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Twisted jets, motivic measures and

orbifold cohomology

Takehiko Yasuda

Abstract

We introduce the notion of twisted jets. For a Deligne–Mumford stack X of finite type
over C, a twisted ∞-jet on X is a representable morphism D → X such that D is a smooth
Deligne–Mumford stack with the coarse moduli space Spec C[[t]]. We study a motivic
measure on the space of the twisted ∞-jets on a smooth Deligne–Mumford stack. As
an application, we prove that two birational minimal models with Gorenstein quotient
singularities have the same orbifold cohomology as a Hodge structure.

1. Introduction

In 1995, Kontsevich introduced the theory of motivic integration [Kon95]. Since then, this remark-
able idea has become a powerful method for examining both the local and global structures of
varieties.

Let X be a variety over C. For n ∈ Z�0∪{∞}, an n-jet on X is a C[[t]]/(tn+1)-point of X, where
we have followed the convention (t∞) = (0). The n-jets of X naturally constitute a variety (or pro-
variety if n = ∞), denoted LnX. For m � n, the natural surjection C[[t]]/(tm+1) → C[[t]]/(tn+1)
induces the truncation morphism LmX → LnX.

Consider the case where X is smooth and of dimension d. Then LnX is a locally trivial affine
space bundle over X. (Whenever X is singular, it fails. For example, for n = 1, L1X is the tangent
space of X and hence not a locally trivial bundle over X.) The idea of Kontsevich is to give L∞X a
measure which takes values in the Grothendieck ring M of k-varieties which is localized by the class
L of the affine line. For each n ∈ Z�0, the family of constructible subsets of LnX is stable under
finite union or finite intersection. In other words, this family is a Boolean algebra. The map

{constructible subsets of LnX} → M

A �→ {A}L−nd

is a finite additive measure. For each m > n ∈ Z�0, because the truncation morphism πmn : LmX →
LnX is a locally trivial affine space bundle of relative dimension (m− n)d, the pull-back

(πmn )−1 : {constructible subsets of LnX} → {constructible subsets of LmX},
is considered to be an extension of the measure into a bigger Boolean algebra. The motivic measure
on L∞X is defined to be the limit of these extensions. Denef and Loeser generalized the motivic
measure to the case where X is singular [DL99].

The integral of a function with respect to the motivic measure produces a new invariant. In
particular, when X is smooth and the function is equal to one, then the integral, which is the
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Twisted jets, motivic measures and orbifold cohomology

full volume of L∞X, is the class of X in M. It reduces to the Hodge structure of the cohomology
of X if X is complete. By the transformation rule of Kontsevich, for any resolution Z → X,
it equals the integral of a function on L∞Z determined by the relative canonical divisor KZ/X .
This implies the following theorem of Kontsevich, which we will generalize.

Theorem 1.1. LetX andX ′ be smooth complete varieties. Suppose that there are proper birational
morphisms Z → X and Z → X ′ such that KZ/X = KZ/X′ . Then the rational cohomologies of X
and X ′ have the same Hodge structures.

The key point is that by the valuative criterion for properness, almost every ∞-jet on X lifts
to a unique ∞-jet on Z, and hence the map L∞Z → L∞X is bijective outside of measure-zero
subsets. Note that Batyrev first proved the equality of Betti numbers in the case where X and X ′

are Calabi–Yau varieties, with p-adic integration and the Weil conjecture [Bat99a].
Let X be a variety with Gorenstein canonical singularities. Denef and Loeser gave L∞X another

measure, called the motivic Gorenstein measure, denoted by µGor
X [DL02]. As in the case when X is

smooth, µGor
X (L∞X) is calculated by the relative canonical divisor KZ/X for a resolution Z → X.

This implies the following proposition.

Proposition 1.2. Let X and X ′ be varieties with Gorenstein canonical singularities. Suppose that
there are proper birational morphisms Z → X and Z → X ′ such that KZ/X = KZ/X′ . Then

µGor
X (L∞X) = µGor

X′ (L∞X ′)

Quotient singularities form one of the mildest classes of singularities.1 If X is a variety with
quotient singularities, then we can give X an orbifold structure. In the algebro-geometric context,
there is a smooth Deligne–Mumford stack X such that X is the coarse moduli space of X and the
automorphism group of general points of X is trivial. Although the natural morphism X → X is
proper and birational, not quite every ∞-jet on X lifts to a C[[t]]-point of X from lack of the strict
valuative criterion for properness. However, by twisting the source SpecC[[t]], we can lift almost
every ∞-jet on X to X. More precisely, a twisted ∞-jet on X is a representable morphism D → X

such that D is a smooth Deligne–Mumford stack with the coarse moduli space Spec C[[t]] and D

contains SpecC((t)) as an open substack. (The paper by Abramovich and Vistoli [AV02] was the
inspiration for this notion – they introduced the notion of a twisted stable map.) For almost every
∞-jet γ : SpecC[[t]] → X, there is a unique twisted ∞-jet D → X such that the induced morphism
SpecC[[t]] → X of the coarse moduli spaces is γ. If L∞X is the coarse moduli space of the twisted
∞-jets on X, then we define the motivic measure µX on L∞X in a similar fashion as on L∞X,
though it takes values in the Grothendieck ring of Hodge structures. We show the following close
relationship between µGor

X and µX.

Theorem 1.3. The following equality holds:

µGor
X =

∑
Y⊂I(X)

Ls(Y)µX.

For the precise meaning, see Theorem 3.15.

Chen and Ruan defined the orbifold cohomology for arbitrary orbifold [CR00]. It originates from
string theory on orbifolds [DHVW86]. Let X be a variety with Gorenstein quotient singularities
and X as defined earlier. The inertia stack of X, denoted I(X), is an object in the algebro-geometric
realm that corresponds to the twisted sector. We define the ith orbifold cohomology group of X by

H i
orb(X,Q) :=

⊕
Y⊂I(X)

H i−2s(Y)(Y,Q) ⊗ Q(−s(Y)),

1Here the words ‘quotient singularities’ mean ‘quotient singularities with respect to the étale topology’; see Defini-
tion 4.27.
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where Y runs over the connected components of I(X), Y is the coarse moduli space of Y and s(Y) is
an integer which is representation-theoretically determined.

Remark 1.4.

i) We guess but are not sure that our orbifold cohomology is equal to that of Chen and Ruan in
[CR00]. The point we wonder about is whether the cohomology groups of Y are isomorphic to
those of the analytic orbifold (V-manifold) associated to Y.

ii) The orbifold Hodge numbers (i.e. the Hodge numbers associated with H i
orb(X,Q)) are equal to

Batyrev’s stringy Hodge numbers [Bat99b]. This follows from Lemma 2.16 and Theorem 1.3.

Theorem 1.3 implies that when X is complete, the invariant µGor
X (L∞X) reduces to the alter-

nating sum of the orbifold cohomology groups of X. Hence we obtain the following theorem as
conjectured by Ruan [Rua00].

Theorem 1.5 (Corollary 3.16). Let X and X ′ be complete varieties with Gorenstein quotient
singularities. Suppose that there are proper birational morphisms Z → X and Z → X ′ such that
KZ/X = KZ/X′ . Then the orbifold cohomologies of X and X ′ have the same Hodge structures.

If X and X ′ are birational minimal models, that is, KX and K ′X are nef, then for a common
resolution Z of X and X ′, we have the equality KZ/X = KZ/X′ (see [KM98, Proposition 3.51]).
Hence X and X ′ have the same orbifold cohomology with a Hodge structure. Note that in the
case where X and X ′ are global quotients, Theorem 1.5 is due to Batyrev [Bat99b] and Denef and
Loeser [DL02]. After writing out the initial version of this paper, we learnt via e-mail from Ernesto
Lupercio that he and Mainak Poddar had independently proved Theorem 1.5.

1.1 Contents
The paper is organized as follows. In § 2, we review motivic measures. Section 3 is the central
part of the paper. Here we introduce the notion of a twisted jet and examine their space. Then we
prove the main result. In § 4, we review Deligne–Mumford stacks and prove some general results on
Deligne–Mumford stacks, which we need in § 3.

1.2 Conventions and notations
• In §§ 2 and 3, we work over C.
• For a Deligne–Mumford stack X, we denote by X the coarse moduli space of X.
• We denote by (Sch/S) (respectively (Sch/C)) the category of schemes over a scheme S

(respectively over C).
• For a C-scheme X (or more generally a stack over C) and a C-algebra R, we denote by X ⊗R

the productX×CSpecR. Then we denote by X[[t]] (respectively X[[t1/l]]) the scheme X⊗C[[t]]
(respectively X ⊗ C[[t1/l]]).

2. Motivic measures – a review

In this section, we would like to review the theory of motivic measures, developed by Kontsevich
[Kon95], Batyrev [Bat99b], Denef and Loeser [DL99, DL02]. It is also worth mentioning [Cra99]
which has a nice introduction and [Loo02, DL01] for surveys.

2.1 Completing Grothendieck rings
Let us first construct the ring in which motivic measures take values. Note that a variety means a
reduced scheme of finite type over C.
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Definition 2.1. We define the Grothendieck ring of varieties, denoted byK0(Var), to be the abelian
group generated by the isomorphism classes {X} of varieties with the relations {X} = {X\Y }+{Y }
if Y is a closed subvariety of X. The ring structure is defined by {X}{Y } = {X × Y }.

In the same fashion, we can define the Grothendieck ring of separated algebraic spaces of finite
types. In reality, it is the same as K0(Var), since every noetherian algebraic space decomposes into
the disjoint union of schemes [Knu71, Proposition 6.6].

Suppose that A is a constructible subset of a variety X, that is, A is a disjont union of the locally
closed subvarieties Ai ⊂ X. Then we put {A} :=

∑
i{Ai} ∈ K0(Var), which is independent of the

stratification choice. We denote the class of A1 by L and the localization K0(Var)[L−1] by M. For
m ∈ Z, let FmM be the subgroup of M generated by the elements {X}L−i with dimX − i � −m.
The collection (FmM)m∈Z is a descending filtration of M with

FmM · FnM ⊂ Fm+nM. (1)

Definition 2.2. We define the complete Grothendieck ring of varieties by

M̂ := lim←−M/FmM.

By condition (1), it has a natural ring structure.

Note that it is not known whether the natural map M → M̂ is injective.
Recall that a Hodge structure is a finite-dimensional Q-vector space H with a bigrading H ⊗

C =
⊕

p,q∈ZH
p,q such that Hp,q is the complex conjugate of Hq,p and each weight summand⊕

p+q=mH
p,q is defined over Q. The category HS of Hodge structures is an abelian category with

a tensor product.
Definition 2.3. We define the Grothendiek ring of Hodge structures, denoted K0(HS), to be the
abelian group that consists of the formal differences {H} − {H ′}, where {H} and {H ′} are iso-
morphism classes of Hodge structures. The addition and the multiplication come from ⊕ and ⊗,
respectively.

A mixed Hodge structure is a finite-dimensional Q-vector space H with increasing filtrationW•H,
called the weight filtration, such that the associated graded GrW• H underlies a Hodge structure
having GrWm H as a weight m summand. For a mixed Hodge structure H, we denote by {H} the
element {GrW• H} of K0(HS).

The cohomology groups H i
c(X,Q) with compact supports of a variety X has a natural mixed

Hodge structure.
Definition 2.4. We define the Hodge characteristic χh(X) of X by

χh(X) :=
∑
i

(−1)i{H i
c(X,Q)} ∈ K0(HS).

Consider the following map:

(Varieties) → K0(HS), X �→ χh(X).

It factors through the map
(Varieties) → M, X �→ {X},

because the following hold:

• χh(X × Y ) = χh(X)χh(Y );
• χh(X) = χh(X \ Y ) + χh(Y ) if Y ⊂ X is closed;
• the Hodge characteristic of the affine line, χh(A1) = {H2

c (A
1,Q)}, is invertible.
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We also denote by χh the induced homomorphism M → K0(HS).
For m ∈ Z, let FmK0(HS) be the subgroup generated by the elements {H} such that the

maximum weight of H is less than or equal to −m.

Definition 2.5. We define the complete Grothendieck ring of Hodge structures, denoted by K̂0(HS),
as follows:

K̂0(HS) := lim←−K0(HS)/FmK0(HS).

We can see that the natural map K0(HS) → K̂0(HS) is injective. As the maximal weight of
H i(X,Q) does not exceed 2 dimX, χh extends to χh : M̂ → K̂0(HS).

2.2 Jets on schemes
For the sake of convenience, we denote by (t∞) the ideal (0) of the power series ring C[[t]].
For n ∈ Z�0 ∪ {∞}, we denote by Dn the affine scheme SpecC[[t]]/(tn+1).

Definition 2.6. Let X be a scheme. For n ∈ Z�0 ∪ {∞}, we define the scheme of n-jets2 of X,
denoted LnX, to be the scheme representing the functor

(Sch/C) → (Sets)
U �→ Hom(Sch/C)(U ×Dn,X).

Greenberg [Gre61] proved the representability of the functor for n < ∞. For m,n ∈ Z�0 with
m < n, a canonical closed immersion Dm → Dn induces a canonical projection LnX → LmX. Since
all these projections are affine morphisms, the projective limit L∞X = lim←− LnX exists in the
category of schemes.

If X is of finite type, then, for n <∞, so is LnX. If X is smooth and of pure dimension d, then,
for each n ∈ Z�0, the natural projection Ln+1X → LnX is a Zariski locally trivial Ad-bundle. If
f : Y → X is a morphism of schemes, then for each n, there is a canonical morphism fn : LnY →
LnX.

2.3 Motivic measure
Let X be a scheme of pure dimension d. By abuse of notation, we also denote the set of points of
L∞X by L∞X. Let πn : L∞X → LnX be the canonical projection.

Definition 2.7. A subset A of L∞X is stable at level n if we have:

i) πn(A) is a constructible subset in LnX;
ii) A = π−1

n πn(A);
iii) for any m � n, the projection πm+1(A) → πm(A) is a piecewise trivial Ad-bundle.

(A morphism f : Y → X of schemes is called a piecewise trivial Ad-bundle if there is a stratification
X =

∐
Xi such that f |f−1(Xi) : f−1(Xi) → Xi is isomorphic to Xi × Ad → Xi for each i.) A subset

A of L∞X is stable if it is stable at level n for some n ∈ Z�0.

The stable subsets of L∞X constitute a Boolean algebra. If A ⊂ L∞X is a stable subset, then
{πm(A)}L−md ∈ M̂ is constant for m	 0. We denote it3 by µX(A). The map

µX : {stable subsets of L∞X} → M̂

A �→ µX(A)

is a finite additive measure. Let us extend this measure to a bigger family of subsets of L∞X.

2In [DL99], an ∞-jet is called an arc. As it is more convenient, we prefer our terminology.
3This differs from the definition in [Cra99], [Bat99b] and [DL99] by a factor Ld.
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Definition 2.8. A subsetA ⊂ L∞X is called measurable if, for everym ∈ Z, there are stable subsets
Am ⊂ L∞X and Ci ⊂ L∞X, i ∈ Z>0 such that the symmetric difference (A ∪ Am) \ (A ∩ Am) is
contained in ∪iCi and we have µX(Ci) ∈ FmM for all i, and limi→∞ µX(Ci) = 0 in M̂.

The measurable subsets of L∞X also constitute a Boolean algebra. Suppose that A ⊂ L∞X is
measurable and Am ⊂ L∞X, m ∈ Z are stable subsets as in Definition 2.8. We put µX(A) :=
limm→∞ µX(Am). It is independent of the choice of Am, see [Loo02, Proposition 2.2], [DL02,
Theorem A.6]. The map

µX : {measurable subsets of L∞X} → M̂

A �→ µX(A)

is a finite additive measure.

Definition 2.9. We call this the motivic measure on L∞X.

Definition 2.10. Let A ⊂ L∞X be a measurable subset and ν : A→ Z ∪ {∞} a function. We say
that ν is a measurable function if the fibers are measurable and µX(ν−1(∞)) = 0. For a measurable
function ν, we formally define the motivic integration of Lν by∫

A
Lν dµX :=

∑
n∈Z

µX(ν−1(n))Ln.

We say that Lν is integrable if this series converges in M̂.

Example 2.11. Let I be an ideal sheaf on X. A point γ ∈ L∞X corresponds to a morphism Specκ→
L∞X for the residue field κ of γ and hence to a morphism γ′ : Specκ[[t]] → X. The function

ord I : L∞X → Z�0 ∪ {∞}
γ �→ n if (γ′)−1I = (tn)

is a measurable function by the following lemma.

Lemma 2.12 [Loo02, Proposition 3.1], [DL99, Lemma 4.4]. For a subvariety Y ⊂ X of positive
codimension, the subset L∞Y ⊂ L∞X is of measure zero.

Example 2.13 [Bat99b, Theorem 3.6], [Cra99, Theorem 2.15]. Let X be a smooth variety of dimen-
sion d and E =

∑r
i=1 diEi an effective divisor on X with simple normal crossing support. For a

subset J ⊂ {1, . . . , r} we define

E◦J :=
⋂
i∈J

Ei

∖ ⋃
i∈{1,...,r}\J

Ei.

If IE is the ideal sheaf associated to E, then we have the following formula:∫
L∞X

L− ord IE dµX =
∑

J⊂{1,...,r}
{E◦J}

∏
i∈J

L − 1
Ldi+1 − 1

.

2.4 The transformation rule
Let X and Y be varieties of pure dimension d and f : Y [[t]] → X[[t]] a morphism over D∞. We define
the morphisms fn : LnY → LnX as follows. For a scheme U , a U -point γ of LnY is a morphism
γ′ : Dn × U → Y . If ψ is the composition of natural morphisms Dn × U

pr−→ Dn → D∞, then we
define fn(γ) to be the U -point of LnX corresponding to the composition

Dn × U
(γ′,ψ)−−−→ Y ×D∞ = Y [[t]]

f−→ X[[t]] → X.
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Assume that Y is smooth. We define the jacobian ideal sheaf Jf of f to be the zeroth Fitting
ideal sheaf of ΩY [[t]]/X[[t]] (see [EH99, V.1.3] or [Eis95, 20.2]). This is the ideal sheaf such that
JfΩd

Y [[t]]/D∞ = f∗(Ωd
X[[t]]/D∞/(tors)) as subsheaves of Ωd

Y [[t]]/D∞, where (tors) is the torsion. The

following, called the transformation rule, is the most basic theorem in the theory.

Theorem 2.14. [DL02, Theorem 1.16], [Loo02, Theorem 3.2]. Let A be a measurable set in L∞Y
and ν : f∞(A) → Z ∪ {∞} a measurable function. Suppose that f∞|A is injective. Then we have
the following equality: ∫

f∞(A)
Lν dµX =

∫
A

Lν◦f∞−ord Jf dµY .

We will generalize this later (Theorem 3.18).

2.5 The motivic Gorenstein measure
Let X be a variety with 1-Gorenstein and canonical singularities, that is, the canonical sheaf ωX
is invertible and all discrepancies are greater than or equal to zero (see [KMM87, §§ 0–2]). Then
there exists a natural morphism Ωd

X → ωX . The kernel of this morphism is the torsion. We define
an ideal sheaf IX on X by the equation

IXωX = Im(Ωd
X → ωX).

Then LordIX is integrable by Example 2.13 and Lemma 2.16.

Definition 2.15. We define the motivic Gorenstein measure µGor
X on L∞X as follows:

µGor
X : {measurable subsets of L∞X} → M

A �→
∫
A

LordIX dµX .

Lemma 2.16. Let X and X ′ be complete varieties with 1-Gorenstein canonical singularities.

i) Let A be a measurable subset of L∞X and f : Z → X be a resolution. Then∫
A

LordIX dµX =
∫
f−1∞ (A)

L− ord KdµZ ,

where K is the ideal sheaf associated with KZ/X .

ii) Suppose that there exist proper birational morphisms f : Z → X and g : Z → X ′ with
KZ/X = KZ/X′ . Then we have µGor

X (L∞X) = µGor
X′ (L∞X ′).

Proof. i) By Theorem 2.14, we have∫
A

Lord IX dµX =
∫
f−1∞ (A)

Lord IX◦f∞−ordJfµZ .

We have to show

ord IX ◦ f∞ − ord Jf = − ord K. (2)

Pulling back IXωX ∼= Ωd
X/(tors), we have (f−1IX)(f∗ωX) ∼= JfΩd

Z . On the other hand, we have
f∗ωX ∼= KωZ ∼= KΩd

Z . Hence (f−1IX) · K = Jf . This shows equation (2).
ii) is a direct consequence of item i.

Remark 2.17. The invariant µGor
X (L∞X) has been already introduced in [Kon95] using a resolution of

singularities. Denef and Loeser constructed the invariant more directly with the motivic Gorenstein
measure [DL02].
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Suppose X is complete. The question is whether χh ◦ µGor
X (L∞X) is the alternating sum of a

kind of cohomology groups, as in the case where X is smooth. It is known that when X is a global
quotient, the answer is yes [Bat99b, DL02]. Our result, Theorem 3.15, states that when X has only
quotient singularities, the answer is also yes.

3. Twisted jets

In this section, we deal with the theory of Deligne–Mumford stacks. See § 4 for the generalities
about Deligne–Mumford stacks.

3.1 Non-twisted jets on stacks

The following is a direct generalization of the notion of jets on schemes.

Definition 3.1. Let X be a Deligne–Mumford stack. For n ∈ Z�0 ∪ {∞}, we define the stack of
non-twisted n-jets of X, denoted by LnX, as follows. An object of LnX over U ∈ (Sch/C) is an
object of X over U ×Dn. For a morphism ϕ : V → U in (Sch/C), a morphism in LnX over ϕ is a
morphism in X over ϕ× idDn .

Lemma 3.2. For every n ∈ Z�0 ∪ {∞}, LnX is a stack.

Proof. It is clear that they satisfy the axioms of a category fibered in groupoids. If (Ui → U)i is an
étale covering in (Sch/C), then so is (Ui×Dn → U ×Dn)i. As a result, they also satisfy the axioms
of a stack.

Let f : Y → X be a morphism of schemes and Z ⊂ Y a closed subscheme with an ideal sheaf a.
We say that f is Z-étale if for any ring A and any nilpotent ideal J ⊂ A, and for any commutative
diagram of solid arrows

SpecA/J
ϕ ��

��

Y

��
SpecA ��

���
�

�
�

�
X

such that ϕ−1a is nilpotent, there is a unique broken arrow which makes the whole diagram com-
mutative. Z-étaleness is also defined for a representable morphism of stacks in the evident fashion.

Lemma 3.3.

i) Let M be a scheme and N ⊂M a closed subscheme. We denote by (LnM)N the subscheme of
LnM parametrizing the jets with the base point in N . Let p : M → X be an N -étale morphism.
Then, for every n ∈ Z�0 ∪ {∞}, we have a natural isomorphism as follows:

(LnM)N ∼= LnX ×XN.

ii) For every n ∈ Z�0 ∪ {∞}, LnX is a Deligne–Mumford stack.

Proof. i) Let us first show that LnX×XN is an algebraic space. Let π : LnX → X be the canonical
projection. An object of LnX ×X N is a triple (γ, f, α) where γ : U × Dn → X, f : U → N and
α : π(γ) → p(f) is a morphism in X over U . By definition, an automorphism of (γ, f, α) is an
automorphism θ of γ such that α ◦ π(θ) = p(idf ) ◦ α. Hence θ must be the identity. We have thus
proved that the automorphism of every object of LnX×XN is trivial and hence that LnX×XN is
an algebraic space (see [LM00, Corollaire 8.1.1]).
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The diagram of solid arrows

U
f ��

� �

��

N
� � �� M

p

��
U ×Dn γ

��

τ

����������
X

is commutative. We can see that there is a unique broken arrow τ in the diagram. If n <∞, since p is
N -étale, this is trivial from the definition. If n = ∞, since D∞ is the direct limit of Dn, 0 � n <∞,
this follows from the case n <∞. Sending (γ, f, α) to τ defines a morphism Φ : LnX×XM → LnM .

The inverse of the morphism Φ is given by (pn, πM ) : (LnM)N → LnX×XN where pn : LnM →
LnX and πM : (LnM)N → N = (L0M)N are the natural morphisms. We have thus proved item i.

ii) Now suppose that p is étale and surjective. Consider the following cartesian diagram:

LnM

�

��

πM

��

LnX

π

��
M p

�� X

As πM is representable and p is étale and surjective, π is representable (see [LM00, Lemme 4.3.3]).
This completes the proof (see [LM00, Proposition 4.5]).

3.2 Twisted jets
For a positive integer l, we put ζl := exp(2π

√−1/l). Let µl = 〈ζl〉 be the group of the lth roots of 1.
µl acts onDn by ζl : t �→ ζlt. We denote by Dl

n the quotient stack [Dm/µl] withm = nl. The stack Dl
n

has the canonical atlas Dm → Dl
n and the closed point Spec C → Dl

n. We fix a morphism Dl
n → Dn

such that Dn is the coarse moduli space of Dl
n for this morphism and such that the composition

Dm → Dl
n → Dn

is given by the ring homomorphism C[[t]]/(tn+1) → C[[t]]/(tm+1), t �→ tl.

Definition 3.4. Let X be a Deligne–Mumford stack. A twisted n-jet of order l on X is a repre-
sentable morphism Dl

n ⊗ Ω → X for an algebraically closed field Ω ⊃ C.

For a Deligne–Mumford stack X, the inertia stack of X, denoted by I(X), is the stack parametriz-
ing the pairs (ξ, α) such that ξ ∈ ob X and α ∈ Aut(ξ). For details on inertia stacks, see § 4.3. There
is a natural forgetting morphism I(X) → X. For l ∈ Z>0, let I l(X) ⊂ I(X) denote the substack
parametrizing the pairs (ξ, α) with ord(α) = l.

Let γ : Dl
n ⊗ Ω → X be a twisted n-jet of order l on X. The canonical morphism

γ̃ : Dm ⊗ Ω → Dl
n ⊗ Ω → X

is considered to be an Ω-point of LmX and the canonical morphism

γ : SpecΩ → Dm ⊗ Ω → Dl
n ⊗ Ω → X

is considered to be an Ω-point of X. Since the automorphism group of the closed point of Dl
n ⊗ Ω

is identified with µl, γ induces an injection µl → Aut(γ). If b ∈ Aut(γ) is the image of ζl, then the
pair (γ, b) is regarded as an Ω-point of I l(X) and the triple (γ̃, (γ, b), idγ) is regarded as an Ω-point
of LmX ×X I

l(X). We define a map Ψ by

Ψ : {twisted n-jets of order l on X} → |LmX ×X I
l(X)|

γ �→ (γ̃, (γ, b), idγ).
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Lemma 3.5. The subset Im(Ψ) ⊂ |LmX ×X I
l(X)| is closed for Zariski topology.

Proof. Fix an atlas p : M → X with M separated.

We will first characterize the points in Im(Ψ). On account of the arguments on groupoid spaces
in § 4.1, we can see that the following points are equivalent.

i) To give a commutative diagram

Dm ⊗ Ω

��

η �� M

p

��
Dl
n ⊗ Ω γ

�� X

such that γ is a twisted n-jet of order l.

ii) To give a morphism of groupoid spaces

(Dm ⊗ Ω) × µl
δ′ ��

pr

��
µl−action

��

M ×XM

pr1

��
pr2

��
Dm ⊗ Ω η

�� M

such that the composition

SpecΩ ↪→ (Dm ⊗ Ω) × {ζl} ↪→ (Dm ⊗ Ω) × µl
δ′−→M ×XM

corresponds to an automorphism of order l of the following Ω-point of X:

SpecΩ ↪→ Dm ⊗ Ω
η−→M

p−→ X.

iii) To give a morphism δ : Dm⊗Ω →M ×XM such that pr1 ◦δ ◦ ζl = pr2 ◦δ and the composition

SpecΩ ↪→ Dm ⊗ Ω δ−→M ×XM

corresponds to an automorphism of order l of the following Ω-point of X:

SpecΩ ↪→ Dm ⊗ Ω δ−→M ×XM
pr1−−→M

p−→ X.

Any point of |LmX ×X I
l(X)| is represented by the triple (ψ, (ψ, b), idψ) such that ψ is an Ω-point

of LmX with an algebraically closed field Ω, ψ is an Ω-point of X corresponding to the composition

SpecΩ ↪→ Dm ⊗ Ω
ψ−→ X

and b is an automorphism of ψ. Then the equivalence above implies that:

(ψ, (ψ, b), idψ) is in Im(Ψ) if and only if for a lift η : Dm ⊗ Ω → M of ψ, there exists
a morphism δ : Dm ⊗ Ω → M ×XM such that pr1 ◦δ = η and pr2 ◦δ = η ◦ ζl and the
composition SpecΩ → Dm ⊗ Ω δ−→M ×XM corresponds to b.

(♣)

Let ξ and σ be points of LmX×XI
l(X). Suppose that σ is in Im(Ψ) and ξ is a specialization of σ.

It suffices to show that ξ is in Im(Ψ). By [LM00, Proposition 7.2.1], there is a complete discrete
valuation ring R with an algebraically closed residue field κ and a quotient field K such that there
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is a commutative diagram as follows:

SpecK

��

σ

�������������

SpecR θ �� LmX ×X I
l(X)

Specκ

��

ξ

�������������

(Here by abusing the notation, the arrows σ and ξ in the diagram are representatives of the
points σ and ξ, respectively.) If θ corresponds to a triple (λR, (λR, bR), idλR

), then, the pull-backs
(λK , (λK , bK), idλK

) and (λκ, (λκ, bκ), idλκ
) correspond to σ and ξ, respectively. By extending R,

we can assume that λR : SpecR → X lifts to νR : SpecR → M . As p is étale, λR : Dm ⊗ R → X

uniquely lifts to ν̃ : Dm ⊗R→M such that the diagram

SpecR� �

��

ν �� M

��
Dm ⊗R

λR

��

ν̃

�����������
X

is commutative. Let K be the algebraic closure of K, let η be the composition Dm⊗K → Dm⊗R ν̃−→
X and let b′R : SpecR → M ×X M be the lift of νR which corresponds to bR. From (♣) and the
previous assumption, there is a morphism δ : Dm ⊗ K → M ×X M such that pr1 ◦δ = η and
pr2 ◦δ = η ◦ ζl, and the composition

SpecK ↪→ Dm ⊗K
δ−→M ×XM

equals the composition

SpecK → SpecR
b′R−→M ×XM.

We can replace K with a finite extension K ′ of K. Moreover, replacing R with its normalization in
K ′, we can assume that K ′ = K and that b′R and δ induce the same morphism SpecK →M ×XM .

SpecK ��
� �

��

SpecR
b′R ��

� �

��

M ×XM

�� ��
Dm ⊗K ��

δ

����������������������
Dm ⊗R

ν̃
�� M

Consider the unique morphism τ : Dm ⊗ R → M ×X M such that pr1 ◦τ = ν̃. Then the two
morphisms, pr2 ◦τ and τ ◦ ζl, are the same morphism because of the separatedness of M . Then the
composition Dm ⊗ κ → Dm ⊗R

τ−→ M ×XM satisfies the condition in (♣). Hence ξ ∈ Im(Ψ). The
proof is now complete.

Definition 3.6. We define the stack of twisted n-jets of order l on X, denoted by LlnX, to be the
reduced closed substack of LmX×X I

l(X) with support Im(Ψ). We define the stack of twisted n-jets
on X, denoted by LnX, to be the disjoint sum

∐
l�0 LlnX. In particular, L0X is the inertia stack

I(X).

If we set

l0 := max{l | l = ord(α), for some ξ ∈ ob X and for some α ∈ Aut(ξ)},
then for any l > l0, LlnX = ∅. So the disjoint sum is indeed a finite sum.
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3.3 The formal neighborhood of I(X) and its canonical automorphism
Let X be a smooth Deligne–Mumford stack with x : Speck → X its closed point. Then the tangent
space TxX is defined to be TvM for an atlas M → X and a lift v : Speck → X of x, uniquely
determined up to unique isomorphism. Then Aut(x) naturally acts on TxX. We now globalize it.

Let Y be a connected component of the inertia stack I(X) with F : Y → X being the forgetting
map. Let X0 be the image of Y by F . The completion ÔX of OX along X0 is considered to be an
OX0

-algebra. Then we define a coherent sheaf A on Y to be the pull-back of ÔX by F : Y → X0.

Definition 3.7. We define N := SpecA and call it the formal neighborhood of Y.

If we set X̂ := Spec ÔX where we consider ÔX to be an OX-algebra, there is a natural morphism
X̂ → X which is X0-étale. Since Y → X0 is unramified and flat, it is étale. Hence the natural
morphism N → X̂ is also étale and the composition N → X̂ → X is Y-étale.

Let U and V be varieties. Let ξ : U → X be an étale morphism, ν : V → U a morphism and α
an automorphism of ξ ◦ ν. Suppose that (ξ ◦ ν, α) : V → Y is étale.

V

(ξ◦ν,α)
��

ν �� U

ξ
��

Y �� X

Then we obtain the commutative diagram

V
ν ��

ν

��

U

ξ
��

α

		 ��
��

��
�

��
��

��
�

U
ξ

�� X

where ‘⇒’ denotes a two-morphism. Let α̃ : V → U ×XU be the corresponding morphism.

U ×XU

pr1
��

pr2
��

V ν
��

α̃


���������
U

If ÔU is the completion of OU along ν(V ), then AV = ν∗ÔU . We have a canonical automorphism of
AV as follows:

AV
pr∗2−−→ α̃∗ÔU×XU

(pr∗1)−1

−−−−−→ AV

and hence a canonical automorphism of A and N. Now this automorphism of N is considered to be
a globalization of the action on TxX mentioned above.

3.4 Shift number and orbifold cohomology
Suppose that Y is contained in I l(X) for an integer l � 1. Let (x, α) be a closed point of Y where x
is a closed point of X and α ∈ Aut(x). Then α acts on the tangent space TxX. For a suitable basis,
this automorphism is given by the diagonal matrix

diag(ζa1l , . . . , ζ
ad
l )

with 1 � aj � l and d = dim X.

Definition 3.8. We define the shift number of Y by

s(Y) := dim X − 1
l

d∑
j=1

aj =
1
l

d∑
j=1

(l − aj).
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This is determined by the rank of the eigenbundles of N for the canonical action. Hence it
depends only on Y.

Suppose that the coarse moduli space X = X is a variety with Gorenstein quotient singularities
and X has no reflections. Then the matrix diag(ζa1l , . . . , ζ

ad
l ) is in SLd(C) (see [Wat74]). Hence s(Y)

is an integer.
Now, let us define the orbifold cohomology.

Definition 3.9. Assume X is complete. Then we define the ith orbifold cohomology group with a
Hodge structure as follows:

H i
orb(X,Q) :=

⊕
Y

H i−2s(Y)(Y,Q) ⊗ Q(−s(Y)),

where Y runs over the connected components of I(X) and Q(−s(Y)) is a Tate twist Q(−1)⊗s(Y).

Since the natural morphism Y → X is quasi-finite, Y is a scheme (see [LM00, Théorème A.2]).
Because of this and Corollary 4.23, Y is a complete variety with quotient singularities. Therefore the
rational cohomology groups of Y have pure Hodge structures. For the projective case see [Dan78,
Corollary 14.4]. For the general case, it follows from the following two facts: one is that the inter-
section cohomology of every complete variety has pure Hodge structures [Sai90], the other is that
the rational cohomology of a variety with quotient singularities equals the intersection cohomology.

3.5 The motivic measure on twisted ∞-jets
Let X be a smooth Deligne–Mumford stack of pure dimension d. By abusing the notation, we
also denote by L∞X the set of points |L∞X| = |L∞X|. We denote by πn the natural morphism
L∞X → LnX.

Definition 3.10. A subset A of L∞X is stable at level n if we have:

i) πn(A) is a constructible subset in LnX;
ii) A = π−1

n πn(A).

A subset A ⊂ L∞X is stable if it is stable at level n for some n ∈ Z�0.

We define the notion of the measurable subset similarly. Then we define motivic measure µX on
L∞X by

µX(A) := L−ndχh(πn(A)) ∈ K̂0(HS), n	 0,
where L = {Q(−1)} = χh(A1). It is well defined by the following proposition.

Proposition 3.11. Let n ∈ Z�0, let B ⊂ LnX be a constructible subset and let C be the inverse
image of B by the natural morphism Ln+1X → LnX. Then we have the equality χh(C) = Ldχh(B).

Proof. Let Y be a connected component of I l(X)(= Ll0X) and put (LnX)Y := LnX ×I(X) Y. Let
γ = (γ̃, (γ, b), idγ) ∈ (LnX)Y ⊂ LmX ×X Y be an Ω-point. Then we have the following commutative
diagram of solid arrows:

D0 ⊗ Ω
(γ,b) ��

� �

��

Y �� N

��
Dm ⊗ Ω

γ̃
��

σ

����������
X

Since N → X is Y-étale, there is a unique broken arrow σ that fits into the diagram. Sending γ to
σ determines a closed immersion

ι : (LnX)Y ↪→ LmN.
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Let g be the canonical automorphism of N. In view of the definition of N and ♣ in the proof of
Lemma 3.5, we see that for σ ∈ LmN, σ ∈ Im(ι) if and only if σ ◦ ζl = g ◦ σ. From Lemma 3.12,
there exists an atlas h : V → Y such that NV := N ×Y V ∼= V ⊗ C[[v1, . . . , vc]] (c = dimX − dim Y),
and the pull-back of g is given by diag(ζa1l , . . . , ζ

ac
l ), 1 � ai � l. So for an m-jet δ on NV , h ◦ δ is in

Im(ι) if and only if the image of δ by Lm(NV ) → LmV is ζl-invariant and δ∗(vi) is of the following
form:

r0t
ai + r1t

ai+l + r2t
ai+2l + · · · .

Therefore, we have (LnX)Y×Y V ∼= LnV × Anc and the projection (Ln+1X)Y×Y V → (LnX)Y ×Y V
is a Zariski locally trivial Ad-bundle.

We may assume that a finite group, say G, acts on each connected component V ′ of V , V ′ → Y

is G-invariant and the induced morphism V ′/G → Y is étale (see Lemma 4.26). Then we have
(LnX)Y ×Y (V ′/G) ∼= ((LnV ′)/G) × Anc. Therefore, from Lemma 3.14, to prove the proposition,
it suffices to show that there is a stratification of (LnV ′)/G such that the natural morphism
(Ln+1V

′)/G → (LnV ′)/G is, over each stratum, an analytically locally trivial fibration of the
quotient of an affine space by a linear finite group action.

Let H be a subgroup of G and W ⊂ V ′ a connected component of the locus of the points with
stabilizer H. Let w ∈ W be a close point. As is well known, there is a representation ρ : H ⊂
GLdim Y(C) which describes the H-action on an analytic neighborhood of w. Let (LnV )w ⊂ LnV
be the subset of the jets which maps the only point of Dn to w. Then the induced H-action on
(LnV )w ∼= Amdim Y is given by ρ⊕m. Therefore (Ln+1V

′)W /H → (LnV ′)W /H is an analytically
locally trivial fibration of AdimY/H. Let G′ ⊂ G be the subgroup of the elements keeping W stable.
Then H is a normal subgroup of G′. It is easy to see that the image of (LnV ′)W /H in (LnV ′)/G is
naturally isomorphic to ((LnV ′)W/H)/(G′/H). SinceG′/H freely acts on (LnV ′)W /H, the assertion
follows.

Lemma 3.12. Let G be a finite group, V a smooth G-variety and W a smooth closed subvariety
consisting of G-invariant points.

i) Assume that V and W are affine, say V = SpecR and W = SpecR/p. Moreover assume that
p is generated by c = codim(W,V ) elements. Then the completion of V along W is isomorphic
as G-schemes to Spec(R/p)[[x1, . . . , xc]], G ⊂ GLc(R/p).

ii) Assume that G is a finite cyclic group. Then there is an affine open covering ∪Vi of V such
that for every i, if we write Vi = SpecR and W ∩ Vi = SpecR/p, the completion of Vi along
W ∩ Vi is isomorphic as G-schemes to Spec(R/p)[[x1, . . . , xc]], G ⊂ GLc(C).

Proof. i) We denote by R̂ the completion of R with respect to an ideal p and by R̂p the completion
of the local ring Rp with respect to the maximal ideal. Let K be the quotient field of R/p and
fi generators of p. It is well known that there is an isomorphism R̂p → K[[x1, . . . , xc]] sending
fi to xi. We have a natural injection R̂ → R̂p ∼= K[[x1, . . . , xc]]. Clearly the image contains the
subring (R/p)[[x1, . . . , xc]]. Consider the injection ι : (R/p)[[x1, . . . , xc]] → R̂. Since the induced
map R/p → R̂/p̂ is the identity and the images fi of xi generate p̂, ι is a surjection and hence an
isomorphism (see [Eis95, Theorem 7.16.]).

Consider the induced G-action on R̂ = (R/p)[[x1, . . . , xc]]. For g ∈ G, write g(xi) =
∑
aijxj +

(higher terms), aij ∈ R/p. Denote by ḡ the endomorphism of R̂ associated to the invertible matrix
(aij). Working in characteristic zero, we can isomorphically replace xi with x′i =

∑
g∈G ḡ

−1g(xi).
We find that, with respect to the new coordinates, the G-action is linear.

ii) In the previous situation, Spec R̂ is naturally isomorphic to the completion of the normal
bundle NW/V along the zero section. Here let us assume G is a cyclic group with generator g. Then
NW/V decomposes to eigenbundles. On each eigenbundle, the g-action is uniquely represented by a
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scalar matrix aI where I is the identity matrix and a ∈ C. Therefore, by shrinking V to an open
subset where the eigenbundles are free, we conclude that the G-actions on NW/V and Spec R̂ are
realizable in C.

Remark 3.13. The author guesses that even in the case of a general finite group, the action on
NW/V is étale locally realizable in C. From facts on splitting fields of finite groups (see [CR88]),
this is true at least over the generic point of W .

Lemma 3.14. Let T and S be varieties and f : T → S an analytically locally trivial fibration of
Ad/G for a finite group G ⊂ GLd(C). Then χh(T ) = χh(S)Ld.

Proof. Since the fiber is a quotient of an affine space, the higher direct images of QT vanishes

Rif∗QT
∼=

{
QS (i = 0),
0 (i > 0).

Hence the spectral sequence is degenerate and it follows that H i(T,Q) ∼= H i(S,Q) for every i.
Taking a stratification of S, we may assume that S is smooth. Since S and T have at most

quotient singularities (in the analytic sense), by Poincaré duality we conclude that HdimT−i
c (T,Q) ∼=

HdimS−i
c (S,Q).
By regarding the sheaves as mixed Hodge modules, as studied by Saito [Sai90] (see also [Sai89]),

we can regard these isomorphisms of cohomology groups as those of mixed Hodge structures. This
implies the assertion.

3.6 Main theorem
Let X be a variety with Gorenstein quotient singularities. Then X has canonical singularities. Let
X be a smooth Deligne–Mumford stack without reflections such that X is the coarse moduli space
of X. We denote by λ the canonical morphism X → X. If γ : Dl

n ⊗ Ω → X is a twisted n-jet on X

of order l, then it induces a morphism γ′ : Dn ⊗Ω → X of the coarse moduli spaces. We define the
map λ(n) : LnX → LnX by γ �→ γ′. The following theorem is our main result.

Theorem 3.15. Let B ⊂ L∞X be a measurable subset and put A := λ(∞)(B). Then we have the

following equation in K̂0(HS):

χhµ
Gor
X (A) =

∑
Y⊂I(X)

Ls(Y)µX(π−1
0 (Y) ∩B),

where Y runs over the connected components of I(X).

The proof is postponed until the end of the section.

Corollary 3.16. Let X and X ′ be complete varieties with Gorenstein quotient singularities. Sup-
pose that there are proper birational morphisms Z → X and Z → X ′ such that KZ/X = KZ/X′ .
Then the orbifold cohomology groups of X and X ′ have the same Hodge structure.

Proof. By Theorem 3.15 and Proposition 3.11, we have

χhµ
Gor
X (L∞X) =

∑
Y⊂I(X)

Ls(Y)χh(Y)

=
∑
i

(−1)i{H i
orb(X,Q)}.

From Lemma 2.16, we have
∑

i(−1)i{H i
orb(X,Q)} =

∑
i(−1)i{H i

orb(X
′,Q)}. Since H i

orb(X,Q) and
H i

orb(X
′,Q) have a pure Hodge structure of weight i, {H i

orb(X,Q)} = {H i
orb(X

′,Q)} for every i.
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Lemma 3.17. Let Xsing denote the singular locus of X with a reduced subscheme structure.

i) The subset λ−1
(∞)(L∞(Xsing)) of L∞X is of measure zero.

ii) The map λ(∞) is bijective over L∞X \ L∞(Xsing).

Proof. i) It suffices to show that for every n, πn(L∞X \ λ−1
(∞)(L∞(Xsing))) = LnX. But this is clear

by the local description of LnX in the proof of Proposition 3.11.
ii) Surjectivity. Let η : SpecΩ[[t]] → X be an Ω-point of L∞X \L∞(Xsing) with an algebraically

closed field Ω. We define D to be the normalization of the fiber product X ×X SpecΩ[[t]] (see
Definition 4.13). Then the Deligne–Mumford stack D contains the scheme SpecΩ((t)) as an open
substack. Therefore, the coarse moduli space D of D contains SpecΩ((t)) as an open subscheme.
The scheme D must be the spectrum of a local ring S ⊂ Ω((t)). From the universality of coarse
moduli space, there is a natural morphism D → SpecΩ[[t]]. So we have Ω[[t]] ⊂ S ⊂ Ω((t)). As
Ω[[t]] and Ω((t)) are the only intermediate rings between Ω[[t]] and Ω((t)), the ring S must be
Ω[[t]]. Suppose that E = Spec S̃ is an atlas of D and S̃ is a regular local ring. Since S = Ω[[t]]
is henselian, the natural morphism E → D is finite [Gro, Theorem 18.5.11]. Hence S̃ is complete
(see [Eis95, Corollary 7.6]). So S̃ ∼= Ω[[t]]. Consider the groupoid space E ×DE ⇒ E. The scheme
E×DE must be the disjoint sum of spectra of complete regular local rings. Since the first projection
pr1 : E ×DE → E is étale, there is an isomorphism

E
∐

· · ·
∐

E ∼= E ×DE

such that the composition

E
∐

· · ·
∐

E ∼= E ×DE
pr1−−→ E

is isomorphic on each component. If l denotes the number of the components in E ×DE, then the
second projection pr2 : E ×D E → E determines the action of some group G on E with |G| = l.
Since this action is effective, the group G is isomorphic to µl for some l. For a suitable isomorphism
µl ∼= G, the action is given by t �→ ζlt. Hence the stack D is isomorphic to Dl∞⊗Ω and the morphism
Dl∞ ⊗ Ω ∼= D → X is a twisted ∞-jet on X. The image of this twisted ∞-jet by λ(∞) is η.

Injectivity. Let γ1, γ2 : Dl∞ ⊗ Ω → X be two twisted ∞-jets on X of order l. We suppose that
η := λ(∞)(γ1) = λ(∞)(γ1) and η ∈ L∞X \ L∞(Xsing). Construct D from η as above. Then for
each i ∈ {1, 2}, there is a unique morphism hi : Dl∞ ⊗ Ω → D such that the following diagram is
commutative:

SpecΩ((t)) � � �� Dl∞ ⊗ Ω

hi

��

γi

��									

SpecΩ((t)) � � �� D

��

�� X

λ

��
SpecΩ((t)) � � �� D∞ ⊗ Ω

η �� X

Let E be an atlas of D as above. Then the natural morphism E ×D,hi
(Dl∞ ⊗ Ω) → E is a bi-

rational morphism of smooth one-dimensional schemes. Therefore it is an isomorphism and so is hi
(see [LM00, Proposition 3.8.1]). Then we can easily see that γ1 and γ2 have the same image in
|L∞X ×X I

l(X)|.
To prove Theorem 3.15, we now need to generalize the transformation rule. Let V be a Deligne–

Mumford stack over D∞ of pure relative dimension d. For each n ∈ Z�0 ∪ {∞}, we define Vn to
be the moduli stack of the D∞-morphisms Dn → V. Then for m � n, there is a natural projection
Vm → Vn. So we can define the motivic measure µV over V∞ which takes values in K̂0(HS), in a
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similar fashion as before. (We should replace condition iii in Definition 2.7 with the condition that
χh(πm+1A) = Ldχh(πmA). It makes sense because of Lemma 3.14.)

Let W be another Deligne–Mumford stack over D∞ of pure relative dimension d and let h : W →
V be a D∞-morphism. We put Ω′W/V := Im(ΩW/D∞ \ (tors) → ΩW/V), where (tors) ⊂ ΩW/D∞ is
the torsion. Then we define the jacobian ideal sheaf Jh of h to be the zeroth Fitting ideal of Ω′W/V.

Theorem 3.18. Let A ⊂ W∞ be a measurable set. Suppose that h∞|A : A → V∞ is injective. Let
ν be a measurable function on h∞(A). Then∫

h∞(A)
Lν dµV =

∫
A

Lν◦h∞−ordJh dµW.

Proof. It is a direct consequence of Lemma 3.19.

We denote by J(V/D∞) (respectively J(W/D∞)) the dth Fitting ideal sheaf of ΩV/D∞ (respec-
tively ΩW/D∞).

Lemma 3.19. Let A ⊂ W∞ be a stable subset of level l. Assume that h∞|A is injective, that ord Jh
is constant and equal to e <∞ and that ord J(V/D∞) and ord J(W/D∞) are bounded from above
on h∞(A) and A, respectively. Then for n	 0, hn : πnA→ hnπnA is a piecewise trivial Ae-bundle.

Proof. Looijenga’s proof [Loo02, Lemma 9.2] also works in this setting.
Take a non-twisted ∞-jet γ : SpecΩ[[t]] → W in A, and put m := (t) ⊂ Ω[[t]]. Let q be the image

of the closed point by γ. Take another θ ∈ A such that πn−e(γ) = πn−e(θ). Then the morphism

θ∗ − γ∗ : OW,q → mn−e+1/m2(n−e+1)

is a C[[t]]-derivation. So it defines an Ω[[t]]-module homomorphism

∂θ : γ∗ΩW/D∞ → mn−e+1/m2(n−e+1).

The length of the torsion of γ∗ΩW/D∞ equals (ord J(W/D∞))(γ) and hence it is bounded. So, since
n	 0, the composition map

∂θ : γ∗ΩW/D∞
∂θ−→ mn−e+1/m2(n−e+1) → mn−e+1/mn+1

annihilates the torsion. Conversely, every Ω[[t]]-module homomorphism γ∗ΩW/D∞ → mn−e+1/mn+1

that annihilates the torsion is ∂θ for some θ.
After some work, we can see that if θ ∈ A is such that hnπn(γ) = hnπn(θ) then πn−e(γ) = πn−e(θ)

(see [Loo02, Lemma 9.2]). So ∂θ is defined. It is easy to see that πn(θ1) = πn(θ2) if and only if
∂θ1 = ∂θ2 and that hnπn(θ1) = hnπn(θ2) if and only if ∂θ1 and ∂θ2 have the same image in
HomΩ[[t]]((hγ)∗ΩV/D∞ ,m

n−e+1/mn+1). Hence h−1
n hnπn(γ) is isomorphic to an affine space

HomΩ[[t]](γ
∗Ω′W/V,m

n−e+1/mn+1) ∼= Ker(HomΩ[[t]](γ
∗ΩW/D∞ \ (tors),mn−e+1/mn+1)

→ HomΩ[[t]]((hγ)
∗ΩV/D∞ ,m

n−e+1/mn+1)).

The length of γ∗Ω′W/V equals e = ord Jh(γ). So h−1
n hnπn(γ) is isomorphic to an affine space of

dimension e.
The rest is easy.

Proof of Theorem 3.15. Let Y be a connected component of I l(X) and N its formal neighborhood.
We may assume that B is contained in π−1

0 (Y). Let Ñ be the quotient of N by the canonical
automorphism g, that is, SpecAg where Ag ⊂ A is the subsheaf of the g-invariant sections. Then
the natural morphism N → X factors as

N → Ñ
f−→ X.
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In the proof of Proposition 3.11, we saw that for each n,m with m = nl, there is a closed
immersion ι : (LnX)Y ↪→ LmN. Let [l] : Dm → Dn be the morphism associated to the ring
homomorphism defined by t �→ tl. If γ : Dl

n ⊗ Ω → X is a twisted n-jet in πn(B), then ι(γ) fits into
the diagram

Dm ⊗ Ω
ι(γ) ��

[l]

��

N

��
Dn ⊗ Ω σ

��
Ñ

(3)

Then λ(n)(γ) = fn(σ). We define a subset B̃ ⊂ L∞Ñ to be the image of B by the map γ �→ σ. Then
A = f∞(B̃) and f∞|B̃ is bijective outside of measure zero subsets. Let IX (respectively IÑ) be the
ideal sheaf on X defined by

IXωX = Im(Ωd
X → ωX)

(respectively IÑωÑ = Im(Ωd
Ñ
→ ωÑ))

and define µGor
X and µGor

Ñ
to be Lord IXµX and Lord IÑµÑ respectively. Since the morphism f has no

ramification divisor, by a similar argument as in the proof of Lemma 2.16 we see that f−1IX = Jf ·IÑ,
where Jf is the jacobian ideal sheaf. So, by Theorem 3.18, we obtain

µGor
Ñ

(B̃) = µGor
X (A).

We have thus reduced the problem to the case of a cyclic quotient; it suffices to show the following
lemma.

Lemma 3.20. Let the notation be as above. We have Ls(Y)µX(B) = χhµ
Gor
Ñ

(B̃).

Proof. The proof is essentially by a trick used in [DL02]. We first consider an easy case where X

is a quotient stack [Ac
R/G] of an affine space over a ring R whose spectrum is a smooth variety of

dimension d−c, and G ⊂ SLc(C) a finite cyclic group of order l generated by g = diag(ζa1l , . . . , ζ
ac
l ),

1 � ai < l. Suppose that Y is the component associated to g. Then N = Âc
R(= SpecR[[x1, . . . , xc]]),

its canonical automorphism is g = diag(ζa1l , . . . , ζ
ac
l ) and Ñ = Âc

R/G. Since the natural morphisms
Âc
R → Ac

R and Âc
R/G → Ac

R/G are (SpecR)-étale, and since we consider only jets which send the
only closed point into SpecR, it is easy to replace Âc

R, Âc
R/G with Ac

R, Ac
R/G.

Consider three R-algebra homomorphisms:

i) u∗ : R[[t]][x] → R[[t]][x], xi �→ taixi;

ii) α∗ : R[[t]][x] → R[[t]][x], xi �→ xi, t �→ tl;

iii) β∗ : R[[t]][x]G → R[[t]][x], the composition of α∗ and the inclusion R[[t]][x]G ↪→ R[[t]][x].

Since R[x]G is generated by the monomials xm1
1 . . . xmc

c with
∑
aimi ≡ 0 (mod l), there is a R[[t]]-

homomorphism v∗ : R[[t]][x]G → R[[t]][x] with u∗ ◦ β∗ = α∗ ◦ v∗, i.e.

R[[t]][x] u∗ �� R[[t]][x]

R[[t]][x]G
v∗

��

β∗
��

R[[t]][x]

α∗
��

Here the horizontal arrows are R[[t]]-algebra homomorphisms and the vertical ones send t �→ tl.
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Write the diagram of the associated schemes as follows:

N[[t]]

β
��

E2[[t]]

α

��

u��

Ñ[[t]] E1[[t]]v
��

where Ei are copies of Ac
R.

Let B0 be the image of B by ι : (L∞X)Y ↪→ L∞N. Then for γ′ ∈ B0, (γ′)∗(xi) is of the form

(γ′)∗(xi) = r0t
ai + r1t

ai+l + r2t
ai+2l + · · · . (4)

If we put η := u−1∞ (γ′), then we have

η∗(xi) = r0 + r1t
l + r2t

2l + · · · .
Therefore if we define δ ∈ L∞E1 by

δ∗(xi) = r0 + r1t+ r2t
2 + · · · , (5)

then we have the following commutative diagram:

E2[[t]]

α

��

D∞ ⊗ Ω

[l]

��

η��

E1[[t]] D∞ ⊗ Ω
δ

��

Here [l] is the morphism defined by t �→ tl. Let B1 ⊂ L∞(E1) be the image of B0 by the map
γ′ �→ δ. It is easy to see that if B is stable at level n, then so is B1, and that {πn(B)} = {πnl(B0)} =
{πn(B1)}L−c, where πi are truncation morphisms of L∞X, L∞N and L∞E1, respectively. Therefore

χhµE1(B1) = µX(B)Lc. (6)
Put σ := v∞(δ). The chain of the correspondences, γ �→ γ′ �→ δ �→ σ, defines a map (L∞X)Y →
L∞Ñ , which is the same as in the proof of the theorem (see diagram (3) and compare it with the
last two diagrams).

Shrinking SpecR to an open subset, suppose that the canonical sheaf ωSpecR of SpecR is
generated by a section e′. Consider a d-form e = dx1 ∧ · · · ∧ dxc ∧ e′ on N. This is stable under the
G-action. If r denotes the natural morphism Ñ → N, the canonical sheaf ωÑ of Ñ is generated by a
d-form ẽ with r∗ẽ = e. Direct computation gives v∗ẽ = t

∑
ai/l(dx1 ∧ · · · ∧ dxc ∧ e′). Hence we have

the following equations for subsheaves of Ωd
E1[[t]]/D∞ :

(t
∑
ai/l)v−1JÑ · v∗ωÑ/D∞ = (t

∑
ai/l)(v∗Ωd

Ñ[[t]]/D∞
)/(tors)

= (t
∑
ai/l)Jv · Ωd

E1[[t]]/D∞

= Jv · v∗ωÑ/D∞ .

This means that ord JÑ ◦ v∞ − ord Jv ≡ −∑
ai/l. From the transformation rule, we obtain that

χhµ
Gor
Ñ

(A) = L−
∑
ai/lµE1(B1), and using equation (6), that χhµGor

Ñ
(A) = Ls(Y)µX(B). We have

proved the assertion in this case.
As for the general case, the proof follows along almost the same lines: we take the fiber product

N ×Y V for an atlas V → Y to linearize the canonical automorphism. Define BV , BV,1 and B̃V in
the evident fashion. Using the argument for the preceding case and replacing B, we find that BV,1
and B̃V are stable at level n and a morphism vn : πnBV,1 → πnB̃V is a trivial affine space bundle of
the expected relative dimension. Here we have used Lemma 3.19 instead of the transformation rule.
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The natural morphism πn+1BV → πnBV,1 is an affine space bundle of relative dimension d − c
which is Zariski locally trivial on V . (Recall equations (4) and (5). This bundle results from the
truncation Ln+1(SpecR) → Ln(SpecR) and the identity of (ri)0�i�n.) Hence πn+1BV → πnB̃V is
also a Zariski locally trivial affine space bundle of the expected relative dimension. By the same
argument as in the proof of Lemma 3.11, we can conclude that πn+1B → πnB̃ is an analytically
locally trivial fibration of a quotient of an affine space. The lemma follows from Lemma 3.14.

4. General results on Deligne–Mumford stacks

In this section, we give some general results on Deligne–Mumford stacks which we need in § 3. There
are currently some good references for stacks (e.g. [DM69, Vis89, Góm01, LM00]).

We fix a base scheme S.

4.1 Deligne–Mumford stacks
A stack is a category fibered in groupoids over (Sch/S) such that every Isom functor is a sheaf
and every descent datum is effective. A morphism of stacks X → Y is representable4 if for any
U ∈ (Sch/S) and any morphism U → Y, the fiber product U ×Y X is represented by a scheme.

Definition 4.1. Let P be a property of morphisms f : Y → X of S-schemes, stable under base
change and local in the étale topology onX (e.g. surjective, proper, etc.). We say that a representable
morphism f : Y → X of stacks has property P if for every S-scheme U and every morphism U → X,
the projection U ×X Y → U has property P.

Definition 4.2. A (separated) Deligne–Mumford stack is a stack X which satisfies the following:

i) the diagonal ∆ : X → X × X is representable and finite;

ii) there exists a scheme M and a morphism M → X (necessarily representable after condition i),
which is étale and surjective.

A scheme M in condition ii is called an atlas of X. A Deligne–Mumford stack X is of finite type if
there is an atlas of finite type.

Definition 4.3. Let P be a property of morphisms f : Y → X of S-schemes, stable under étale
base change and local in the étale topology on X (e.g. birational, being an open immersion with
dense image, etc.). We say that a representable morphism f : Y → X of stacks has property P if for
every scheme U and every étale morphism U → X, the projection U ×X Y → U has property P.

Definition 4.4. Let Q be a property of schemes that is local in the étale topology (e.g. reduced,
smooth, normal, locally integral, etc.). Let X be a Deligne–Mumford stack. We say that X has
property Q if an atlas of X has property Q.

Definition 4.5. A (not necessarily representable) morphism f : Y → X of finite-type Deligne–
Mumford stacks is proper if there is a S-scheme Z and a proper surjective morphism g : Z → Y

such that f ◦ g is (necessarily representable and) proper.
A Deligne–Mumford stack X of finite type is complete if it is proper over S.

Although our condition appears weaker than that of [DM69, Definition 4.11], the two conditions
are actually equivalent by Chow’s lemma (see [DM69, Definition 4.12], [LM00, Théorème 16.6] and
[Vis89, Proposition 2.6]).

4In [LM00], this is called schématique.
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Example 4.6. Let Z be a S-scheme and G a finite group acting on X. The quotient stack [Z/G] is
defined as follows: an object over U ∈ (Sch/S) is a G-torsor P → U with a G-equivariant morphism
P → Z, and a morphism over U ′ → U is a cartesian diagram

P ′

�

��

��

P

��
U ′ �� U

which is compatible with theG-equivariant morphisms P ′ → Z and P → Z. It is a Deligne–Mumford
stack with a canonical atlas Z → [Z/G].

Here we define the points of a Deligne–Mumford stack. For details see [LM00, ch. 5].

Definition 4.7. Let X be a Deligne–Mumford stack. A point of X is a S-morphism SpecK → X

for a field K with a morphism SpecK → S.

Let xi : SpecKi → X (i = 1, 2) be points of X. We say that x1 and x2 are equivalent if there is
a field K3 such that K3 ⊃ K1,K2 and the diagram

SpecK3
��

��

SpecK2

��
SpecK1

�� X

commutes.

Definition 4.8. We define the set of points of X, denoted by |X|, to be the set of the equivalence
classes of points of X.

The Zariski topology on |X| is defined as follows: an open subset is |U| ⊂ |X| for an open substack
U ⊂ X. There is a one-to-one correspondence between the closed subsets of |X| and the reduced
closed substacks of X.

We now introduce the notion of (étale) groupoid space which is equivalent to Deligne–Mumford
stacks. Further details can be found in [Vis89, p. 668], [LM00, (2.4.3), (3.4.3), Proposition 3.8, (4.3)]
and [Góm01, § 2.4].

Definition 4.9. An (étale) groupoid space consists of the following data:

i) two S-schemes X0 and X1;

ii) five morphisms: source and target qi : X1 → X0 (i = 1, 2), origin ε : X0 → X1, inverse
τ : X1 → X1 and composition m : X1 ×q1,X0,q2 X1 → X1 which satisfies the following:

a) q1 and q2 are étale and (q1, q2) : X1 → X0 ×X0 is finite;
b) the axioms of associativity, identity element and inverse.

We denote this groupoid space by X1 ⇒ X0.

Given a groupoid space X1 ⇒ X0, we define the category fibered in the groupoids [X1 ⇒ X0]′

as follows: an object over U ∈ (Sch/S) is a morphism U → X0 of S-schemes and a morphism of
a : U → X0 to b : V → X0 is a pair of morphisms f : U → V and h : V → X1 such that q1 ◦h◦f = a
and q2 ◦ h = b. Then [X1 ⇒ X0]′ is a prestack (see [LM00, § 3.1]).

Definition 4.10. We define the stack associated to a groupoid space X1 ⇒ X0, denoted by
[X1 ⇒ X0], to be the stack associated with the prestack [X1 ⇒ X0]′ ([LM00, Lemme 3.2]).
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The stack X = [X1 ⇒ X0] is a Deligne–Mumford stack with the canonical atlas X0 → X. We can
identify the fiber product X0 ×XX0 with X1. Conversely, given a Deligne–Mumford stack X and an
atlas X0 → X, then the schemes X0 and X1 = M×XM underlies a natural groupoid space structure
with qi = pri and ε = ∆M/X. The associated stack [M ×XM ⇒ M ] is canonically isomorphic to X.
In summary, giving a groupoid space X1 ⇒ X0 is equivalent to giving a Deligne–Mumford stack X

and an atlas X0 → X.
Let ξ : U → X be a morphism, which is considered as an object of X. If ξ lifts to ξ′ : U → X0,

then the automorphism group of ξ is identified with the set of morphisms η : U → X1 with
q1 ◦ η = q2 ◦ η = ξ′.

Definition 4.11. A morphism f : (Y1 ⇒ Y0) → (X1 ⇒ X0) of groupoid spaces is a pair of
morphisms fi : Yi → Xi (i = 0, 1) which respects the groupoid space structures.

Given a morphism f : (Y1 ⇒ Y0) → (X1 ⇒ X0), then we have a natural morphism of prestacks
[f ]′ : [Y1 ⇒ Y0]′ → [X1 ⇒ X0]′ and hence a natural morphism of stacks [f ] : [Y1 ⇒ Y0] → [X1 ⇒ X0]
from [LM00, Lemme 3.2].

Conversely, consider a commutative diagram

Y0

��

f0 �� X0

��
Y g

�� X

such that X, Y are Deligne–Mumford stacks and the vertical arrows are atlases. If we define Y1 :=
Y0×YY0 and X1 := X0×XX0, and if f1 : Y1 → X1 is the natural morphism, then the pair of (f0, f1)
determines a morphism f : (Y1 ⇒ Y0) → (X1 ⇒ X0) of groupoid spaces. Evidently [f ] = g.

Example 4.12. Let X = [Z/G] be a quotient stack with G finite. There is a canonical atlas Z → X.
Then the groupoid space Z ×XZ ⇒ Z is isomorphic to the groupoid space

Z ×G
pr1

��
G−action ��

Z

whose origin, inverse and composition are induced by the group structure of G.

Let X be a locally integral Deligne–Mumford stack, associated to a groupoid space X1 ⇒ X0.
Let Xnor

i be the normalization of Xi, respectively. Then the lifts of the structure morphisms of
X1 ⇒ X0 induce a groupoid space Xnor

1 ⇒ Xnor
0 .

Definition 4.13 [Vis89, Definition 1.18]. We define the normalization Xnor of X to be the stack
associated with Xnor

1 ⇒ Xnor
0 .

It is easy to show the uniqueness and the universality of the normalization.

4.2 Quasi-coherent sheaves
Definition 4.14. A quasi-coherent sheaf F on a Deligne–Mumford stack X consists of the following
data:

i) for each étale morphism U → X with a scheme U there is a quasi-coherent sheaf FU on U ;
ii) for each diagram of étale morphisms

V
ϕ ��
















U

����
��

��
�

X
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with V and U schemes there is an isomorphism Θϕ : FV → ϕ∗FU that satisfies the cocycle
condition.

Example 4.15.

i) The structure sheaf OX on X is defined by (OX)U := OU .
ii) The sheaf of differentials ΩX/S is defined by (ΩX/S)U := ΩU/S and by the canonical isomor-

phism.
iii) Let f : Y → X be a morphism of Deligne–Mumford stacks. We define the sheaf of relative

differentials ΩY/X of Y over X to be the unique sheaf such that for each commutative diagram

V
étale ��

��

Y

��
U

étale
�� X,

where (ΩY/X)V := ΩV/U . Then we have the following exact sequence:

f∗ΩX/S → ΩY/S → ΩY/X → 0.

Definition 4.16. In Definition 4.14, if every FU is an OU -algebra and every Θϕ is a homomorphism
of OV -algebras, then we say that F is an OX-algebra.

As in the case of schemes, to an OX-algebra F we can associate a representable and affine
morphism SpecF → X. For details, see [LM00, Equation (14.2)].

4.3 Inertia stacks
In this section, we study the inertia stack. It is an algebro-geometric object corresponding to the
twisted sector introduced by Kawasaki [Kaw78] and used by Chen and Ruan [CR00] to define
the orbifold cohomology.

Definition 4.17. For a Deligne–Mumford stack X, its inertia stack, denoted by I(X), is the stack
defined as follows: an object over U ∈ (Sch/S) is a pair (ξ, α) where ξ ∈ ob XU and α ∈ Aut(ξ), and
a morphism (ξ, α) → (η, β) is a morphism γ : ξ → η in X such that γ ◦ α = β ◦ γ.

There is a natural forgetting morphism I(X) → X. The forgetting morphism I(X) → X is
isomorphic to

pr1 : X ×∆,X×X,∆ X → X.

Hence, if X is complete, then so is I(X).
The following lemma may be well known.

Lemma 4.18. Let Z be a scheme with an action of a finite group G. Then we have an isomorphism

I([Z/G]) ∼=
∐

g∈Conj(G)

[Zg/C(g)],

where Conj(G) is a set of representatives of the conjugacy classes, Zg is the locus of the points fixed
under the g-action and C(g) is the centralizer of g.

Proof. Let U ∈ (Sch/S) be a connected scheme. An object of [Z/G] over U is a G-torsor P → U
with a G-equivariant morphism P → Z. Its automorphism α is an automorphism of a G-torsor
P → U that is compatible with P → Z. For some étale surjective V → U , the fiber product
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PV := P ×U V is isomorphic to G× V as G-torsors over V . Here G× V is a G-torsor for the right
action of G. The pull-back αV is represented by the left action of some g ∈ G. g is determined up
to conjugacy and we can assume g ∈ Conj(G).

Let ψ : G × V ∼= PV → P be the natural morphism. Now let us show that if a ∈ C(g) and
b /∈ C(g), then we have ψ({a} × V ) ∩ ψ({b} × V ) = ∅. Let x (respectively y) be a geometric point
of {a} × V (respectively {b} × V ) and assume that ψ(x) = ψ(y). Then we have

ψ(x) = ψ(gxg−1) = αψ(x)g−1 = αψ(y)g−1 = ψ(gyg−1) �= ψ(y).

This is a contradiction. So P decomposes into C(g)-torsors as P ∼= P ′×J where P ′ := ψ(C(g)×V )
and J is a finite set. Let fV denote the composition f ◦ ψ. In the following diagram:

C(g) × V
fV ��

αV

��

Z

g

��
C(g) × V

fV



����������

fV

�� Z

we have g ◦fV = fV ◦αV since αV equals the right action of g on C(g)×V and fV is G-equivariant.
We also have fV = fV ◦ αV and hence g ◦ fV = fV . This implies that fV (C(g) × V ) is in Zg and
hence so is f(P ′). Thus the C(g)-torsor P ′ → V with f : P ′ → Zg is an object of [Zg/C(g)]. For a
non-connected U ∈ (Sch/S) and an object of I([Z/G]) over U , we can assign it to be an object of∐
g∈Conj(G)[Z

g/C(g)] in the obvious way. We leave the rest for the reader.

Definition 4.19. A morphism f : Y → X of stacks is barely faithful if, for every object ξ of Y, the
map Aut(ξ) → Aut(f(ξ)) is bijective.

Clearly, all barely faithful morphisms are faithful functors. From [LM00, Proposition 2.3 and
Corollaire 8.1.2], all barely faithful morphisms of Deligne–Mumford stacks are representable in the
sense of [LM00, Définition 3.9]. Because all separated and quasi-finite morphisms of algebraic spaces
are schématique [LM00, Théorème A.2], all barely faithful and quasi-finite morphisms of Deligne–
Mumford stacks are representable for our definition.

Example 4.20. All immersions are barely faithful. All morphisms of schemes are barely faithful.

Lemma 4.21. Barely faithful morphisms are stable under base change.

Proof. Let f : Y → X be a barely representable morphism of stacks and a : X′ → X any mor-
phism of stacks. An object of the fiber product Y ×X X′ is a triple (ξ, η, α), where ξ is an object
of Y, η is an object of X′ and α : f(ξ) → a(η) is a morphism in XU for some U ∈ (Sch/S).
Its automorphism is a pair of automorphisms ϕ ∈ Aut(ξ) and ψ ∈ Aut(η) with α ◦ f(ϕ) = a(ψ) ◦α.
Since the map f : Aut(ξ) → Aut(f(ξ)) is bijective, for each ψ there is one and only one ϕ with
α ◦ f(ϕ) = a(ψ) ◦ α. We have thus proved the lemma.

Proposition 4.22. Let f : Y → X be a barely faithful morphism of Deligne–Mumford stacks. Then
the inertia stack I(Y) is naturally isomorphic to the fiber product Y ×X I(X).

Proof. The natural morphism Ψ : I(Y) → Y ×X I(X) is defined as follows: for an object ξ of
Y and its automorphism α, the pair (ξ, α), which is an object of I(Y), is mapped to the triple
(ξ, (f(ξ), f(α)), idf(ξ)).

We will show initially that Ψ is a fully faithful functor. Let ξ be an object of Y. The automorphism
group of (ξ, (f(ξ), f(α)), idf(ξ)) is a pair of automorphisms β ∈ Aut(ξ) and ν ∈ Aut((f(ξ), f(α))) =
C(f(α)) such that f(β) = ν. Hence Ψ is barely faithful. Let η be another object of Y and τ an
automorphism of η. It suffices to show that if HomI(Y)((ξ, α), (η, τ)) = ∅, then

HomY×XI(X)(Ψ(ξ, α),Ψ(η, τ)) = ∅.
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Suppose that there is an element (σ, ε) of HomY×XI(X)(Ψ(ξ, α),Ψ(η, τ)), where σ is a morphism
ξ → η and ε is a morphism f(ξ) → f(η) such that the diagram

f(ξ)

f(α)
��

ε
�� f(η)

f(τ)
��

f(ξ) ε
�� f(η)

is commutative and f(σ) = ε. Since f is barely faithful, the diagram

ξ

α

��

σ
�� η

τ

��
ξ σ

�� η

is commutative, that is, HomI(Y)((ξ, α), (η, τ)) �= ∅.
Now, let us show Ψ is an isomorphism, that is, an equivalence of categories. Let (ξ, (θ, β), υ)

be an object of Y ×X I(X) where υ is an isomorphism f(ξ) → θ. Then there is a natural bijection
Aut(ξ) → Aut(f(ξ)) → Aut(θ). Let α ∈ Aut(ξ) be an automorphism corresponding to β ∈ Aut(θ).
Then we can see that Φ(ξ, α) is isomorphic to (ξ, (θ, β), υ). We have thus completed the proof.

Corollary 4.23. If S = Spec C and X is a smooth Deligne–Mumford stack, then I(X) is also
smooth.

Proof. From Lemmas 4.26 and 4.21, there is an étale, surjective and barely faithful morphism∐
i[Mi/Gi] → X such that each Mi is smooth and each Gi is a finite group. Then the assertion

follows from Lemma 4.18 and Proposition 4.22.

4.4 Coarse moduli space
Definition 4.24. Let X be a Deligne–Mumford stack. The coarse moduli space of X is an algebraic
space X with a morphism X → X such that:

i) for any algebraically closed field Ω with a morphism SpecΩ → S, X(Ω) → X(Ω) is a bijection;
ii) for any algebraic space Y , any morphism X → Y uniquely factors as X → X → Y .

Keel and Mori proved that the coarse moduli space always exists [KM97, Corollary 1.3].

Example 4.25. Let Z be an algebraic space and G a finite group acting on Z. Then the coarse
moduli space of the quotient stack [Z/G] is the quotient algebraic space Z/G.

The following lemma is well-known.

Lemma 4.26 (see, e.g., [AV02, Lemma 2.2.3]). Let X be a Deligne–Mumford stack and X its coarse
moduli space. Then there is an étale covering (Xi → X)i such that X ×X Xi is isomorphic to
a quotient stack [Zi/Gi] with a scheme Zi and a finite group Gi. Hence the canonical morphism
X → X is proper.

Now we assume S = Spec C.

Definition 4.27. Let X be a variety. We say that X has quotient singularities if there is an étale
covering (Ui/Gi → X)i with a smooth variety Ui and a finite group Gi.

Lemma 4.26 shows that for a variety X, X has quotient singularities if it is the coarse moduli
space of some smooth Deligne–Mumford stack. In fact, ‘only if’ also holds (Lemma 4.29).

Let X be a smooth Deligne–Mumford stack and x : SpecC → X a closed point. Then Aut(x)
acts on the tangent space TxX.
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Definition 4.28. We say that α ∈ Aut(x) is a reflection if the subspace of the α-fixed points
(TxX)α is of codimension 1.

Lemma 4.29. Let X be a k-variety with quotient singularities. Then there is a smooth Deligne–
Mumford stack X without reflections such that the automorphism group of general geometric points
is trivial and X is the coarse moduli space of X.

Proof. We will give only a sketch. There is a finite set of pairs (Vi → X,Gi)i such that:

i) Vi is a smooth variety;
ii) Gi is a finite group acting effectively on Vi without reflections;
iii) Vi → X is a morphism étale in codimension 1 which factors as Vi → Vi/Gi → X with

Vi/Gi → X étale.

Let Vij be the normalization of Vi ×X Vj. Then the natural morphisms Vij → Vi and Vij → Vj are
étale in codimension 1. From the purity of branch locus, they are actually étale, and hence Vij is
smooth. The diagonal ∆ : Vi → Vi ×X Vi factors through ∆′ : Vi → Vij. Then, with a suitable
multiplication morphism, the diagram ∐

Vi,j ����
∐
Vi

∆′
��

has the structure of groupoid space. We set X as the associated stack. Clearly X has no reflections.
The canonical morphism X → X makesX the coarse moduli space of X (see [Gil84, Proposition 9.2]).
Any geometric point x of X has a lift x̃ : SpecΩ → Vi with Ω being an algebraically closed field.
The automorphism group of x is identified with {y : SpecΩ → Vii | p1 ◦ y = p2 ◦ y = X̃}. If y is over
the smooth locus of X, then this group is trivial.
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