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A GENERATION PROCEDURE FOR THE SIMPLE 
3-POLYTOPES WITH CYCLICALLY 

5-CONNECTED GRAPHS 

JEAN W. BUTLER 

In this paper we derive a generation procedure for the simple (3-valent) 3-
polytopes with cyclically 5-connected graphs. (A graph is called cyclically 
n-connected if it cannot be broken into two components, each containing a cycle, 
by the removal of fewer than n edges.) We define three new types of face split­
ting and we show, in Theorems 16 and 17, that the simple 3-polytopes with 
cyclically 5-connected graphs are exactly the polytopes obtained from the 
dodecahedron by these face splittings. 

We clarify our terminology with a definition. The polytope G' will be said 
to be obtained from the polytope G by a simple face splitting if G' is obtained 
from G by adding a new vertex on each of two distinct edges of some face of G 
and a new edge connecting these vertices across the face, as illustrated in 
Figure 0. 

in G 

FIGURE 0 

Procedures for the generation of all 3-polytopes from the tetrahedron have 
been given by Eberhard [3], Bruckner [2], Steinitz [13], Steinitz and Rade-
macher [14]. See Klee [10] and Grunbaum [8; 9] for a summary of these results. 
From one of the several proofs of Steinitz's theorem, given in Steinitz and 
Rademacher [14], one sees that the simple 3-polytopes whose graphs are 
cyclically 3-connected, that is all simple 3-polytopes, are exactly the polytopes 
generated from the tetrahedron by simple face splittings. Kotzig [11], Faulkner 
[6] and Faulkner and Younger [7] have shown that the simple 3-polytopes with 
cyclically 4-connected graphs are exactly those polytopes obtained from the 
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cube by successive simple face splittings performed on non-adjacent edges of 
a face, that is, such that neither of the two new faces is a triangle. 

Following the notation of Kotzig [12], a graph will be called a Z-graph if it 
is cyclically 5-connected, planar and 3-valent. A set of edges, X, of a graph G 
is a cut if removing the edges separates G into two components and no proper 
subset of X has this property. The components are called the banks of the cut. 
A cut will be called non-trivial if each bank contains a circuit, trivial otherwise. 
If the cardinality of the cut is n} it will be called an n-cut. We note that if X 
is a 3-cut in a Z-graph, it must be a trivial cut, and therefore one bank must 
be a vertex. Similarly, if X is a 4-cut in a Z-graph, it is a trivial cut and one 
bank must consist exactly of one edge with its two vertices. A set of n distinct 
faces, Si, . . . , sn of a graph, G, is called an n-ring if there exist distinct edges 
ai, . . . , an in G such that 

Si Adj Si+i on aif 1 ^ i < n, and sn Adj S\ on an 

and {ai, . . . , aw} is an w-cut in G. It is called a non-trivial n-ring if the cut is 
a non-trivial w-cut. We will use the notation 5 Adj / (s adjacent to /) , to indi­
cate that the two faces, 5 and /, have a common edge, and the notation 5 Adj 
(e)t or s Adj t on e, to indicate that 5 and t have the common edge, e. 

We now define three new types of face splitting and the corresponding 
reductions. Note that these reductions, as all inverse operations, are not always 
performable in the class of Z-graphs. In fact, whether or not these reductions can 
be performed plays an essential rule in the proof of our main result, 
Theorem 16. 

Face splittings. 

Type 1 is any simple face split, as defined above, which does not create a face 
with fewer than five sides. 

Type 2 is the split of two adjacent pentagonal faces into four pentagonal 
faces, as illustrated in Figure 1, by introducing four more vertices and six 
more edges. 

FIGURE 1 
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Type 3 is the split of a pentagonal face into six pentagonal faces, as illustrated 
in Figure 2, by the introduction of ten more vertices and fifteen more edges. 

FIGURE 2 

Reductions. 

Type 1 is the merging of any two adjacent faces by removing the common 
edge and suppressing the two associated vertices. 

Type 2 is the reduction of four pentagons, adjacent as illustrated in Figure 3, 
to two pentagons by removing the two edges indicated by dark lines, and 
suppressing the associated vertices. 

FIGURE 3 

Type 3 is the reduction of six pentagons, adjacent as in Figure 4, to one 
pentagon by removing the ten edges indicated by dark lines and suppressing 
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the associated vertices. 

FIGURE 4 

LEMMA 1. If G is a Z-graph and Gr is obtained from G by any face split of 
Type 1,2, or 3 then G' is a Z-graph. 

Proof. Clearly, these three face splits preserve 3-valency, planarity and 
cyclically 5-connectedness. 

LEMMA 2. / / G is cyclically n-connected, n ^ 4, 3-valent and planar, and G' is 
obtained from G by any reduction of Type 1, 2 or 3, then Gf is 3-valent, planar and 
3-edge connected. 

Proof. Assume G is cyclically ^-connected, n ^ 4, 3-valent and planar. It 
follows that G is 3-edge connected and cannot have a non-trivial &-cut, k < 4. 
Clearly, by the nature of our reductions, G' is 3-valent and planar. If G' is not 
3-edge connected then there is an m-cut, X, m < 3, in G'. Since G' is planar 
and 3-valent, each bank of the cut contains a cycle. Therefore X is a non-
trivial m-cut in G'. 

If the reduction is of Type 1 on e, as in Figure 5, with a and b the two edges 
in G' which are joined by e in G, we cannot have a and b in the same bank of 
X, nor {a, b} = X, because then there would be a non-trivial m-cut in G. If 
a and b are in opposite banks of X then [e] W J i s a non-trivial 3-cut in G, 
which is impossible. If a £ X 

G' 

FIGURE 5 
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and b $ X, again, we can construct a non-trivial ra-cut in G by including e in 
the same bank as b. 

If the reduction is of Type 2 on the edges e and/ , as illustrated in Figure 6, 
then clearly X <£ {a, b, c), since the third edge would connect the two banks. 

FIGURE 6 

If a only, or b only, is in X we could construct a non-trivial ra-cut in G. We 
cannot have c only in X. If a, b and c are all in the same bank, then X is 
a non-trivial ra-cut in G. Finally, if a and c (or b and c) are in different banks 
we can construct a non-trivial 3-cut in G. 

If the reduction is of Type 3, as illustrated in Figure 7, and X = {a, b} then 

FIGURE 7 

{ai, bi\ is a non-trivial 2-cut in G.li X = {a, c} then [ai, g, Ci} is a non-trivial 
3-cut in G. We cannot have exactly one of the edges a, b} c, d or h in X. If 
none of the edges a, b, c, d, h are in X, they must all be in the same bank 
and X is a non-trivial m-cut in £. This establishes the lemma. 

LEMMA 3. If G is a Z-graph and G' is obtained from G by one of the three re­
ductions, then either G' is a Z-graph or G' has a non-trivial n-cut, n = 3 or 4. 

https://doi.org/10.4153/CJM-1974-065-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-065-6


GENERATION PROCEDURE 691 

Proof. By Lemma 2, G' is 3-valent, planar and 3-edge connected, hence 
cyclically 3-connected. Therefore, if G' is not a Z-graph, Gf must have a non-
trivial w-cut, 3 ^ n < 5. 

The following two lemmas are special cases of [6, Lemma 3.2]. 

LEMMA 4. If G is a Z-graph, e an edge of G such that removing it creates a 
graph G' which is not a Z-graph, then the edge e belongs to a non-trivial 5-cut in G. 

Proof. Removing e is a reduction of Type 1. By Lemma 3, & has a non-
trivial n-cut, X, 3 ^ n < 5. Now e must join the two banks of the cut, other­
wise we would have a non-trivial n-cut, n < 5, in G. Hence ( ^ } U I is a 
non-trivial in + l)-cut, in G. Since G is a Z-graph; n + 1 = 5, and G has a 
non-trivial 5-cut containing the edge e. 

LEMMA 5. If Gis a Z-graph for which no Type 1 reduction is possible then every 
edge of G belongs to a non-trivial 5-cut in G. 

Proof. Let e be any edge of G. Removing e creates a non-Z graph, since no 
Type 1 reduction is possible. By Lemma 4, e belongs to a non-trivial 5-cut in G. 

The next lemma is a special case of [6, Lemma 2.7]. 

LEMMA 6. If G is 3-valent, planar, cyclically n-connected, n ^ 4, and X is a 
non-trivial n-cut, then no two edges in X are adjacent in G. 

Proof. I t two edges in X were adjacent in G, since G is 3-valent there is a 
third edge at the common vertex. This edge is in the same bank as the common 
vertex and therefore could replace the two edges in X, giving an (n — l)-cut 
in G. This is impossible since G is cyclically w-connected. This is a generaliza­
tion of [11, Theorem 8]. 

LEMMA 7. If Gis a Z-graph, X a 5-cut in G, then any face of G contains exactly 
0 or 2 members of X. 

Proof. By [11], any circuit in G contains an even number of edges from any 
cut in G. Therefore, the perimeter of any face has 0, 2 or 4 members from X. 
But if the perimeter of a face, s, contained 4 members of X, there would be 
four faces, each adjacent to s on a member of X, and each of these four faces 
would have to have another edge belonging to the set X. But this is impossible 
because X has only five elements and since G is 3-edge connected no two faces 
of G can be adjacent on two distinct edges. 

LEMMA 8. If G is a Z-graph, X a non-trivial 5-cut in G, and a Ç X, then there 
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exist 5 distinct faces, s0, si, S2, S3, s4 in G with 

So Adj Si Adj $2 Adj s3 Adj s4, s4 Adj s0 on a, 

and no other adjacencies among these 5 faces. 

Proof. Let So and s4 be the two faces adjacent to the edge a, SQ Adj s4 on a. 
By Lemma 7, s0 has two edges in X. Let b be the other edge, and let Si be the 
unique face such that s0 Adj Si on fr. Then Si 7e s4 or we would have a non-
trivial 3-cut in G. Since G is cyclically 5-connected we can continue in this 
manner until we get five distinct faces, s0, Si, s2, Sz, s4 with 

54 Adj (a) so Adj (6) Si Adj(c) s2 Ad](d) s3 Adj(^) 54 andX = {a,b, c, d, e\. 

Furthermore, there can be no other adjacencies among these five faces. 

LEMMA 9. If G is a Z-graph containing the configuration of Figure 8 and the 
edges a, b and c belong to a 5-cut, X, in G, then the face D is a pentagon. 

FIGURE 8 

Proof. Assume D has 6 or more sides. The perimeter of D cannot be the only 
cycle in the bank of X in which it is contained, since that would require at 
least 6 edges in the cut X. Hence if the cycle uses the edges x, y, u, v they can 
be replaced by the arc z, and hence the edges a, b, c in the cut can be replaced 
by the edges x and v. This creates a non-trivial 4-cut in G. Since G is a Z-graph, 
this is impossible. Therefore D is a pentagon. 

LEMMA 10. If G is a Z-graph in which no reductions of Types 1 or 2 are possible 
and G contains the configuration of Figure 9 then one of the two faces A or B is 
a pentagon. 
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-+£ 

FIGURE 9 

Proof. Removing the edges k and j produces a graph G containing the 
configuration of Figure 10. By Lemma 3, G' has a non-trivial «-cut, 5, 

K 

f 

a C 

H 

D B 

FIGURE 10 

3 S n < 5. The faces C and D cannot both be included in one bank of S or S 
would be a non-trivial w-cut, n < 5, in G. Also, 

{a, b,c}£S, {a, b,d}£S, {e,b, c} £ S, 

since each of these three cases would give a non-trivial n-cut, n = 3 or 4, in G. 
Using Lemma 7, and disregarding symmetric cases, either {e, f} Ç ,5 or 
{e,b,d} Q S or \f,g} Ç S . 

Case (a). If {e, f } C 5 then, by Lemma 9, 4̂ is a pentagon. 
Case (b). Assume {e, 6, d) C 5: If {e, 6, d} = 5 then E = H and there is a 

non-trivial 3-cut in G which is impossible. Assume S 9^ {e} bf d}. Therefore S 
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is a non-trivial 4-cut in G''. We have E Adj H in G'; hence £ Adj H m G and 
{«, z;, g, £} is a 4-cut in G, as illustrated in Figure 11. But G is cyclically 5-
connected, so this must be a trivial 4-cut. Therefore one bank consists of a 
single edge, and either F or B must be a quadrilateral. Hence this case is impos­
sible. 

FIGURE 11 

Case (c). { / , g) Ç 5: 5 cannot be a non-trivial 3-cut in G', since, if it were, 
we would have K Adj F and the ring K, C', C", T7 would give a non-trivial 
4-cut in G. 

Assume 5 is a non-trivial 4-cut in G'. We will show that B must be a penta­
gon. There must be a face / such that K Adj / Adj F in G, as in Figure 12. 
Note that B ^ J or the ring K,D',B would give a non-trivial 3-cut in G. Now 
consider the edge d. By Lemma 4, there is a non-trivial 5-cut, T, in G, with 

Let us assume that B is not a pentagon. Then by Lemmas 7 and 9, one of 
{d,j, m\ Ç T, or {d, A, &} Ç T, or {d, h, i} Cl T must hold. We consider each 
of these three cases separately, and show that none of them are possible. 

Case (c)-l. {d, j , m\ Ç T: T and 5 U { ^ | are non-trivial 5-cuts in G. As 
indicated in Figure 13 we rename the faces, C , F, J, K respectively s0, s2, s3, S4Î 
and the faces Z>", D', H respectively to, /4, *3- C" will be labelled both Si and /i. 
Since T is a 5-cut, there is a face, £2, such that h Adj /2 Adj tz. Now £2 cannot be s0 

or 52, since both are Adj tQ. Therefore t2 and t0 are in opposite banks of the 5-cut 
S \J {k}, with to Adj So and t2 Adj Si. Therefore either h or /4 is one of the st. 
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But /3, tu ?*• So, Si, s2 or sA. Also h 7e s3 or h, /4, h, s2 would give a non-trivial 
4-cut in G. Similarly, ti 7e s3 or t±, t0, s2 would give a non-trivial 3-cut in G. 
Therefore case (c)-l is impossible. 

Case (c)-2. {d, h, k) CI T: Rename the s/s as in Case (c)-l. Rename D\ H 
respectively £4, £3. Rename C both s0 and t0, C" both s\ and h, as indicated in 
Figure 14. As before, there is a face, t2, such that h Adj t2 Adj h. Now t0 and £i 

FIGURE 14 

are in the s-ring. Clearly t2 9
e s4 since s4 Adj t± and /2 F5 D" since s4 Adj Z>". Also 

h 9^ s2, since if t2 = s2 the ring /4, £3, £2, Z>" would give a non-trivial 4-cut in G. 
Therefore t2 and £4 are in opposite banks of the cut, S, with t2 Adj Si and £4 Adj So-
Therefore h must be a member of the s-ring. Since h cannot be adjacent to 
either to or h and s0 Adj *i, si Adj /o, s4 Adj to, s2 Adj £i it follows that £3 =̂  s0, 
5i, s4 or s2. Finally h ^ s3, since if h = sZt the ring /3, £4, D" , s2 would give a 
non-trivial 4-cut in G. Therefore tz cannot be in the 5-ring and case (c)-2 is 
impossible. 

Case (c)-3. {d, hy i] C 2": If {d, h, i] Ç 7", by Lemma 9, X is a pentagon. We 
consider the face / which is adjacent to K. Since J Adj F certainly J ^ C. 
Also J y* Dr or D\ D", F would be a non-trivial 3-ring in G. Similarly / ^ H or 
H, D', D", F would be a non-trivial 4-ring in G, and / ^ A or A, C", F would 
be a non-trivial 3-ring in G. But / cannot be the fifth face adjacent to K, since 
if it were then J, A, E, F would be a non-trivial 4-ring in G. Thus case (c)-3 is 
also impossible, which establishes the lemma. 
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LEMMA 11. If G is a Z-graph in which no Type 1 reductions are possible and G 
contains the configuration of Figure 15, then one of the three faces A, B or C is a 
pentagon. 

B 

FIGURE 15 

Proof. By Lemma 5, h belongs to a 5-cut in G. Let s0, si, s2, s3, s± be the 
associated 5-ring, with s0 Adj Si on h, s2 = E, as indicated in Figure 16. (If 
S2 = F the argument is similar.) Now, either s3 = D or s3 = C. If s3 = D, by 

So 

Sl 

S2 

c 

4 B 

f 

FIGURE 16 

Lemma 9, A is a pentagon, so assume s3 = C. Consider the edge e. Again, by 
Lemma5, e belongs toa 5-cut, T, in G. Let/o, h, t2, h, t±be the associated 5-ring. 

If none of the faces A, B or C is a pentagon, then by Lemma 9 either 
{e, b, c) C T or {e, d,f} C T. We treat the two cases separately. 
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Case (a), {e, b, c) Ç T. We have the configuration of Figure 17, with /3 Adj £4. 
Now, /i and t2 are among the s*, t0 and /3 are in different banks of the cut 5, 
with t0 Adj Si and h Adj s2. Therefore t\ must be one of the st. But /4 7e So, Si, s 2 
or s3 since all are adjacent to h or t2. Also /4 5̂  $4 or the ring to, ^\ $3, $4 would 
yield a non-trivial 4-cut. So case (a) is impossible. 

/ ^ - ^ ~ / 
\ / 

\ 

FIGURE 17 

Case (b). {e, 6/,/ } CI T: We have the configuration of Figure 18, with t0 Adj t\. 
Again, t2 is in the s-ring, and h and h are in opposite banks of the cut S, with 
h Adj 52 and h Adj s2. Hence either t0 or /4 is one of the Sf. But to 9e su s2 or s% 
since each is adjacent to /3, and /4 5̂  s0, Si, s2 or s3, since each is adjacent to /4 or 
h. Also /o 7* So, since then the ring s0, su s2, h would give a non-trivial 4-cut. 
Similarly /4 9^ s A, or the ring /4, /3, s3 would give a non-trivial 3-cut. Finally 
to 5* 54, or 54, s3, /3, £4 would be a 4-ring, so /0 Adj h which is impossible. This 
proves the lemma. 

LEMMA 12. If G is a Z-graph for which none of the three reductions are possible 
and G contains the configuration of Figure 19, then one of the faces A or B is a 
pentagon. 
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FIGURE 19 
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Proof. By Lemma 5, h belongs to a 5-cut, 50, Si, s2, s3, s4, Assume it is as 
illustrated in Figure 20. (The case Si = D is similar.) Now either s2 = E or 
s2 = F. 

FIGURE 20 

Case (a). s2 = E: By Lemma 9, A is a pentagon. 
Case (b). s2 = F: Either s3 = H or s% = G. If s3 = -H", then the ring s4, So, £>, 

53 gives a non-trivial 4-cut in G which is impossible. If s3 = G, then either the 
ring s4, G, H, B gives a non-trivial 4-cut in G or 5 is a quadrilateral, either of 
which is impossible. 

LEMMA 13. If G is a Z-graphfor which none of the reductions, are possible and 
G contains the configuration of Figure 21, then one of the faces A, B, C, D or E 
is a pentagon. 

FIGURE 21 

Proof. Form G1 by a Type 3 reduction, as illustrated in Figure 22. By Lemma 
3, G' has a non-trivial w-cut, X, 3 ^ n < 5. The cut X must not contain all of 
the pentagon, F, in one bank, or X would be an w-cut in G. Therefore X must 
contain two non-adjacent edges of F, say a and b. But then X KJ {ax, e, bi] ~ 
{a, b) is 5-cut in G, and by Lemma 9, A is a pentagon. 
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FIGURE 22 

LEMMA 14. If G is a Z-graph in which no reductions can be made then G has two 
adjacent pentagons. 

Proof. Since G is a Z-graph, G has no quadrilateral or triangular faces and 
hence, by Euler's Theorem [4; 5], G has at least 12 pentagons. Choose one 
pentagon, call it s0. Choose an edge, a, of s0. Since no reductions of Type 1 are 
possible, by Lemma 5 the edge, a, belongs to a non-trivial 5-cut »S in G. Let 
So, Si, 52, S3, s4 be the associated 5-ring with so Adj s 4 on a. Let b be the edge 
such that So Adj Si on b. Let c be the edge of s0 adjacent to both a and b. By 
Lemma 5, c belongs to a non-trivial 5-cut T in G. Let t0, h, t2, h, tA be the associ­
ated 5-ring, as indicated in Figure 23. We have s0 = /0, h Adj s0, t\ Adj s0, with 
t\ and £4 in opposite banks of the 5-cut S. Therefore, t2 or h is an st. But 
h 7e So, Si, S4, since they are all adjacent to t\. Also h 7e So, Si, 54 since they 
are adjacent to either t0 or /1. 

If t2 = s2 then t2, sly tA, /3 is a 4-ring. Since /2 cannot be adjacent to /4 we must 
have h Adj Si as indicated in Figure 24. But now t2, Si, s0, h is a non-trivial 
4-ring, which is impossible, so t2 ^ s2. Again referring to Figure 23, if t2 = 53 
then t2, 54, /1 is a 3-ring and so t2f s± and /1 must meet at a common vertex. But 
then £4, ^3, £2, s4 is a 4-ring and since tA cannot be adjacent to t2 we must have 
tz Adj £4 and thus s± is a pentagon. 

Similarly if h = s2, then /3, Si, /4 is a 3-ring, and so t%, S\ and /4 meet at a 
common vertex. But then /3, t^ s4, s3 is a 4-ring and since we cannot have s2 

adjacent to s± we must have s3 Adj £4, and thus t\ is a pentagon. If h = s3 by a 
similar argument £4 is again a pentagon. Hence G contains two adjacent penta­
gons. 

LEMMA 15. If G is a Z-graph in which no reductions of Type 1 are possible and 
G has two adjacent pentagonal faces A and Bf then there is a third pentagonal face 
adjacent to both A and B. 
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FIGURE 23 
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Proof. Let c be the edge common to the faces A and B, as indicated in Figure 
25. By Lemma 4, there is a 5-cut, S, in G, with c 6 5. Let s0, Si, s2, s3, 4̂ be the 
associated 5-ring, Si = A, s0 — B. By Lemmas 6 and 7 either e or è Ç 5, and 

5 

FIGURE 25 

ei ther / or a G 5. If {e, c, / } Ç 5 by Lemma 9, C is a pentagon. Similarly, if 
\b, c, a} Ç S, D is a pentagon. There are only two other cases to consider, 
{e, c, a) Ç 5 and {b, c, f } Ç 5. These are symmetric cases. Therefore, we 
assume {e, c, a} Ç 5". Consider the edge b. By Lemma 4, b belongs to a 5-cut, T, 
in G. If {&, c, a) Ç T, D is a pentagon. There are two other possibilities: 
{b, c,f } Ç T or \b, g) Ç 7\ We consider each case separately. 

Case (a). Assume {b, c, f } Ç T: Let /0, £i, fa, fa, fa be the associated 5-ring 
with fa Adj s2 as indicated in Figure 26. The faces fa, fa are among the st, and 
fa and 4̂ are in opposite banks of the cut S, with t2 Adj 5i, £4 Adj so. Therefore ^ 
must be an st. But fa ̂  si, 50, 52, s4. If £3 = S3, then £4, £3, £4 is a 3-ring. Therefore 
/4, 53, s 4 meet at a common vertex, and s2, s^, 4̂, C is a 4-ring. Hence C must be 
a pentagon. 

Case (b). {6, g} Ç T: Let /0, £1, 2̂, fa, fa be the associated 5-ring, with fa Adj /1 
on b, fa Adj £2 on g, as indicated in Figure 27, with s2 Adj s% and £4 Adj £3- As 
before Si = £1, and fa and /2 are in opposite banks of S, with fa Adj Si, /0 Adj Si. 
Therefore either fa or t± is an s*. Now fa 7^ So, S\, s2 since they are adjacent to 
fa or fa, and t± 9^ s0, si, s2 since they are adjacent to fa. Also fa 9^ s% since if 
fa = S3 then Sz, fa, So, s^ is a trivial 4-ring, and s3 Adj s0, which is impossible. 
And £4 5̂  s 4 or £4, fa, fa, s0 would give a non-trivial 4-cut which, again, is impos­
sible. Also fa 9e SA, or fa, so, S4 would give a non-trivial 3-cut in G which is 
impossible. Finally, if tA = Sz, then /4, fa, D, 54 gives a non-trivial 4-cut in G, 
see Figure 28, and hence D must be a pentagon, which establishes the lemma. 

THEOREM 16. If G is a Z-graph in which no reduction of Type 1, 2 or S can be 
made then G is the dodecahedron. 

Proof. By Lemma 14, G has two adjacent pentagons, hence by Lemma 15 
three pentagons adjacent at a common vertex, as illustrated in Figure 29. 
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By Lemma 11, one of the faces A, B, or C is a pentagon, so we have the con­
figuration of Figure 30. By Lemma 10, one of the faces X or Y is a pentagon 
and we have the configuration of Figure 31. Now by Lemma 10 one of the 
faces U or F is a pentagon. If U is a pentagon we have the configuration 
of Figure 32. If F is a pentagon we have the configuration of Figure 33, and 
by Lemma 12 one of the faces W or T is a pentagon, giving, in any case, 
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FIGURE 29 

the configuration of Figure 32. By Lemma 13 one of the faces A, B, C, D, or E 
is a pentagon, giving the configuration of Figure 34, and, by Lemma 12 again, 
A or B is a pentagon and we have the configuration of Figure 35. But, since G 
is a Z-graph, G cannot have a non-trivial 4-cut. Therefore G is the dodecahedron. 

THEOREM 17. The class of 3-valent, convex 3-polytopes whose graphs are 
cyclically ^-connected is the smallest class which contains the dodecahedron and is 
closed under splits of Types 1, 2 and 3. Therefore, any such poly tope can be 
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FIGURE 34 FIGURE 35 

obtained from the dodecahedron by the successive application of finitely many 
{zero or more) of these operations. 

Proof. Let Q be any class of 3-valent, convex 3-polytopes whose graphs are 
cyclically 5-connected, which contains the dodecahedron and is closed under 
the three types of face splitting. Let Z be the class of Z-graphs. Clearly the 
dodecahedron is in Z, and these splittings all preserve cyclically 5-connected-
ness, planarity and 3-valency. Thus Q Ç Z. To show that Z C Q, we note that 
the dodecahedron is in Q, and that if G is in Z and is not the dodecahedron, 
then, by Theorem 16, a reduction of Type 1, 2 or 3 can be made, producing a 
Z-graph with fewer vertices. Eventually the dodecahedron will be reached. 
Hence, by reversing the procedure G can be obtained from the dodecahedron 
by finitely many of these face splittings and is therefore in Q. 

It is also interesting to note that these three face splittings are all essential. 
Since a face split of Type 1 requires a face with at least six sides, the first 
split must be of Type 2 or 3. Since Type 3 introduces ten new vertices we easily 
see that the 24 vertex polytope obtained by one Type 2 face split cannot be 
obtained using Types 1 and 3, and any 26 vertex polytope obtained by a Type 2 
followed by a Type 1 cannot be obtained from 2 and 3 alone. By Kotzig [12] we 
see that a Type 3 face split cannot be produced by any combinations of splits 
of Types 1 and 2. 

Remark. The referee has informed us that the results presented in the pre­
ceding paper have also been obtained by D. Barnette. His article will appear in 
Discrete Mathematics. 
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