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ON SOLUTIONS OF PARABOLIC EQUATIONS
IN REGIONS WITH EDGES

A, Azzam anp E. KREYSZIG

In this paper, smoothness properties of solutions of the initial-
Dirichlet problem for parabolic equations in regions with edges
are considered. We obtain bounds for solutions and derivatives,
and prove the Holder continuity of the first derivatives and of
the second derivatives multiplied by a suitable power of the

distance from the edges.

1. Introduction

This investigation is concerned with the behaviour of solutions of
linear parabolic equations in regions with edges, and it may be motivated
as follows. For elliptic equations, the behaviour of solutions near
singularities of the boundary of the domain has been studied under various
assumptions by means of complex analysis, Holder and Sobolev space methods
(ef. for example, Dziuk [1], Kondrat'ev [4], Wigley [10], and the review by
Grisvard [3]) and, recently, by methods of geometric measure theory (cf.
Simon [8]). The earliest interest in these problems arose from conformal
mapping, in connection with the behaviour of mapping functions near the
boundary (ef. Warschawski [9]). Later work also had important applications
in elasticity theory, fluid flow, and numerical analysis ("subtraction of
singularities"”, estimation of truncation errors in difference methods; cf.

Laasonen [3]).
The methods used in the above and related papers do not extend to
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parabolic equations; indeed, in this case, comparatively little is known
about general smoothness properties of solutions if the boundary of the
domain has singularities. We shall be concerned with the initial-Dirichlet

problem for parabolic equations

+ ai(x, t)ux‘ +alx, thu - u, = flz, t) ,

(1) Lu(z, t) = a..(x)u "

1 xixj g

.

x = Lrl, x2) , with ¢®(?) —coefricients, 0<a <1, ina cylindrical

region @ =G xJ, , where Jl={t|0<tftl}, £ >0, ¢cR® isa

domain with corners to be specified below, and in (1) we use the summation
convention. We shall introduce a method of obtaining smoothness statements

for solutions of (1) satisfying initial-boundary conditions of Dirichlet

type.

2. Bounds for solutions in a cylindrical sector

The first step of the method consists of deriving bounds for solutions

of (1) in the special region f =G X Jl , where G is a circular sector.

We use the notations

Gc={(r,9,0)|0<r<o,8€I},
(2) By ={(r, 8) | 0<r <o, 8 =8orBw},
J2={t|0<tst2}, t, St

where I = (B, B+w) , the angle w € (0, ™) is given, B > O is such that

m/2<w+28 <7, and r, 8 are defined by z, =r cos 0,

X, =1 sin 6
THEOREM 1. Let u be a bounded solution of the problem
(3) Lu=f in @ =G % d,,

(4) u

0 on G0 and Bo x J2 >

' _ 0 o
where aij(o) =85 a;; €C (@) . and a;, a, f are bounded in Q .
Then there exist 1 € (0, 0/2) and v € (0, 1) such that ih ﬁé , where

Q, = G2z, Xy s
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(5) lu(x, &) < mt™

with M > 0 <independent of (z, t)
Proof. We write (1) in the form

Lu = Au + (ai.—si.]ux z g +
JorT TS )

and introduce the function
v(z) = 3(r, 0) = -m" sin 28 (M > 0) ,

assuming that

Then

v(z) = (Ae-uz]MTu_e sin A0 + WziJ.(ac)[cz‘b.j(ac)-é..)ru_2

J
+ Mhl(x, t)ru_l + Mhz(x, £)r*

where hij’ hl’ h2 denote functions which are bounded in ﬁi , say,
lhij(x)l SRy, |hi(x, t) | SRy, 1,§=1,2.

Since aij - Gij is continuous and vanishes at x = 0 , given € > 0 ,

there is an ry € (0, 0/2) such that for » < 2ro ,

Iaij(x)_dijl < e/hRO .

Since sin A® = sin AB if & € T , we thus obtain in s

Lv(x) = M[(Ag-ue] sin AB - e]ru_e - Mﬁoru'l - Mﬁoru .

2 2
For a positive € < (A -u ) sin AB the right-hand side tends to infinity
as r » 0 . Since f is bounded in ﬁi , by choosing ro >0
sufficiently small, we thus can make

Lv(x) = f(x, t)

Hence, in 92 ,
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(6) L(u(x, t)v(z)) =0 .

We prove next that u# - v 1is nonnegative on S = 392\62P for
0

sufficiently large M ; here

Gy=1{(r, 0, t)]0<r<o, 0 ¢€r1},
u 1is zero on 62r0 and BZPO X J2 , so that on this part of S ,
(7) u(x, t) -v(z) = w(x) =20 .

On the other part of S ,

ulz, ) - viz) = -”u”o + M(zro)u sin AB ,

where ”.“O is the sup norm in 92 . This shows that the left-hand side

is positive for sufficiently large ¥ . From this, (6), (7), and the
maximum principle (ef. [6], pp. 1T4-175) it follows that in ﬁé .

ulx, t) 2 v(x) = P sin A8 = -mrV

Similarly, for sufficiently large M and small ro > 0 the maximum

principle also yields

ulz, t) s mo¥

in ﬁé . Since 1< p< 2, setting v=u -1 , we have (5). Theorem 1

is proved.

3. Bounds for derivatives of solutions in a cylindrical sector

In the second step of our method, using Theorem 1 and the notations of
Section 2, we estimate the first and second partial derivatives of

solutions in a cylindrical sector.

THEOREM 2. Let u be a bounded solution of the problem (3), (k) in

92 = 02r X Jy with r, as in Theorem 1, and assume the coefficients of
0

L and the function f to be of class Ca[ﬁé) , 0<a<l. Thenin

93 , where 93 = GPO x J2 B
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1+v-k

(8) Diu(x, t)l = Mkr , k=1,2,

with Vv as in Theorem 1; here, Dﬁu denotes any kth partial derivative

of u with respect to Ty Ty

Proof, For n=-1, 0, 1, ... let

Hn = {(r, 9, &) | 2_n—2r <r= 2-n_lp B €T, 0c<¢t< t2} ,

0~ 0’
and Hn = Hn—l u Hn v Hn+l , n=0,1, ... . Then Hn’ Hn c 92 . The
transformation
~-n
(9) z=2"y, y= (. v,)
1 e -
maps #  onto HO and Hn onto Hj . Also wly, t) = u(2 s t)
satisfies in ﬁo the parabolic equation
- -2n -2n -2n
10 b.w + 2w o+ 27Ty - 27y =2 ,
(10) 1d yiyJ ty; t g

where bij(y) = aij(Q-ny) , and so on, and g(y, ) = f(2_ny, t); ef. (1). We
now use a Schauder type estimate (ef. [2]) in Hy and 50 :

H H q
0 0 .-2n 0
(11) loll 2 = 010l 52 21g1,°)

Here the constant 1n does not depend on w , and the norms are defined as

usual, that is,

H
H 2 . 0 H
0 7 01,2
] = Y low +h {D w)
Za gyl e ly)”
HO

where ”.”0 denotes the sup norm and ha the Holder coefficient, and so

on. In (11), by Theorem 1,

ﬁo 1\ U
loll )~ = #,(27)" (w0 = 14v)
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H
Since ||g||mO <® _ from (11) we thus have

H
Osn

—Hn
(12) ol pyq =y (27

27 = an 2™V

Now, by (9), for corresponding derivatives in the x and y systenms,

k. k-k
- 2-nk[ak 1) ,

k. k-k 1
u/ aacl sz

LN 1 1
D = 3w/dy, "3y,

—nk k
2 Dxu

where kl=0, .., k ,and k=21,2. In H. ,

fo

< wll,2,

k=1, 2,

lD;;w(y, t)

so that (12) yields in H

(13) 2-nk|D§u(x, t)| = n22‘”" , k=1, 2.
-n-2 -n-1 . .
Now 2 rosr =2 r, in H . Hence by (13), in H
k -7y U=k p—k
’Dxu(x, )] = n2(2 ) < Mr , k=1,2.

Since H =1 + VvV , Theorem 2 follows.

4. Smoothness of solutions in a cylindrical sector

We now show that a bounded solution of the problem (3), (k) is of

l+\)(

class C 53) in x , where Q, =G X J2 , as in Theorem 2. Note that

3 s

u is of class Cl+01/2(§—2) in ¢ , so that the corner of Gr does not

3 0
affect the t-smoothness of the solution.
THEOREM 3. Let u be a bounded solution of the problem (3), (4) in

92 . Assume that the conditions in Theorem 2 are satisfied. Then for wu ,

constidered as a function of =x , we have
u € Cl+v(§3) (0 <v<1)

with ry and v as in Theorem 1. Furthermore, for any «x € (1-v, 1) ,
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K 2 X
(14) r Dxu €C (ﬁé] ,
where X = min(k+v-1, o)

Proof, We use the metric defined by

a(p, P)% = |z-&|? + |t-Z| ,

where P : (x, t) , P (z, ) . In cylindrical coordinates we also write
P: (r, 0, t) , and ulx, ) will be written u(P) , for simplicity.

Consider P : (Pl’ Gl, t] and 4§ : (rg, 62, t) in Q3 , corresponding to

the same ¢ , but otherwise arbitrary; let 0 = r2 = rl = PO , without

‘

restriction.

Case 1., If r, < rl/2 , then d(P, @) = r /2 , so that (8) yields

D u(P)-D (@) |/d(P, )V = Ml[r“

V A%
1+P2)/(Pl/2) < K = const.

In a similar fashion it follows that rKDiu satisfies an analogous
inequalify.

Case 2. Let r2 > rl/2 . We consider the transformation

(15) z =8 , &= 21’l/r0 s

whgre y = (yl, yg) . Weset p=r/E. Now P has the image
L = . % .
P* . (pl, 0., t) , py =7,/2 , and Q has the image @* : (p2, 0, t) .,

= > i
Py PQ/E Po/h . The region

R={(r,0,¢) | rj/2sr=r,0 eI, 05t=ty)

l,

is mapped onto

R* = {(p, 6, t) Iro/hfpsro/e,eéf,os ¢ st}
and the region
s={(r,8,¢) | r/isrs2,0€T,0sts t,)
onto
s*={(p, 8, t) | r/8=p=r ,0¢cT, 0=tst)
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We now consider the function w defined by w(y, t) = ulx, ¢) . This
function is zero on the bottom part (£ = 0) and the two plane lateral
parts of the boundary of S$* , and in S* it satisfies the parabolic

equation

2 2 2
e, .w +&w +Eow - Ew, = ,
i yiyj & iy, g€ Ew, g
where cij(y) = aij(gy) , and so on, and gly, t) = f(&, t) . 1In R* and S*

we again apply a Schauder type estimate for parabolic equations:

S* 2 5%
Iollfr, = n ol “+e 1)

As in the proof of Theorem 2, from this it follows that

*
R <n Pu

ol = mrd (u = 140)

As before, for corresponding derivatives in the 2 and y systems we have

ko k. k _
Dyw—Eiju, k=1, 2,

and, furthermore,

R* B VO 4
K, (Dyw] = £ (D)

as well as, for any x € (0, al ,
*
hR {Dzw) = £2+XhR[D2u]
Xy X

Consequently,

R
r (o) = K

that is, Dxu € Cv(R) . It implies that u € Cl+v(R) , considered as a

function of x . Similarly,
R u-2-x
hX[D u] Ker .

Hence by Theorem 2 and formula (1L),

.

(P)—r D u( I/d p, @)X < Ky
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This proves the second statement of the theorem in Case 2 and completes the

proof.

5. Smoothness of solutions in general cylindrical regions

In this last step of our method, using Theorem 3 we obtain the main

result, which concerns the smoothness of solutions of the initial-Dirichlet

problem

(16) Lu=f in Q=GxJ,,
(172) #lgxtor = >

(17v) 0

”lanJ2 =

in a general region § = G X J2 with L as in (1) and J. as in (2),

2
where G has corners. Obviously, it suffices to consider the case of a
single corner, from which the case of finitely many corners (each

satisfying the conditions of Theorem 4, below) results in a trivial way.

Accordingly, we assume the following.

(A1) Gc R2 is a simply connected bounded domain. Its boundary dG

is of class C2+a , except at a point P , at which 9G has a corner with
interior angle Y > 0 . Let w denote the angle into which ¥y is

transformed under the transformation of

(18) a..(Pu =0

into canonical form.

(A2) The coefficients of L and the function f are of class
(@)

Note that ®w does not depend on the special choice of that
transformation. Furthermore, if G* € G 1is a compact region having

positive distance from the corner P , then a bounded solution u of (16),

(17) in 2 , considered as a function of x , is of class

02+a(§}) n Co(ﬁ) , where Q% = G* x J2 ;5 ef. [2], Chapter 3.

THEOGREM 4. Let u be a bounded solution of the problem (16), (17)
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in Q with L given in (1), and assume that (Al) and (A2) are satisfied.

If w< m, then for u , considered as a function of x , we have
T oaadd( 1)
with a suitable v € (0, 1) .

Proof, Let the corner P be at x = (0, 0) = 0 , without

restriction. Let
xz = ¢l(x2) and x, = ¢2(ai)

represent the two arcs of 9G emanating from P , in a neighborhood of

P . Then wl(O) = ¢2(O) = 0 . Moreover, we assume that

! - ! -
<4>l(0) = cot Y and q>2(o) =0 .
We consider the subregion ot = NA x J2 < £ , vhere

=z ec| le| =)

with A > 0 sufficiently small. Since in 5\91 the solution u is of

+0L . .
class 02 in & , it is sufficient to prove the theorem in Ql (instead

of ). We first apply a mapping (%, x2) Hé-(yl, y2) such that at the

corner the coefficients of the transformed principal part of L have the

7
the ylyg-plane whose boundary consists of two straight segments in the

values 6'j and W = {x € ¢ | |z] =X} is mapped onto a region ¥ in

direction y2 =0 and y2 = yl tan w , respectively, and a simple arc
joining the other endpoints of those segments. Such a mapping is

vy = [k plmy 0y () ¥y (mpop e )] 0VEy

(19)
yy = [z (=))W,
where
' 2
ki = a,(0) - 2“’1(0)“12(0) +9/7(0)a,(0) ,
k12 = a22(0)q>i(0) - a12(0) ,
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]

2
§ = [ayy (0)ayy00)-a,(00°]

Here tan w = G/k12 , 0<w<mT. Note that w depends only on Y and

on the values of the coefficients of the principal part of L at the
origin. The function ul(y, t) = u(z, ¢t) satisfies in & = N x J, @

parabolic equation which is obtained from (16) and (19). From (17) and

(19) it follows that U vanishes for ¢ = 0 as well as on the plane

parts of a , which correspond to those two straight segments. Since
w < T, we can rotate ﬁ about the t-axis through an angle B such that
/2 < w+2B < " . The composite of the two mappings is a mapping

[xl, x2) — (zl, 22) such that u.(z, #) = ulx, t) satisfies the

2

conditions in Theorems 1 to 3 in the transformed region. This implies that

U, € Cl+v(§“) , where Q* = G* x J2 and G* is a circular sector in the
zlze-plane whose radius Po is 'sufficiently small. Since the value of the
Jacobi determinant of (19) at (0, £) is 1/8 # 0 , it follows that

u € Cl+v(91) . This completes the proof.
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