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ENDOMORPHISMS OF FIBRED GROUPS

by CARLTON J. MAXSON and GUNTER F. PILZ

(Received 7th July 1987)

A collection ^ = {Gx\aeA} of proper subgroups Gx of a group G is a fibration of G if

G = U Gx, G«nG, = {l} for «#/?.
3E/4

It is of geometric interest to associate two semigroups to a group G with fibration BF:

£: = £(G, &): = {h e End G | h(Gx) £ Ga for all a € ,4}

S: = S(G, ̂ ): = {he End G | for each cteA there is some fie A with

The elements of £ are dilatations of the associated translation plane, while the elements
of S are endomorphisms of G which are at the same time operators for this translation
plane (for more details on this, see e.g. [6]).

All groups are finite. Clearly, £ £ S always holds.

Theorem. For each finite fibred group G, £ # S.

Proof. The proof requires several steps. We assume £ = S.

(1) Suppose G has a non-trivial centre Z(G), By [3, p. 199], either G has a prime
exponent p or Z(G) is contained in a single fibre G o (say). In the first case, G is
nilpotent and hence has a maximal normal subgroup of index p. In the second case
Z(G) has prime exponent p [ 1 , Bemerkung, 2.4] and all elements of G of order # p are
contained in Go [1 , Lemma 2.1]. If N is the subgroup generated by Z(G) and all
elements of order # p then N is a subgroup of Go. Since conjugation preserves order, it
is routine to check that N is a normal subgroup of G, contained in Go. Hence G/Af is a
p-group and by the homomorphism theorem we again get a maximal normal subgroup
of index p in G.

(2) If N is a normal subgroup of G of prime index, we have G/yV = Z p . Let geG\N be
of order p. Then G/JV s <g>; so we get an endomorphism h # id of G mapping all of G
into the single fibre containing g. Hence heS, but h 4 £, a contradiction.
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(3) Hence we can assume that Z(G) = {1}. If Ej£{0,id}, Theorem II.3 of [7] implies
that G must have a non-trivial centre (0 denotes the trivial endomorphism). Hence we
are down to the case E = S = {0,id}, Z(G) = {1}.

(4) Suppose that the Fitting subgroup FG of G is trivial. By [5] or [9] G must fall
into one of the following classes:

(i) G^i

(ii) G ^ J

(iii) G is a simple Suzuki group.

Recall that by [9, Lemma 1], any fibration can be refined into a normal ( = kinematic in
[3]) one. Since a normal fibration has {id}#InnG^S, we can exclude these ones. In all
cases (i)-(iii), an examination of the proofs of the results of [5] shows that !F arises
from such a normal fibration Jf by taking the normalizer N of a suitable Sylow
subgroup of G and all fibres of Jf not contained in N. Take some xeN, x # l . Then x
determines an inner automorphism (j>x^id of G. Since 0xeInnG and Jf is normal, each
4>x(Na)ejV for NaejV. Trivially <px(N)=N since xeN. Hence i d ^ ^ e S , and FG = {1}
cannot happen.

(5) Finally, we study the case FG#{1}. From [2] and [4], either

(i) G is a p-group, or

(ii) G is a Frobenius group, or

(iii) G s S4, or

(iv)

Now (i) and (iv) are excluded by (1) and (2).
In case (ii), we study a normal refinement J5" * (see [8]) of J5". By [1, Satz 4.1],

consists of subgroups G, (iel) of FG and of subgroups Gj (jeJ) which are self-
normalizing. By Satz 4.7 of [1], J*"* consists of some (possibly different) subgroups
Gk(k e K) of FG and the same subgroups Gj as above. Since J* is normal, for each inner
automorphism cj>x induced by xeG, 4>x{Gj) is some Gj{j,j'eJ).

FG is nilpotent and hence has a non-trivial centre. Take z # 1 in the centre. Then
(j>z = id on FG, but (j>z(Gj) = Gj is impossible for jeJ, since each Gj coincides with its
normalizer. Hence <f>z is in S, but not in E.

Finally, let GsS 4 . In this case, /1 4 is normal of prime index. We can proceed as in (2)
to get some h e S\E, and we are done.

Corollary 1. A finite group cannot have a fibration of fully invariant subgroups.

Now we write G additively (this does not imply commutativity). It is also of
geometric interest (see [7]) to consider the collection of all possible sums dg E of
elements of £ = £(G,#"). £ is a distributively generated near-ring (see e.g. [8]). The same
applies to dgS. Clearly, dgE is a subnear-ring of dgS. If dgE = dgS, each
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must map each cell into itself, because every sum in dgE behaves that way. Hence we
have the following.

Corollary 2. If G is a finite fibred group then dg E^dgS.
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