ≤ S ≤ T with S ∈ U(A)+, then

ASA∗ ≤ ATA∗ = (AT 1/2)(AT 1/2)∗ = T 1/2
1 T 1/2

1 = T1 ,

and similarly, BSB∗ ≤ T2. Since I is an ideal, ASA∗ and BSB∗ are in I+. _us, since
ES = S,

τ(S) = τ(ES) = τ(A∗AS) + τ(B∗BS) = τ(ASA∗) + τ(BSB∗) ≤ τ(T1) + τ(T2).
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Taking the supremum over all such S yields the other inequality:

τ(T) ≤ τ(T1) + τ(T2).
(ii) τ is Z+-linear. Unlike the scalar case this is not completely trivial. If E is a

projection in Z+ and T ∈ U(A)+, then one easily checks that

(S ∈ I+ and S ≤ ET)⇐⇒ (S = ER for R ∈ I+ with R ≤ T).
Applying the deûnition of τ, we get τ(ET) = Eτ(T).

Now if z0 ∈ Z+ and if there exists z1 ∈ Z+ with z1z0 = E, the range projection of z0,
then again one shows that

(S ∈ I+ and S ≤ z0T)⇐⇒ (S = z0R for R ∈ I+ with R ≤ T).
Hence, τ(z0T) = z0τ(T) if z0 is bounded away from 0 on its range projection.

Now for an arbitrary z0 ∈ Z+ and T ∈ U(A)+ we work pointwise on X where we
have identiûed Z = L∞(X .ν). So ûx x ∈ X. _ere are two cases. If z0(x) = 0, then
[z0τ(T)](x) = z0(x)τ(T)(x) = 0. On the other hand, if S ≤ z0T and S ∈ I+, then
S = ES where E, the range projection of z0, satisûes E(x) = 0. _en

τ(S)(x) = τ(ES)(x) = (Eτ(S))(x) = E(x)τ(S)(x) = 0.

Taking the supremum over such S we get τ(z0T)(x) = 0, that is, if z0(x) = 0, then
τ(z0T)(x) = [z0τ(T)](x) = 0.

In the second case z0(x) > 0, sowe canwrite z0 = z1+z2 inZ+ where z1 is bounded
away from 0 on its support (which contains x) and z2(x) = 0. _en

τ(z0T)(x) = [τ(z1T) + τ(z2T)](x) = [z1τ(T) + τ(z2T)](x)
= z1(x)τ(T)(x) + τ(z2T)(x) = z0(x)τ(T)(x) + 0 = [z0τ(T)](x).

Hence, τ(z0T) = z0τ(T).
(iii) τ is unitarily invariant. _is follows easily from _eorem 5.5 (ii).
(iv) τ is faithful. If τ(T) = 0, then the only S ∈ I+ with S ≤ T is S = 0. However, if

{π(ξα)} is a net in π(Ab) converging ultraweakly to 1 and having norm ≤ 1, then

0 ≤ T 1/2π(ξα ξ∗α)T 1/2 ≤ T .

But T 1/2π(ξα ξ∗α)T 1/2 is in I+ and converges ultraweakly to T . Hence, T = 0.
(v) τ is semiûnite. _is is the same argument as in (iv).
(vi) {T ∈ U(A)+ ∣ τ(T) ∈ Z+} = I+. Clearly, I+ is contained in this set. So suppose

τ(T) = z ∈ Z+. We apply Proposition 5.2: let ξ ∈ Ab satisfy ∥π(ξ)∥ ≤ 1. _en

π[(T 1/2(ξ))(T 1/2(ξ))∗] = T 1/2π(ξξ∗)T 1/2 ≤ T

and so τ(π[(T 1/2(ξ))(T 1/2(ξ))∗]) ≤ τ(T) = z. But

τ(π[(T 1/2(ξ))(T 1/2(ξ))∗]) = ⟨(T 1/2(ξ))∗ , (T 1/2(ξ))∗⟩ = ⟨T 1/2(ξ), T 1/2(ξ)⟩.

_erefore, by Proposition 5.2, T 1/2 = π(η) for some η ∈ Ab and so T = π(η∗η) ∈ I+.
(vii) τ is normal. We ûrst show that τ satisûes the normality condition when the

relevant operators are all in I+. Suppose that {π(ξ∗α ξα)} is an increasing net in I+
with least upper bound π(ξ∗ξ) also in I+. Now for any η ∈ Ab we have by the polar
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decomposition theorem that ∣π(η)∣ = Vπ(η) = π(Vη) and that Vη ∈ Ab . Hence, for
any η ∈ Ab ,

π(η∗η) = ∣π(η)∣2 = π((Vη)2), and π(Vη) ≥ 0.

_us we can assume that ξα and ξ are self-adjoint and that π(ξα) ≥ 0 and π(ξ) ≥ 0.
_en π(ξα) = (π(ξ∗α ξα))1/2 and π(ξ) = (π(ξ∗ξ))1/2.

Now π(ξ2α) → π(ξ2) in the strong operator topology by Vigier’s _eorem and by
the proof of _éorème 1 of I.6.2 of [Dix] we also have π(ξα) → π(ξ) in the strong
operator topology. As the square root function is operator monotone, this implies
that π(ξ) = supα π(ξα).

It easily follows that ∥ξα∥ ≤ ∥ξ∥ for all α. SinceHA is a dual space, we can ûnd a
subnet {ξβ} which converges weak∗ to some ζ ∈HA. To see that ζ = ξ, let λ, µ ∈ Ab .
_en by Proposition 5.1

⟨ζ , λµ⟩ = lim
β

⟨ξβ , λµ⟩ = lim
β

⟨π(ξβ)µ∗ , λ⟩ = ⟨π(ξ)µ∗ , λ⟩ = ⟨ξ, λµ⟩.

_us, ζ and ξ deûne the same Z-valuedmapping onA2
b ⊇ A2 and therefore the same

mapping on A, that is, ζ = ξ.
Now since τ is positive, we have τ(π(ξ∗ξ)) ≥ supα τ(π(ξ∗α ξα)). On the other

hand, byKaplansky’sCauchy–Schwarz inequality [K] (which holds since Z is abelian)
we have ∣⟨ξβ , ξ⟩∣ ≤ ⟨ξβ , ξβ⟩1/2⟨ξ, ξ⟩1/2 for all β. Since ξ and ξβ are self-adjoint, it is seen
that ⟨ξβ , ξ⟩ is also self-adjoint and so, in fact, ⟨ξβ , ξ⟩ ≤ ⟨ξβ , ξβ⟩1/2⟨ξ, ξ⟩1/2 for all β.
Hence,

⟨ξ, ξ⟩ = uw-lim
β

⟨ξβ , ξ⟩ ≤ sup
β

⟨ξβ , ξβ⟩1/2⟨ξ, ξ⟩1/2

≤ (sup
α

⟨ξα , ξα⟩1/2)⟨ξ, ξ⟩1/2 .

Since Z is abelian, this implies that ⟨ξ, ξ⟩1/2 ≤ supα⟨ξα , ξα⟩1/2 and so

⟨ξ, ξ⟩ ≤ sup
α

⟨ξα , ξα⟩.

_at is, τ(π(ξ∗ξ)) ≤ supα τ(π(ξ∗α ξα)), and so they are equal.
Now we let {Tα} be an increasing net in U(A)+ with supremum T ∈ U(A)+. We

deûne f = supα(τ(Tα)), in Ẑ+. Let E = {x ∈ X ∣ f (x) = +∞}. Since τ(Tα) ≤ τ(T)
for all α, we have f ≤ τ(T). Hence f agrees with τ(T) on themeasurable set E. _e
complement of E is the countable union of themeasurable sets

EN ∶= {x ∈ X ∣ f (x) ≤ N},

so it suõces to see that f agrees with τ(T) (almost everywhere) on each EN . To
this end, let zN be the characteristic function of EN . Clearly, zN ∈ Z+ and zNT =
supα zNTα in U(A)+. Now for each α,

τ(zNTα) = zNτ(Tα) ≤ zN f ≤ NzN ∈ Z+ .
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So by an earlier part of the proof, there exists ξα = ξ∗α ∈ Ab with zNTα = π(ξ∗α ξα) and
⟨ξα , ξα⟩ ≤ NzN . Now for each η ∈ Ab with ∥π(η)∥ ≤ 1 we have

⟨zNT 1/2η, zNT 1/2η⟩ = ⟨zNTη, η⟩ = lim
α

⟨zNTαη, η⟩ = lim
α

⟨ξαη, ξαη⟩

= lim
α

⟨η∗ξα , η∗ξα⟩ = lim
α

⟨π(ηη∗)ξα , ξα⟩ ≤ sup
α

⟨ξα , ξα⟩ ≤ NzN .

_erefore, by Proposition 5.2 there exists a ζ ∈ Ab with zNT 1/2 = π(ζ). Moreover,

sup
α

π(ξ∗α ξα) = sup
α

zNTα = zNT = π(ζ∗ζ).

Hence by the ûrst part of the proof of normality of τ,

τ(zNT) = τ(π(ζ∗ζ)) = sup
α

τ(π(ξ∗α ξα)) = sup
α

τ(zNTα).

_at is, for x ∈ EN we have

f (x) = (zN f )(x) = (zN sup
α

τ(Tα))(x)

= (sup
α

τ(zNTα))(x) = (τ(zNT))(x)

= (zNτ(T))(x) = τ(T)(x)
as required.

Remarks In the above settingwewant to observe thatAb is also aZ-Hilbert algebra
and that U(A) = U(Ab), etc. It turns out that the only subtle point is the fact that
HA =HAb .

Lemma 6.3 Suppose X ⊆ Y ⊆ X† as pre-Hilbert B-modules whereB is a von Neu-
mann algebra. _en, in fact, X† = Y†.

Proof If θ ∈ X†, then y ↦ ⟨θ , y⟩X† ∶Y → B is a bounded B-module map and so
there is a unique θ̃ ∈ Y† so that

(6.1) ⟨θ̃ , ŷ⟩Y† = ⟨θ , y⟩X† for all y ∈ Y.

_at is, θ ↦ θ̃ embeds X† in Y†. We ûrst show that this embedding preserves inner
products.

Now given η ∈ X†, θ ↦ ⟨η̃, θ̃⟩Y† ∶X† → B is an element of X†† = X† and so there
exists a unique γ ∈ X† so that

(6.2) ⟨γ, θ⟩X† = ⟨η̃, θ̃⟩Y† for all θ ∈ X† .

In particular, for all x ∈ X we get ⟨γ, x⟩X† = ⟨η̃, x̂⟩Y† = ⟨η, x⟩X† by equation (6.1).
Hence, γ = η and equation (6.2) becomes ⟨η, θ⟩X† = ⟨η̃, θ̃⟩Y† for all η, θ ∈ X†. _at
is, X† is a pre-Hilbert B-submodule of Y† and we have Y ⊆ X† ⊆ Y† as pre-Hilbert
B-modules.

Now for each µ ∈ Y† the map θ ↦ ⟨µ, θ̃⟩Y† ∶X† → B deûnes a unique element
µ̌ ∈ X† satisfying ⟨µ, θ̃⟩Y† = ⟨µ̌, θ⟩X† = ⟨̃̌µ, θ̃⟩Y† for all θ ∈ X†. But since Y ⊆ X† we
must have µ = ̃̌µ, that is, ̃ ∶X† → Y† is onto.
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Proposition 6.4 LetA be a Z-Hilbert algebra over the abelian von Neumann algebra
Z. _en Ab is also a Z-Hilbert algebra and
(i) HAb =HA,
(ii) U(Ab) = U(A) and V(Ab) = V(A),
(iii) (Ab)b = Ab .

Proof Since Z ⊆ L(HA) and π(Ab) is a le� ideal in L(HA), we see that Ab is a
pre-Hilbert Z-submodule of HA containing A. Hence, by Lemma 6.3 HAb = HA.
_us, axioms (a)–(d) are automatically satisûed.

_at Ab is a ∗-algebra follows from Proposition 4.6. Now axiom (e) follows from
Lemma 4.3. Axiom (f) follows from Proposition 4.6 (iv) since π(ξ∗) = π(ξ)∗ for
ξ ∈ Ab . Axiom (g) follows from the deûnition ofAb and Proposition 4.6 (iii).

To see axiom (h),we ûrst note thatA2 ⊆ A2
b ⊆ Ab ⊆HAb =HA. SinceA2 is dense

inA by deûnition andA is dense inHA by Proposition 3.3, it follows thatA2
b is dense

inHAb and hence inAb . _us,Ab is also a Z-Hilbert algebra and (ii) and (iii) follow
easily.

7 Z-Hilbert Algebras From Z-Traces

Here we suppose that ϕ is a faithful, normal, semiûnite Z-trace (in Dixmier’s sense)
on the vonNeumann algebraAwhere Z is a vonNeumann subalgebra of the centre of
A. We abuse notation and also let ϕ denote the unique linear extension of the original
ϕ from I+ = {x ∈ A ∣ ϕ(x) ∈ Z+} to the ideal I = span I+, deûned in [Dix, Proposition
1 of III.4.1]. _en by [Dix, I.1.6] the spaceA = {x ∈ A ∣ ϕ(x∗x) ∈ Z+} is an ideal in A
with A2 = I.

Proposition 7.1 With the above hypotheses, the idealA = {x ∈ A ∣ ϕ(x∗x) ∈ Z+} is a
Z-Hilbert algebra, with the Z-valued inner product ⟨x , y⟩ = ϕ(x∗y).

Proof Since A is an ideal in A, it is certainly a right Z-module. Axiom (a) is just
the statement that ϕ is faithful. Axiom (b) follows since the extended ϕ is clearly self-
adjoint. Axiom (c) follows as the original ϕ is Z+-linear.

To see that Axiom (d) holds requires a little thought. First, it is clear that

span(ϕ(A2))

is an ideal in Z. _erefore, its uw-closure is an ideal in Z of the form EZ for some
projection E ∈ Z. If (1 − E) /= 0, then since ϕ is semiûnite, there exists x ∈ A+ with
0 /= x ≤ (1 − E) and ϕ(x) ∈ Z+ so that x 1/2 ∈ A. But then

0 /= ϕ(x) = ϕ((1 − E)x) = (1 − E)ϕ(x)

lies in EZ, a contradiction. Hence E = 1 and the spanof the inner products is uw-dense
in Z.
Axiom (e) follows from the tracial property of Proposition 1 of III.4.1 of [Dix].

Axiom (f) is trivial, and Axiom (g) is proved as in Example 3.6.
To see axiom (h)we ûrst show thatA is uw-dense inA. Now the ultraweak closure

ofA is a uw closed ideal inA and so has the form FA for some projection F in Z(A).
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If (1 − F) /= 0, then, since ϕ is semiûnite, there exists y ∈ A+ with 0 /= y ≤ (1 − F) and
ϕ(y) ∈ Z+ so that y1/2 ∈ A. But then y ∈ A and so y ≤ F, a contradiction as y /= 0.
_us F = 1 andA is uw-dense in A.

Now givenω ≥ 0 in the predual ofZ,we have that ϕω ∶= ω○ϕ is anormal, semiûnite
trace onA by Proposition 2 of III.4.3 of [Dix]. Moreover, theGNSHilbert space of the
normal representation πω of A induced by ϕω is the same as theHilbert spaceHω of
Section 3. For a, b ∈ Awe have πω(a)(b+Nω) = ab+Nω . Since πω is normal, πω(A)
is uw-dense in πω(A). _erefore, it is also s.o.-dense and hence given any b ∈ A and
є > 0, there exists a ∈ Awith ∥πω(a)(b+Nω)−(b+Nω)∥ω < є. _at is, ∥ab−b∥ω < є
and axiom (h) is satisûed.

In this setting, each x ∈ A deûnes an operator x̃ on the ideal

A = {a ∈ A ∣ ϕ(a∗a) ∈ Z+}

via x̃(a) = xa. Clearly, x̃ is Z-linear and it is easy to check that x̃ is a bounded Z-mo-
dulemap onA and therefore extends uniquely to a boundedmodulemap onHA also
denoted by x̃. As le� multiplications commute with right multiplications, we see that
x̃ ∈ (π′(A))′ = U(A) by the Commutation _eorem, 4.11.

Lemma 7.2 Let A be a uw-dense ∗-ideal in the von Neumann algebra A. _en each
T ∈ A+ is the increasing limit of a net in A+.

Proof It follows from the proof of _eorem 1.4.2 of [Ped] that {a ∈ A+ ∣ ∥a∥ < 1}
is an increasing net in the usual ordering of positive elements and hence converges
in A+ by Vigier’s _eorem. By the Kaplansky Density _eorem there is a subnet of
this one converging ultraweakly to the identity in A, and therefore this net converges
ultraweakly to 1 ∈ A.

_us, if T ∈ A+, the net {T 1/2aT 1/2 ∣ a ∈ A+ and ∥a∥ < 1} is an increasing net in
A+ converging ultraweakly to T .

_eorem 7.3 Let ϕ be a faithful normal semiûnite Z-trace on the von Neumann al-
gebra A, where Z is a von Neumann subalgebra of the centre of A. Let

A = {a ∈ A ∣ ϕ(a∗a) ∈ Z+}

be the corresponding Z-Hilbert algebra. _en the mapping x ↦ x̃∶A → U(A) is an
isomorphism of von Neumann algebras.

Proof It is clear the the mapping is a ∗-homomorphism. Since A is uw-dense in
A, the mapping is also one-to-one. Hence, it suõces to see that the mapping is onto
U(A). So let T ∈ U(A)+. Since π(A) is a uw-dense ∗-ideal in U(A), there is a
net {bα} in A+ with π(bα) increasing to T in U(A) ⊆ L(HA). Since, {bα} is an
increasing net in A+ ⊆ A+ bounded by ∥T∥, it converges to an element x ∈ A+. To
see that x̃ = T it suõces to see that ω(⟨Ta, c⟩) = ω(⟨xa, c⟩) for all a, c ∈ A and ω ≥ 0
in Z∗.

Now since ω ○ ϕ is a normal scalar trace on A by [Dix, Proposition 2 of III.4.3]
and since ca∗ ∈ A2 = I is contained in the ideal of deûnition of this normal scalar
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trace, the map y ↦ ω ○ ϕ(yca∗)∶A → C is a normal (and so uw-continuous) linear
functional on A. Hence,

ω(⟨xa, c⟩) = ω(ϕ(a∗xc)) = ω(ϕ(xca∗))
= lim

α
ω(ϕ(bαca∗)) = lim

α
ω(⟨π(bα)a, c⟩).

But by Proposition 5.1 (ii) this last term equals ω(⟨Ta, c⟩) since π(bα)
uw→ T .

8 The Z-Trace on the Crossed Product von Neumann Algebra

Let (A, Z , τ, α) be a 4-tuple as in Section 1. We also assume that Z has a faithful
state ω to apply Proposition 2.1 so that ω = ω ○ τ is a faithful tracial state on A and
representing A on the GNS Hilbert space Hω we obtain A = A′′ and Z = Z′′ and
a Z-trace τ∶A → Z extending τ and an extension of α to an ultraweakly continuous
action α∶R→ Aut(A) that leaves τ invariant.

Remark _e following construction of the Z-trace on the crossed-product algebra
works in much greater generality. _e action of R on A leaving τ invariant can be
replaced by an action of a unimodular locally compact groupG on A leaving τ invari-
ant. We leave the minor modiûcations to the interested reader. All the results up to
the end of Section 8.5 work in this generality.

We let AZ denote the C∗-subalgebra of A generated by A and Z. Clearly,

AZ = {
n
∑
i=1
a iz i ∣a i ∈ A, z i ∈ Z}

−∥ ⋅ ∥
.

It is clear that

● AZ contains A and Z and is therefore ultraweakly dense in A,
● τ∶AZ → Z is a faithful, unital Z-trace,
● α∶R→ Aut(AZ) is a norm-continuous action on AZ leaving τ invariant and leaving
Z pointwise ûxed.

Key Idea 7 _e introduction of this hybrid algebra AZ allows us to treat Z as
scalars and use norm-continuity in most of our calculations. _is permits the use
of C∗-algebra crossed products and is a considerable simpliûcation. We note also
that one cannot simply use the space of norm-continuous functions Cc(R,A) below
since α-twisting themultiplicationmight take us out of the realm of norm-continuity.
However, as a vector space (and pre-Hilbert Z-module), Cc(R,A) will have its uses.

With this set-up and notation, we have the following deûnition.

Deûnition 8.1 A = Cc(R,AZ), the space of norm-continuous compactly supported
functions from R to AZ. We require norm-continuity so that A becomes a ∗-algebra
with the usual α-twistedmultiplication x ⋅y(s) = ∫ x(t)α t(y(s−t)) dt and involution
x∗(s) = αs((x(−s))∗).
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Moreover,A becomes a (right) pre-Hilbert Z-module with the inner product

⟨x , y⟩ = ∫ τ(x(s)∗y(s)) ds

and Z-action (xz)(s) = x(s)z.
Axioms (a)–(c) are routine calculations. To see axiom (d), we observe that the set

of inner products {⟨x , y⟩ ∣ x , y ∈ A} is exactly equal to Z. It comes as no surprise that
A is, in fact, a Z-Hilbert algebra.

Remark We will also have occasion to use the completion of A in the vector-
valued Banach L2 norm ∥x∥2 = (∫ ∥x(s)∥2 ds)1/2. We deûne this completion to be
L2(R,AZ) and observe that since ∥x∥A ≤ ∥x∥2, we have a natural inclusion

L2(R,AZ)↪ A−∥⋅∥A ⊂HA .

Proposition 8.2 With the above inner product and Z-action, the ∗-algebra A is a
Z-Hilbert algebra.

Proof Axioms (e) and (f) are routine calculations. Since A contains all the scalar-
valued functions in Cc(R), it is easy to see that A2 is dense inA in the vector-valued
L2 norm.

Since ∥x∥A ≤ ∥x∥2 ,A2 is dense inA in the Z-Hilbert algebra norm and so axiom
(h) is satisûed by the remark a�er Deûnition 3.5.
Axiom (g) requires a little more thought. We will show that the le� regular rep-

resentation of the ∗-algebraA on the pre-Hilbert Z-moduleA is the integrated form
of a covariant pair of representations (πA ,U) of the system (AZ ,R, α) inside the
von Neumann algebra, L(HA). To this end we represent AZ on the Z-module A =
Cc(R,AZ) via [πA(a)x](s) = ax(s) for a ∈ AZ , x ∈ A, s ∈ R. Similarly, we represent
R on A via [Ut(x)](s) = α t(x(s − t)) for t, s ∈ R, x ∈ A.

One easily checks that these are representations as bounded, adjointableZ-module
mappings. Now for ûxed x ∈ A themap t ↦ Ut(x) is ∥ ⋅ ∥2-norm continuous and so
∥ ⋅ ∥A-norm continuous. By Proposition 5.1 (iii) this easily implies that

t ↦ Ut ∶R→ L(HA)
is an ultraweakly continuous representation. Moreover, the following are easily veri-
ûed:
● ∥πA(a)∥ ≤ ∥a∥ for a ∈ AZ.
● ⟨Ut(x),Ut(y)⟩ = ⟨x , y⟩ for t ∈ R, x , y ∈ A.
● πA(a)∗ = πA(a∗) and U∗

t = U−t for a ∈ AZ , t ∈ R.
● UtπA(a)U∗

t = πA(α t(a)) for t ∈ R and a ∈ AZ. _is is the covariance condition.
Combining this covariantpairof representationsof the system, (AZ ,R, α) inL(A)

with the ∗-monomorphism embeddingL(A)↪ L(HA) (by [Pa, Corollary 3.7 ])we
obtain a representation πA ×U of the C∗-algebra AZ ⋊ R in the von Neumann alge-
bra L(HA). One then easily checks that for x ∈ A ⊂ AZ ⋊ R and y ∈ A ⊂ HA that
[(πA×U)(x)(y)](s) = ∫ x(t)α t(y(s− t)) dt = (x ⋅ y)(s). _at is, le�-multiplication
by x on the Z-module A is bounded in the Z-module norm and axiom (g) is satis-
ûed.
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Lemma 8.3 IfA = Cc(R,AZ) as above, then the following hold.
(i) _e norm-decreasing embedding (A, ∥ ⋅ ∥2)→ (HA , ∥ ⋅ ∥Z) extends by continuity

to a norm-decreasing embedding of L2(R,AZ) into HA. Moreover, L2(R,AZ) is
a Z-module and the Z-valued inner product onHA restricts to L2(R,AZ) so that
it is, in fact, a pre-Hilbert Z-module.

(ii) If x ∈ L2(R,AZ) ⊆ HA and y ∈ A, then in the Z-Hilbert algebra notation, the
element π(x)y ∶= π′(y)x ∈HA is identical to the element x ⋅ y ∈ L2(R,AZ) given
by the twisted convolution (x ⋅ y)(s) = ∫ x(t)α t(y(s − t)) dt.

(iii) If x , y ∈ L2(R,AZ) and if π(x) and π(y) are bounded, then the operator

π(x)∗π(y)

is in the ideal of deûnition of the Z-trace, σ on U(A), and

σ[π(x)∗π(y)] = ⟨x , y⟩ = ∫ τ(x(t)∗y(t)) dt.

Proof _e ûrst statement of (i) follows trivially from the inequality ∥x∥A ≤ ∥x∥2.
To see the second statement of (i), suppose {xn} is a sequence inAwhich isCauchy

in the ∥ ⋅ ∥2 norm and that z ∈ Z. _en ∥xnz − xmz∥2 ≤ ∥xn − xm∥2∥z∥ → 0, so that
L2(R,AZ) is a Z-module. Similarly, if {xn} and {yn} are sequences in A which are
Cauchy in the ∥ ⋅ ∥2 norm, then by the Cauchy–Schwarz inequality

∥⟨xn , yn⟩ − ⟨xm , ym⟩∥ = ∥⟨xn − xm , yn⟩ − ⟨xm , ym − yn⟩∥
≤ ∥xn − xm∥A∥yn∥A + ∥xm∥A∥ym − yn∥A
≤ ∥xn − xm∥2∥yn∥2 + ∥xm∥2∥ym − yn∥2 .

_erefore, the Z-valued inner product on HA restricts to a Z-valued inner product
on L2(R,AZ).

To see (ii), let {xn} be a sequence in A with ∥xn − x∥2 → 0. _en

∥xn ⋅ y − x ⋅ y∥A ≤ ∥xn ⋅ y − x ⋅ y∥2 ≤ ∥xn − x∥2∥y∥1 → 0.

On the other hand, since xn and y are both in A, we have that π′(y)xn = xn ⋅ y by
deûnition, and so

∥xn ⋅ y − π(x)y∥A = ∥π′(y)xn − π′(y)x∥A ≤ ∥π′(y)∥ ∥xn − x∥A
≤ ∥π′(y)∥ ∥xn − x∥2 → 0.

So π(x)y = x ⋅ y.
(iii) follows from from the deûnition of the trace (_eorem 5.5) and (i)

Lemma 8.4 _e representation πA∶AZ → L(HA) extends to an ultraweakly con-
tinuous representation (also denoted πA) of A in L(HA).

Proof We ûrst observe that the space of norm-continuous functions, Cc(R,A) ⊂
HA in a natural way. _at is, if x ∈ Cc(R,A), then for y ∈ A themap

y ↦ ∫ τ((x(t))∗y(t)) dt
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is a bounded Z-modulemapping fromA to Z and so deûnes a unique element inHA.
If we abuse notation and denote this element in HA by x, then we get the formula

⟨x , y⟩ = ∫ τ((x(t))∗y(t)) dt.

Clearly,A = Cc(R,AZ) ⊂ Cc(R,A) ⊂HA. _e extension of πA toA is now obvious:
[πA(a)x](s) = ax(s) for a ∈ A, x ∈ Cc(R,A), s ∈ R. It is easy to check that this is a
well-deûned extension to A as Z-modulemappings on the Z-submodule Cc(R,A) ⊂
HA. _ese πA(a) extend uniquely to Z-module mappings on HA sinceHA is also
the Paschke dual of Cc(R,A) by Lemma 6.3.

To see that πA∶A→ L(HA) is normal, it suõces to see that πA(A) is ultraweakly
closed in L(HA) by [Dix, Corollaire I.4.1]. To this end, it suõces to see that the unit
ball in πA(A) is ultraweakly closed. So let {an} be a net inAwith ∥an∥ = ∥πA(an)∥ ≤
1 and πA(an) → T ultraweakly in L(HA). Since the unit ball in A is ultraweakly
compact, we can assume (by choosing a subnet if necessary) that there is an a ∈ A
such that an → a ultraweakly. By Proposition 5.1 (iii), we have for all x , y ∈ Cc(R,A)

⟨x , πA(an)y⟩→ ⟨x , Ty⟩ ultraweakly in Z.

On the other hand, if x = c f and y = bg for c, b ∈ A and f , g ∈ Cc(R), then
one easily calculates that ⟨x , πA(an)y⟩ = τ(anbc∗) ∫ f (t)g(t) dt which converges
ultraweakly in Z to ⟨x , πA(a)y⟩. _us, for all such x , y we have

⟨x , πA(a)y⟩ = ⟨x , Ty⟩.
Clearly, the same equation holds for all ûnite linear combinations of such x and y.
Since such combinations are ∥ ⋅ ∥2-dense in Cc(R,A) (and so ∥ ⋅ ∥Z-dense) we have
the equation holding for all x , y ∈ Cc(R,A). Hence, for all y ∈ Cc(R,A) we have

πA(a)y = Ty.
Since πA(a) leaves the pre-Hilbert Z-module Cc(R,A) invariant, Proposition 3.6 of
[Pa] implies that T = πA(a) as required.

Key Idea 8 Now the natural embedding of the Z-module, L2(R) ⊗alg AZ into
L2(R,AZ) induces an embedding L2(R,AZ) ↪ L2(R) ⊗Z AZ where the latter is
deûned to be the completion of the algebraic tensor product in the pre-Hilbert Z-
module norm [L]. _us we get a series of inclusions of pre-Hilbert Z-modules each
of which is strict unless A is ûnite-dimensional:

L2(R)⊗alg AZ ⊂ L2(R,AZ) ⊂ L2(R)⊗Z AZ ⊂HA .

One could insert another (generally strict) series of containments,

L2(R)⊗Z AZ ⊂ L2(R)⊗Z A ⊂HA ,

or even the diagram of containments,

Cc(R,AZ) = A = Cc(R,AZ)
∪ ∩

Cc(R)⊗alg AZ ⊂ L2(R)⊗alg AZ ⊂ L2(R,AZ).
In general, onemight be able to realizeHA as some sort of collection ofmeasurable
L2-functions from R into the Z-module HAZ

= HA; however, this does not seem
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particularlyuseful, sowe refrain from exploring this idea further. _e importantpoint
is that each of these Z-modules has the same Paschke dual HA and so we can deûne
operators in L(HA) by deûning bounded adjointable Z-module mappings on any
one of them by [Pa, Corollary 3.7]. Of course, any one such operator may or may not
leave the other Z-modules invariant.

Proposition 8.5 Let A = Cc(R,AZ).
(i) For x ∈ A we have π(x) = (πA ×U)(x) = ∫ πA(x(t))Ut dt, where the integral

converges in the norm of L(HA).
(ii) U(A) = [(πA ×U)(AZ ⋊R)]′′ = [πA(A) ∪ {Ut}t∈R]′′.
(iii) U(A) = [(πA ×U)(A⋊R)]′′.

Proof To see (i) we note that in the proof of Lemma 8.3(ii) it was shown that for
x , y ∈ A, π(x)y = (πA ×U)(x)y. By [Pa, Proposition 3.6 ], this implies that π(x) =
(πA×U)(x) as elements ofL(HA). _e second equality in (i) is true for any crossed
product when x is a compactly supported continuous function from the group into
the C∗-algebra. To see (ii) we ûrst note that by (i),

(πA ×U)(AZ ⋊R) = (πA ×U)(Cc(R,AZ))−∥⋅∥

= (πA ×U)(A)−∥⋅∥

= π(A)−∥⋅∥ .

Hence, U(A) = [π(A)]′′ = [π(A)−∥⋅∥]′′ = [(πA ×U)(AZ ⋊R)]′′. Now by the Com-
mutation _eorem 4.11U(A) = (π′(A))′ and it is an easy calculation that πA(AZ) ⊂
(π′(A))′. Since the representation πA is ultraweakly continuous on A and AZ is ul-
traweakly dense in A, we see that

πA(A) = πA(AZ)− uw ⊂ (π′(A)) ′ = U(A).
It is a straightforward calculation (since the operators Ut leaveA invariant) that

{Ut}t∈R ⊂ (π′(A)) ′ = U(A).
_us, [πA(A) ∪ {Ut}t∈R]′′ ⊂ U(A).

On the other hand, if T ∈ [πA(A) ∪ {Ut}t∈R]′ , then T ∈ [πA(AZ) ∪ {Ut}t∈R]′
and by the full force of (i), we see that T ∈ (π(A))′ = U(A)′ by _eorem 4.11. _at
is,

[πA(A) ∪ {Ut}t∈R]′ ⊂ U(A)′ or [πA(A) ∪ {Ut}t∈R]′′ ⊃ U(A)
as required.

To see (iii), we observe that since A is ultraweakly dense in A, Lemma 8.4 implies
that πA(A) = πA(A)′′ ⊂ [(πA ×U)(A⋊R)]′′. Since

{Ut}t∈R ⊂ [(πA ×U)(A⋊R)]′′ ,
we have by (ii) thatU(A) ⊂ [(πA×U)(A⋊R)]′′. _e other containment is trivial.

Deûnition 8.6 (_e Induced Representation) Now there is another representation
ofA = Cc(R,AZ) (andhenceAZ⋊R) onHA that is unitarily equivalent to π = πA×U .
In the remainder of the paperwewill use the standardnotation for this representation,
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namely Ind (see below). Later when we deûne the notion of index, we will use the
notation Index to avoid confusion. To deûne the representation Ind we ûrst deûne
a single unitary V ∈ L(HA) via (Vξ)(t) = α−1

t (ξ(t)) for ξ ∈ L2(R,AZ). One
easily checks that V is a bounded, adjointable Z-module mapping on the Z-module
L2(R,AZ) and therefore on HL2(R,AZ) = HA by the previous remarks. One easily
checks that for a ∈ AZ, t ∈ R, and ξ ∈ L2(R,AZ)

VπA(a)V∗ = π̃(a) and VUtV∗ = λt ,

where
(π̃(a)ξ)(s) = α−1

s (a)ξ(s) and (λt ξ)(s) = ξ(s − t).
Another straightforward calculation shows that for x , ξ ∈ A

(Vπ(x)V∗ξ)(s) = ∫ α−1
s (x(t))ξ(s − t) dt,

and that this formula easily extends to ξ ∈ L2(R,AZ).
Now if x ∈ L2(R,AZ), π(x) is bounded and ξ ∈ A, then using the formula of

Lemma 8.3 (ii) one easily calculates that we obtain the same formula, namely

(Vπ(x)V∗ξ)(s) = ∫ α−1
s (x(t))ξ(s − t) dt.

Since this representation of AZ ⋊ R, x ↦ Vπ(x)V∗ is induced from the le� multi-
plication of AZ on itself via the action of R on AZ, we denote it by Ind(x), that is,
Ind(x) ∶= Vπ(x)V∗. Now the von Neumann algebra,U(A) contains the representa-
tions πA of AZ andU ofR,which integrate to give the representation π = πA×U ofA
(and hence of AZ⋊R) inU(A). We deûne the vonNeumann algebraM = VU(A)V∗

in L(HA) which also has centre Z and is unitarily equivalent to U(A) but for which
the machinery of Z-Hilbert algebras is not directly applicable. So M is generated by
the representations, π̃( ⋅ ) ∶= VπA( ⋅ )V∗ of AZ and λ( ⋅ ) ∶= VU( ⋅ )V∗ of R. _e in-
tegrated representation π̃ × λ is, of course, Ind. _e trace on M is denoted by τ̂ and
is deûned on Mτ̂ ∶= VU(A)σV∗ via τ̂(T) ∶= σ(V∗TV). It follows from Lemma
8.3 (iii) that if x , y ∈ L2(R,AZ) and if π(x) and π(y) are bounded, then the operator
Ind(x)∗ Ind(y) is in the ideal of deûnition of the Z-trace, τ̂ on M and

τ̂[Ind(x)∗ Ind(y)] = τ̂[Vπ(x)∗π(y)V∗] = ⟨x , y⟩ = ∫ τ(x(t)∗y(t)) dt.

Deûnition 8.7 (_e Hilbert Transform) _e Hilbert transform HR on L2(R) is
deûned for ξ ∈ L2(R) by HR(ξ) = (ξ̂ sgn )̌, where ,̂ˇare the usual Fourier transform
and inverse transform and sgn is the usual signum function on R.

_en HR is a self-adjoint unitary, so that H2
R = 1 and PR ∶= 1

2 (HR + 1) is the
projection onto the Hardy space,H2(R). By [L], H ∶= HR ⊗ 1 and P ∶= PR ⊗ 1 deûne
bounded adjointable Z-modulemaps on L2(R)⊗alg AZ (and therefore on HA) with
the same properties. _at is, H2 = 1 and P = 1

2 (H + 1) satisûes P = P∗ = P2.

In the lemma below, we identify L2(R) with L2(R) ⋅ 1A inside L2(R,AZ).

Lemma 8.8 _e operatorsH and P are inM. In fact, if for є > 0we deûne the function
fє in L2(R) ⊂ L2(R,AZ) ⊂ HA via fє(t) = 1

πi t for ∣t∣ ≥ є, then the π( fє) (technically,
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π( fє ⋅ 1A)) are uniformly bounded, and as є → 0, Ind( fє) = Vπ( fє)V∗ → H strongly
on L2(R)⊗ AZ, so Ind( fє) = Vπ( fє)V∗ → H ultraweakly on HA.

Proof It follows from [DM] that le� convolution by the functions fє , λ( fє) are uni-
formly bounded on L2(R) and converge strongly to HR. It is trivial then that λ( fє)⊗1
converges strongly toHR⊗1 on L2(R)⊗algAZ. Since these operators are all uniformly
bounded, adjointable Z-modulemaps by [L], we see by the usual δ/3-argument that
their extensions to the completion L2(R) ⊗Z AZ satisfy λ( fє) ⊗ 1 → HR ⊗ 1 = H
strongly on L2(R)⊗Z AZ. It now follows from Lemma 5.1 (iii) (with L2(R)⊗Z AZ in
place of A) and Key Idea 8 that λ( fє)⊗ 1 → H ultraweakly on HL2(R)⊗ZAZ

=HA. It
remains to see that λ( fє) ⊗ 1 = Ind( fє) on HA. Now the former is initially deûned
on L2(R) ⊗alg AZ while the latter is initially deûned on V(A) = A. Since they are
both deûned on the common dense domain Cc(R)⊗AZ, it suõces to check equality
there. _is is a trivial calculation.

Remark It follows from Lemma 8.8 that for ξ ∈ A
H(ξ) = normlim

є→0
Vπ( fє)V∗ξ.

And since Vπ( fє)V∗ξ(s) = ∫ fє(t)ξ(s − t) dt = ∫∣t∣≥0
1

πi t ξ(s − t) dt for s ∈ R, we can
formally write (Hξ)(s) = ∫ 1

πi t ξ(s − t) dt for ξ ∈ A and s ∈ R, where we understand
the integral to be the principal-value integral converging in the norm ofHA.

9 The Index Theorem

We quickly recap for the beneût of the readerwhatwe have done so far. We beginwith
a unitalC∗-algebra A and a unitalC∗-subalgebra Z of the centre of A. We assume that
we have a faithful, unital Z-trace τ and a continuous action α∶R → Aut(A) leaving
τ and hence Z invariant. In short, the 4-tuple (A, Z , τ, α) is our object of study. As
Standing Assumptions, we will assume that we have a concrete ∗-representation of A
on aHilbert spaceH which carries a faithful, unital uw-continuous Z-trace τ∶A→ Z
extending τ,where, as beforeA andZ denoted respectively the ultraweak closures ofA
and Z onH. Since A is concretely represented on thisHilbert space,we do not carry a
special notation for this representation. Moreover there is an ultraweakly continuous
action α∶R → Aut(A) extending α and leaving τ and Z invariant. If Z has a faithful
state ω, then the GNS representation of the state ω = ω ○ τ gives us a representation
of A satisfying the Standing Assumptions by Proposition 2.1.

We deûned AZ to be the C∗-subalgebra of A generated by A and Z, so that α re-
stricts to a norm-continuous action of R on AZ and τ restricts to a faithful, unital
Z-trace on AZ. We deûnedA = Cc(R,AZ) to be a ∗-algebra with the usual α-twisted
convolution multiplication. _ere is a natural (right) pre-Hilbert Z-module struc-
ture on A making it into a Z-Hilbert algebra as deûned in Section 3. We deûned
HA to be the Paschke dual of all bounded Z-modulemappings from A to Z (i.e., all
Z-linear “Z-valued functionals” on A). _en L(HA) is a Type I von Neumann alge-
bra with centre Z. _e point of this set-up is that the von Neumann subalgebraU(A)
of L(HA) generated by the le� multiplications π(x) of A on HA contains Z in its
centre and has a faithful, normal, semiûnite Z-trace σ deûned on the two-sided ideal
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U(A)σ = π(A2
b) via σ(π(ξη)) = ⟨ξ∗ , η⟩, for ξ, η ∈ Ab the (full) Z-Hilbert algebra of

(le�) bounded elements in HA.
At this point we look at a von Neumann algebra M = VU(A)V∗ in L(HA)

which also contains Z in its centre. _en M is generated by representations π̃( ⋅ ) ∶=
VπA( ⋅ )V∗ of AZ and λ( ⋅ ) ∶= VU( ⋅ )V∗ of R. _e integrated representation π̃ × λ
is denoted by Ind. _e canonical trace on M is denoted by τ̂ and has domain of def-
inition Mτ̂ = {S ∈ M ∣ S = Vπ(ξη)V∗ some ξ, η ∈ Ab}. And for S = Vπ(ξη)V∗,
τ̂(S) = ⟨ξ∗ , η⟩. In particular, if x , y ∈ L2(R,AZ) with π(x) and π(y) bounded, then
the operator Ind(x)∗ Ind(y) is in the ideal of deûnition of the Z-trace, τ̂ on M, and

τ̂[Ind(x)∗ Ind(y)] = ∫ τ(x(t)∗y(t)) dt.

Deûnition 9.1 We consider the semiûnite von Neumann algebra, N ∶= PMP with
the faithful, normal, semiûnite Z-trace obtained by restricting τ̂. For a ∈ Awe deûne
the Toeplitz operator Ta ∶= Pπ̃(a)P ∈ N.

We recall from Section 1 that δ is the inûnitesimal generator of α on A and that

a ↦ 1
2πi

τ(δ(a)a−1)∶dom(δ)−1 → Zsa

is a group homomorphism which is constant on connected components and so ex-
tends uniquely to a group homomorphism A−1 → Zsa which is constant on connected
components and is 0 on Z−1. With this convention and all the above notation,we state
our index theorem. Much of the work that we have done so far is to make sense of
the statement of the following theorem and to make sense of the index calculations
of [CMX,PhR] in this generality. It is interesting that the conclusions of the theorem
are insensitive to the choice of a suitable representation of A satisfying the standing
assumptions. In particular, if the representation is chosen using Proposition 2.1, the
conclusions of the theorem are insensitive to the choice of a faithful state on Z.

_eorem 9.2 Let A be a unital C∗-algebra and let Z ⊆ Z(A) be a unital C∗-sub-
algebra of the centre of A. Let τ∶A → Z be a faithful, unital Z-trace that is invariant
under a continuous action α ofR. _en for any a ∈ A−1∩dom(δ), the Toeplitz operator
Ta is Fredholm relative to the trace τ̂ on N = P(Ind(A⋊R)′′)P, and

τ̂- Index(Ta) =
−1
2πi

τ(δ(a)a−1) .

We follow the second proof of [CMX, Section 25.2] (cf. [PhR, Section 3]). Now
relative to the decomposition 1 = P + (1 − P), we see that

π̃(a) = [Ta B
C D] ,

where B = Pπ̃(a)(1 − P) = P[P, π̃(a)] = 1
2P[H, π̃(a)], and similarly,

C = 1
2
[H, π̃(a)]P.

_us, we are led to calculate the general commutator [H, π̃(a)] for a ∈ dom(δ).
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Lemma 9.3 For any a ∈ dom(δ), [H, π̃(a)] belongs to Mτ̂
2 . In fact, [H, π̃(a)] =

Ind(x), where x ∈ C0(R,AZ) ∩ L2(R,AZ) is given by x(t) = α t(a)−a
πi t .

Proof Now Ind( fє) converges strongly on A to H, so we easily compute for ξ ∈ A,
[Ind( fє), π̃(a)]ξ = Ind(xє)ξ, where

xє(t) =
⎧⎪⎪⎨⎪⎪⎩

α t(a)−a
πi t ∣t∣ ≥ є,

0 otherwise.

So the Ind(xє) are uniformly bounded operators that converge pointwise on A to
[H, π̃(a)]. Now since x(t)→ (πi)−1δ(a) as t → 0 and

∥x(t)∥2 ≤ 4∥a∥2

π2 t2
,

we see that x ∈ C0(R,AZ) ∩ L2(R,AZ). One easily calculates that for ξ ∈ A

∥ Ind(x)ξ − Ind(xє)ξ∥Z ≤ ∥ Ind(x)ξ − Ind(xє)ξ∥2 → 0,

and so Ind(x) and [H, π̃(a)] agree onA. _at is, by the discussion in Proposition 8.5
π(x) = V∗ Ind(x)V is le� bounded and Ind(x) = [H, π̃(a)] in L(HA).

We want to use the Z-trace version of Hörmander’s formula (_eorem A3 and
Corollary A4 in the Appendix) to calculate the τ̂-index of the Toeplitz operator Ta
as τ̂([Ta , Ta−1]). So we are led to examine such commutators in the hopes that they
are in fact trace-class (they are).

Corollary 9.4 If a, b ∈ dom(δ), we have TaTb − Tab ∈Mτ̂ ∩N = Nτ̂ . In particular,
if b = a−1, then Ta and Tb are τ̂-Fredholm operators in N. In general, if ab = ba, then
[Ta , Tb] ∈ Nτ̂ .

Proof We easily calculate (see [PhR, Corollary 3.3])

(9.1) TaTb − Tab = Pπ̃(a)(P − 1)π̃(b)P = ⋅ ⋅ ⋅ = 1
4
P[H, π̃(a)][H, π̃(b)]P

which is in Mτ̂ ∩ PMP = Nτ̂ . If ab = ba, then

[Ta , Tb] = (TaTb − Tab) + (Tba − TbTa) ∈ Nτ̂ .

Discussion In the case that a, b ∈ dom(δ) commute we have by equation (9.1) and
a small calculation:

[Ta , Tb] = Pπ̃(a)(P − 1)π̃(b)P − Pπ̃(b)(P − 1)π̃(a)P(9.2)

= ⋅ ⋅ ⋅ = 1
2
P(π̃(a)Hπ̃(b) − π̃(b)Hπ̃(a))P,(9.3)

and both of these terms are trace-class. Applying the trace to equation (9.3) we get:

τ̂([Ta , Tb]) =
1
2
τ̂(P( π̃(a)Hπ̃(b) − π̃(b)Hπ̃(a))P) .
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On the other hand, applying the trace to equation (9.2), using the cyclic property of
the trace and a little calculation (see [PhR]) we get

(9.4) τ̂([Ta , Tb]) =
1
2
τ̂(( 1 − P)( π̃(a)Hπ̃(b) − π̃(b)Hπ̃(a))(1 − P)) .

Deûning T ∶= π̃(a)Hπ̃(b)− π̃(b)Hπ̃(a), and averaging equations (9.3) and (9.4),we
get

τ̂([Ta , Tb]) =
1
4
τ̂(PTP + (1 − P)T(1 − P)),

and both of these terms are trace-class. Unfortunately, T itself is not usually trace-
class. However, T is in Mτ̂

2 by the following lemma.

Lemma 9.5 (cf. [PhR, Lemma 3.4]) Suppose a, b ∈ dom(δ) and ab = ba. _en

T = π̃(a)Hπ̃(b) − π̃(b)Hπ̃(a)

belongs to Mτ̂
2 ; in fact, it has the form Ind(y) where y is the function in C0(R,AZ) ∩

L2(R,AZ) given by y(t) = (πit)−1(aαt(b) − bαt(a)).

Proof It is straightforward to verify that we can also write

T = [H, π̃(b)]π̃(a) − [H, π̃(a)]π̃(b).

_en by Lemma 9.3 we see that T = Ind(y) where

y(t) = (αt(b) − b)αt(a)
πit

− (αt(a) − a)αt(b)
πit

= aαt(b) − bαt(a)
πit

.

Since y(t) → (πi)−1(δ(b)a − δ(a)b) in the norm of A as t → 0, y is a continuous
A-valued function. As ∥y(t)∥ ≤ 2∥a∥ ∥b∥/πt for t /= 0,we also see that y ∈ L2(R,AZ).

Remark In Lemma 9.5 y(0) = (πi)−1(δ(b)a−δ(a)b) = −2(πi)−1δ(a)b. Combin-
ing this with equation (7) of the previous discussion would yield the desired formula,
τ̂([Ta , Tb]) = −1

2πi τ̂(δ(a)b), assuming that the operator T is trace-class. Since T is
generally not trace-class, we need an approximate identity argument.

Lemma 9.6 If S ∈ Mτ̂ and { fn} is a sequence of functions in Cc(R)+ ⊂ Cc(R,AZ)
each having integral 1 and symmetric supports about 0 shrinking to 0, then

τ̂(S) = uw-lim
n→∞ τ̂(Ind( fn)S).
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Proof As in the proof of Lemma 8.7,we see that the operators Ind( fn) = Vπ( fn)V∗

are uniformly bounded onHA by 1 and converge strongly to 1 on L2(R)⊗AZ. In par-
ticular, for all x , y ∈ A we have by Paschke’s Cauchy–Schwarz inequality [Pa, Propo-
sition. 2.3]:

τ̂[Ind(x) Ind(y)] = ⟨x∗ , y⟩ = ⟨y∗ , x⟩ = normlim
n→∞ ⟨y∗ , π( fn)x⟩

= normlim
n→∞ ⟨( fnx)∗ , y⟩ = normlim

n→∞ τ̂[Ind( fnx) Ind(y)]

= normlim
n→∞ τ̂[Ind( fn) Ind(x) Ind(y)].

Now by Lemma 5.1 (iii) we see that for all ξ, η ∈ Ab

τ̂[Ind(ξ) Ind(η)] = uw-lim
n→∞ τ̂[Ind( fn) Ind(ξ) Ind(η)].

Since every S ∈ Mτ̂ has the form S = Ind(ξ) Ind(η) for some ξ, η ∈ Ab , we are
done.

Proposition 9.7 If a, b ∈ dom(δ) and ab = ba, then [Ta , Tb] ∈ Nτ̂ and

τ̂[Ta , Tb] =
−1
2πi

τ(δ(a)b).

Proof Let { fn} be as in the previous lemma. _en by equation (7) of the Discussion,
the previous two lemmas, and the fact that Ind( fn)P = P Ind( fn) we get

τ̂([Ta , Tb]) =
1
4
τ̂(PTP + (1 − P)T(1 − P))

= uw-lim
1
4
τ̂( Ind( fn)(PTP + (1 − P)T(1 − P)))

= uw-lim
1
4
τ̂( Ind( fn)PTP + Ind( fn)(1 − P)T(1 − P))

= uw-lim
1
4
τ̂(P Ind( fn)TP + (1 − P) Ind( fn)T(1 − P))

= uw-lim
1
4
τ̂(P Ind( fn)T + (1 − P) Ind( fn)T)

= uw-lim
1
4
τ̂( Ind( fn)T)

= uw-lim
1
4
τ̂( Ind( fn) Ind(y))

= uw-lim
1

4πi ∫ fn(t)τ(
αt(b) − b

t
a − αt(a) − a

t
b) dt.

In fact, this last limit is easily seen to converge in norm so that using τ(δ(ab)) = 0
we get

τ̂([Ta , Tb]) =
1

4πi
τ(δ(b)a − δ(a)b) = −1

2πi
τ(δ(a)b) .

Proof of_eorem 9.2 Recall that relative to the decomposition 1 = P + (1 − P) we
have

π̃(a) = [Ta B
C D] ,
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where B = Pπ̃(a)(1 − P) = P[P, π̃(a)] = 1
2P[H, π̃(a)] ∈M

τ̂
2 , and

C = 1
2
[H, π̃(a)]P ∈Mτ̂

2 .

By Corollary A4 of the Appendix and the previous proposition we have

τ̂- Index(Ta) = τ̂([Ta , Ta−1]) = −1
2πi

τ(δ(a)a−1).

_is completes the proof of_eorem 9.2.

Corollary 9.8 Suppose φ∶A1 → A2 deûnes a morphism from (A1 , Z1 , τ1 , α1) to
(A2 , Z2 , τ2 , α2) and a ∈ A−1

1 ∩ (dom(δ1)). _en φ(a) ∈ A−1
2 ∩ (dom(δ2)) and

τ̂1−Index(Ta) ∈ (Z1)sa while τ̂2−Index(Tφ(a)) ∈ (Z2)sa and also φ(τ̂1−Index(Ta)) =
τ̂2 − Index(Tφ(a)).

Proof _is follows immediately from Proposition 1.3 and_eorem 9.2.

10 Examples

10.1 Kronecker (Scalar Trace) Example

Recall that A = C(T2), the C∗-algebra of continuous functions on the 2-torus, with
the usual scalar trace τ given by the Haar measure on T2 and α∶R → Aut(A) is the
Kronecker �ow on A determined by the real number µ. _at is, for s ∈ R, f ∈ A, and
(z,w) ∈ T2 we have (αs f )(z,w) = f (e−2πi s z, e−2πiµsw). In this case, Z = Z = C
and so AZ = A. Hence our Z-Hilbert algebra A = Cc(R,A) is just a Hilbert algebra
in the ordinary sense and HA = L2(R, L2(T2)). Now denoting H = L2(T2), we
have that the C∗-crossed product A⋊α R is represented on L2(R,H) by the induced
representation of Deûnition 8.6 as follows: for s, t ∈ R, ξ ∈ Cc(R,A) ⊆ L2(R,H), and
f ∈ Awe deûne

( π̃( f ) ξ)(s) = α−1
s ( f ) ⋅ ξ(s) and (λt ξ)(s) = ξ(s − t).

_us, π̃ × λ is a faithful representation of A ⋊α R on L2(R,H). It is well known that
for µ irrational, M = ( π̃ × λ(A ⋊α R)) ′′ is a II∞ factor [CMX]. In general M is a
semiûnite von Neumann algebra and π̃∶A → M. Now if δ is the densely deûned
derivation on A generating the representation α∶R → Aut(A) and we let u ∈ U(A)
be the function u(z,w) = w, then u is a smooth element for δ and δ(u) = −(2πiµ)u.
_us by _eorem 9.2, the Toeplitz operator Tu ∶= Pπ̃(u)P is Fredholm relative to the
trace τ̂ in the semiûnite von Neumann algebraN = PMP and its index is given by

τ̂- Index(Tu) =
−1
2πi

τ(δ(u)u∗) = µ.

10.2 General Kronecker Examples

Recall that Z = C(X) is any commutative unitalC∗-algebrawith a faithful state ω and
θ ∈ Zsa is any self-adjoint element in Z. Recall that A = C(T2 , Z) = C(X) ⊗ C(T2)
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and τ∶A → Z is given by the “slice-map” τ = idZ ⊗φ where φ is the trace on C(T2)
given by Haar measure. _at is, for f ∈ A = C(T2 , Z) we have

τ( f ) = ∫
T2
f (z,w) d(z,w) ∈ Z ,

and τ is a faithful, tracial, conditional expectation of A onto Z. Recall that ω ∶= ω○τ =
ω ⊗ φ is a faithful (tracial) state ω on A. We use the element θ ∈ Zsa to deûne a
τ-invariant action {αt} of R on A, αt( f )(x , z,w) = f (x , e−2πi tz, e−2πiθ(x)tw), for
f ∈ A, t ∈ R, x ∈ X, and z,w ∈ T.

Let (π,H) be the GNS representation of A induced by ω. _en there is a contin-
uous unitary representation {Ut} of R on H so that (π,U) is covariant for α on A.
Also, {Ut} implements a uw-continuous “extension” of α to α acting on A ∶= π(A)′′.
Moreover, lettingZ ∶= π(Z)′′ , there exists a unique, faithful, unital, uw-continuousZ-
trace τ ∶ A→ Z “extending” τ, and α leaves τ invariant. _at is, in this representation
onH,we have that StandingAssumptions are also satisûed. We simplify our notation
and write L2(X), L2(T2), L∞(X), and L∞(T2) for L2(X ,ω), L2(T2 , φ), L∞(X ,ω),
and L∞(T2 , φ), respectively.

_en in this representation one easily veriûes thatH = L2(X)⊗L2(T2) as Hilbert
spaces and Z = L∞(X) ⊗ 1 and AZ = L∞(X) ⊗ C(T2) as C∗-algebras and A =
L∞(X)⊗L∞(T2) as von Neumann algebras.

Identifying Z = L∞(X), our L∞(X)-Hilbert algebra is

A = Cc(R, L∞(X)⊗ C(T2))
with the α-twisted convolution multiplication and L∞(X)-valued inner product for
f , g ∈ A given by

τ̂(Ind( f )∗ Ind(g)) = ⟨ f , g⟩ = ∫
R
τ(( f (t))∗g(t)) dt

= ∫
R
(∫

T2
( f (t)[(z,w)])∗g(t)[(z,w)] d(z,w)) dt.

Now consider the following unitary v in A: v(x , z,w) = w. _en

αt(v)(x , z,w) = e−2πiθ(x)tw
and so δ(v)(x , z,w) = −2πiθ(x)w. Hence, (δ(v)v∗)(x , z,w) = −2πi ⋅ θ(x). Since
the trace τ on A is just the slicemap idZ ⊗φ,we see that τ(δ(v)v∗) = −2πi ⋅θ. Hence,
by _eorem 9.2, the Toeplitz operator Tv is Fredholm relative to the trace τ̂ on N =
P(Ind(A⋊R)′′)P, and

τ̂- Index(Tv) =
−1
2πi

τ(δ(v)v∗) = θ ∈ C(X) = Z ↪ Z ⊗ C(T2) = A.

10.3 Fiberings of Toeplitz Operators

Recall that for any ûxed x ∈ X (where Z = C(X)) the evaluation map at x yields
a homomorphism from A = Z ⊗ C(T2) to C(T2) that deûnes a morphism from
Example 10.2 to Example 10.1 which carries θ to µ ∶= θ(x). Moreover this morphism
carries v to u = v(x). So that Index(Tu) = µ = θ(x) = (Index(Tv))(x). _at is, the
Toeplitz operator Tv ûbers over X as the Toeplitz operators Tθ(x) and moreover for
each x ∈ X, Index(Tv(x)) = (Index(Tv))(x). so the Index ûbers accordingly.
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Similarly for any ûxed x ∈ X (where Z = C(X)), the evaluation map at x yields a
homomorphism from A = Z ⊗ Aθ to Aθ which deûnes amorphism from

Z ⊗ Aθ , Z , id⊗τθ , αη)

to (Aθ ,C, τθ , αη(x)). _is morphism carries 1⊗ V to V . Since Index(T1⊗V) = η and
Index(TV) = η(x), we see that Index(T1⊗V)(x) = Index(TV) = Index(T1⊗V(x)).

10.4 C∗-algebra of the Integer Heisenberg Group

Recall that A = C∗(H) is the C∗-algebra of the Integer Heisenberg group viewed as
the universal C∗-algebra generated by three unitariesU ,V ,W satisfyingWU = UW ,
WV = VW , and UV = WVU . In this case Z = C∗(W) is the centre of A and also
equals C∗(C), the C∗-algebra generated by C = ⟨W⟩, the centre of H. _e trace
τ∶C∗(H) → C∗(C) on functions in l 1(H) ⊂ C∗(H) is just given by restriction to C.
Our Hilbert spaceH = l 2(H) is acted on by the le� regular representation of C∗(H).
_e restriction of this action to Z = C∗(C) on l 2(H) =⊕(n ,m)∈Z2 l 2(C ⋅ (V nUm)) is
unitarily equivalent to 1Z2 ⊗πC(C) on⊕(n ,m)∈Z2 l 2(C). In this labelling of the cosets,
multiplication byW acts the same on each coset: it increases the power ofW by one.
Multiplication by V acts as the identiûcation of l 2(C ⋅ (V nUm)) with

l 2(C ⋅ (V n+1Um)),

that is, it acts as apermutation of the copies of l 2(C)while acting on the basis elements
as the identity on l 2(C). However,multiplication byU not onlymaps l 2(C ⋅(V nUm))
to l 2(C ⋅ (V nUm+1)), but it also acts on the basis elements of l 2(C) by sending W k

toW k+1. In this representation we recall that themap τ∶C∗(H)→ C∗(C) is given by
τ(x) = 1Z2 ⊗ ExE , where E is the projection of l 2(H) onto l 2(C). _us we have an
action α∶R→ Aut(A) that ûxes Z = C∗(W) and leaves the Z-valued trace τ invariant.
A short calculation using _eorem 9.2 then gives us the nontrivial index

τ̂- Index(TV nUmW p) = (nθ +m) ∈ Z = C∗(W).

A Fredholm Theory Relative to a Z-valued Trace on a von Neumann
Algebra

We let N denote a semiûnite von Neumann algebra and let Z denote a unital von
Neumann subalgebra of the centre ofN. We suppose that we have a faithful, normal,
semiûnite Z-trace ϕ deûned on N+ as in Deûnition 6.1. We will show that using ϕ as
a dimension function we can adapt M. Breuer’s arguments in [Br1, Br2] to obtain a
Fredholm theory involving a Z-valued index with the usual algebraic and topological
stability properties, and in which the role of the compact operators is replaced by the
norm-closed ideal Kϕ

N
generated by the projections of ϕ-ûnite trace.

A projection E in N will be called ϕ-ûnite if ϕ(E) ∈ Z+. Since ϕ is faithful, it
is clear that any ϕ-ûnite projection is also ûnite in the Murray-von Neumann sense.
An operator T ∈ N is called ϕ-Fredholm if the projection NT on ker(T) is ϕ-ûnite
and there is a ϕ-ûnite projection E with range(1 − E) ⊆ range(T). Since ϕ-ûnite
projections are ûnite, every ϕ-Fredholm operator is Fredholm in Breuer’s sense. If T
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is ϕ-Fredholm, the ϕ-index of T is by deûnition

ϕ- Index(T) ∶= ϕ(NT) − ϕ(NT∗).
We shall see below that T∗ is also ϕ-Fredholm so that ϕ-Index(T) is a well-deûned
self-adjoint element of Z.

We observe, as we did in [PhR], that the ideal Kϕ
N
can also be described as the

closure of any of
● the span of the ϕ-ûnite projections in N,
● the span of the ϕ-ûnite elements in N,
● the algebra of elements T ∈ N whose range projection RT is ϕ-ûnite.
_is ideal is clearly contained inBreuer’s idealK generated by all the ûnite projections
in N.

Now the further remarks and proofs concerning how Breuer’s arguments carry
over to this situation follow verbatim from [PhR, Appendix B]. So we obtain the ana-
logues of Breuer’s theorems exactly as we did in [PhR].

_eorem A.1 Let ϕ be a faithful, normal, semiûnite Z-trace on the von Neumann
algebraN and letKϕ

N
be thenorm-closed ideal inN generated by the ϕ-ûnite projections.

(i) (_e Fredholm alternative) If T ∈Kϕ
N
, then (1 − T) is ϕ-Fredholm and

ϕ-Index(1 − T) = 0.

(ii) (Atkinson’s _eorem) An operator T ∈ N is ϕ-Fredholm if and only if T +K
ϕ
N

is
invertible in N/Kϕ

N
.

(iii) If S and T are ϕ-Fredholm, then so are S∗ and ST , and we have
ϕ-Index(S∗) = −(ϕ-Index(S)) and ϕ-Index(ST) = ϕ-Index(S) + ϕ-Index(T).

_e following corollary is proved exactly as [PhR, Corollary B2 ].

Corollary A.2 _e set Fϕ(N) of ϕ-Fredholm operators is open in the norm topology
ofN, and the index map T ↦ ϕ-Index(T) is locally constant on Fϕ(N).

_e following trace formula for the index goes back to Calderón for pseudodiòer-
ential operators. _e general Type I case is due to Hörmander [H] but Connes also
has an elegant proof [Co]. One of the authors generalised Hörmander’s proof to the
case of a factor of Type II∞ [Ph,_eorem A7]. It is this latter proof that goes through
essentially verbatim to our present setting, sowe refer the reader to [Ph, AppendixA]
for the proof.

_eorem A.3 Let ϕ be a faithful, normal, semiûnite Z-trace on the von Neumann
algebra N, and let S , T ∈ N so that R1 = 1 − ST and R2 = 1 − TS are both n-summable
for some integer n > 0. _en T is a ϕ-Fredholm operator and

ϕ-Index(T) = ϕ(Rn
1 ) − ϕ(Rn

2 ).

Corollary A.4 Let A be a unital C∗-algebra and let Z ⊆ Z(A) be a unital C∗-sub-
algebra of the centre of A. Let τ∶A → Z be a faithful, unital Z-trace which is invariant
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under a continuous action α ofR. _en for any a ∈ A−1∩dom(δ), the Toeplitz operator
Ta is Fredholm relative to the trace τ̂ on N = P(Ind(A⋊R)′′)P, and

τ̂- Index(Ta) = τ̂([Ta , Ta−1]).

Proof We let T = Ta and S = Ta−1 and ϕ = τ̂ in the statement of the previous
theorem. _en R1 = 1 − Ta−1Ta = Ta−1a − Ta−1Ta ∈ Nτ̂ by Corollary 9.4, and similarly
R2 ∈ Nτ̂ . _en by the previous theorem, Ta is τ̂-Fredholm and

τ̂- Index(Ta) = τ̂(R1) − τ̂(R2) = τ̂([Ta , Ta−1]).
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