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A COMPARISON BETWEEN THE 
THEORETICAL 

OF 
AND THE MEASURED LONG PROFILE 
THE UNTERAAR GLACIER 

By J . F. NYE 

(Cavendish Laboratory, Cambridge) 

ABSTRACT. The measurements by seismic sounding of the long profile of the Unteraar Glacier reported by 
Mercanton and Renaud are compared with theoretical calculations. By taking the valley to be a cylinder of parabolic 
cross-section a theoretical curve for the surface is deduced which depends on one unknown parameter only, the 
average shear stress on the bed. If .his parameter is given the value 0·77 x 106 d ynes/cm.2 the theoretical curve 
agrees well with the measurements. 

RESUME. Les mesures obtenues par sondages sismiques, presentees par Mercanton et R enaud, concernant le 
profil en longueur du Glacier d 'Unteraar sont compart\es aIDe resultats calcules par la theorie. En assimilant la 
vallee a un cylindre de section parabolique, on obtient une courbe theorique pour la surface, qui ne depend que d'un 
seul parametre inconnu: la tension tangentielle moyenne exercee par la g lace sur le lit du glacier. Si I'on attribue 
la valeur 0 ·77 x 106 dynes/cm2 a cc parametre,la courbe theorique correspond bien aux mesures citees. 

THE publication by Mercanton and Renaud 1, 2 of the long profile of the Unteraar Glacier measured 
by seismic sounding makes possible a rough comparison between theory and observation. The 
measured profile based on 750 soundings over the glacier surface is reproduced from reference 
2 in Fig. 1. 

LONG PROFILE OF THE UNTERAAR GLACIER 

GlACIER SC/R~ACE /9J/ 

08. BRANDLAMM 

"" 
UN T. BRANDLAMM 

"" 
____ MIEiELEN I LAUTE~AAR-HijTT E 

/!)J9 - - Ii:m-- __ 
f9j8'-~~;;;-___ THEORETICAL SC/R~ACE 

444 . ~ / 
ASSUMED BED .. , Jm. - - ~ 

- L ~.~... _1967 /9J7 -- --GRIMSELSEE 1912m. 
.... . ................. .. -muR! .. - ..... ,-- ~ -- - " J, 

, 'mm,u= .. __ -=." .~. ~.. mm~ u.;:::~;~~.~.,~ 

OKm . 2 4 5 6 7 6 

Fig. I. Long profile of the Unteraar Glacier measured by seismic sounding, reported by Mercanton and Renaud. 
Vertical scale exaggerated by a factor of two. The observed curve is compared with one calculated by assuming 
a constant slope of the bed, {3=O ·02I3 radians 
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Suppose a wedge-shaped block of ice, whose surface slope is IX, as shown in Fig. zb (below), 
rests on an inclined rough plane of slope f3, where IX and f3 are both small angles. Taking the x 
axis parallel to the bed and pointing uphill we may consider the equilibrium of the section ABCD, 
of unit thickness perpendicular to the diagram, bounded by two planes drawn perpendicular to 
the bed separated by a distance 8x. Let us assume that the normal pressure on AB is given to the 
fi rst approximation by the hydrostatic head, which increases from zero at A to approximately 
pgh at B, where AB= h, p is the density, assumed constant, and g is the acceleration due to gravity. 
The mean pressure is tpgh, and so the normal force on AB is 1pgh2. The normal force on DC is, 

therefore, tpgh2+ ~ (tpgh2)DX. The other forces acting parallel to the bed are rDx, directed uphill, 

where r is the shear force per unit area exerted by the bed on the ice, and hDX . pg sin f3, the 
component of the weight of the section, directed downhill. 
Thus, to the first approximation, 

d 
dx(tpgh2) Dx+pghf3 8x= rDx 

Hence, carrying out the differentiation and dividing by pghDx, we have 

dh T 

dx +f3=pgh . 

But (~~ +f3 )iis the slope of the upper surface, IX. Hence, 

r = pghlX 

(a) !3 0 7/77;7 

D 

J'- Sx- - __ __ 
c 

j3 

(~) 

A 

Fig. 2 

c 
Cc) 

(2) 

To this approximation, therefore, the shear stress at the bed is numerically the same as if the bed 
were of slope IX and the block were parallel -sided rather than wedge-shaped. It is essentially the 
slope of the surface rather than that of the bed which, together with the local depth, decides the 
shear stress on the bed. A derivation of formula (I) starting from a different assumption is given 
in reference 3 (equation 16). 
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If it is assumed that T is constant over the bed and that (3 is also constant (Fig. 2a), so that we 

have a block of ice of varying thickness resting on a plane slope, equation (I) may be integrated 
to give 

where ho is written in place of T/ pg, and h=o when x = o. This is the equation of the surface profile 
of the block. It does not hold near the end of the block where h is small, because there dh/dx, and 
hence 01:, become numerically large. 

The calculation may now be modified so as to take account of the sides of the glacier valley. 
Let Fig. 2a and b now represent the central longitudinal section of a symmetrical valley. The cross­
section perpendicular to the bed at B is shown by EBF in Fig. 2C. EF is assumed to be a straight 
horizontal line. The cross-section at C is shown by GCH, drawn so that GH coincides with EF. 
Let it be assumed that the cross-section of the valley remains the same at all relevant places; in the 
figure, then, EBF is at a constant vertical distance Oh from GCH. The forces acting parallel to the 
bed on the ice between these two sections are due, as before, to the pressure difference on the 
sections, the weight, and the drag of the bed. The force due to the pressure difference is the force 
acting on the strip shown in Fig. 2C between GCH and EBF. This is 

I:(pgt3h)dz 

where t is the depth at a distance z from AB. The difference between taking the limits of integration 
from E to F and G to H is small. The force is thus 

pgA3h 

where A is the area of the section EBF. 
The downhill force due to the weight is 

pgA3x. sin (3 

The uphill force due to the drag of the bed is 

Tp3x 

where p is the perimeter EBF and T is the average shear traction over the perimeter. Hence 
equating the forces, to the first approximation, 

pgA3h+pgA3x. (3 = Tp3x 

dh T 

dx +(3= pgR l.e. 

where R = A /p, the hydraulic radius of the section. 
It will be noted that 

(
dh ) T= pgR dx + (3 = pgROI: (5) 

Thus once again it is 01:, the slope of the surface, which, together with R, gives the average shear 
stress on the bed. In fact formulae (2) and (5) are both special cases of the general relation 

T= pgR sin Oi: . (6) 

This relation is exactly true for a glacier of constant cross-section and slope 01:, as may be proved 
by simple resolution of forces. 4 It is also approximately true in a glacier of slowly varying cross­
section if the current values of R and the surface slope Cl. are used. This may be proved as follows . 
Formula (6) gives, approximately, the average shear stress acting on an imaginary cylindrical 
surface whose cross-section is the same as that of the glacier bed but whose generators are of slope 
Oi:. This surface makes everywhere only a small angle with the actual bed; a small rotation only of 
the stress tensor is therefore needed at each point to give the shear stress on the bed. The formula 
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is thus still a valid approximation. Formula (6) applies equally well to an ice sheet and a glacier and 
there is no restriction on the value of C/... The only proviso is that the area of cross-section should not 
change rapidly. 

This reasoning shows that the derivation of formulae (4) and (5) illustrated in Fig. 2b and c 
is unnecessarily restrictive in that the cross-section of the valley was assumed to remain constant 
down its length. A derivation on the same lines in which the cross-section is allowed to change 
slowly would be slightly more complicated because an extra term would enter the equations due to 
the longitudinal component of the normal pressure exerted by the valley on the ice. 

In principle, if the thickness of the glacier at anyone cross-section is known, if the shape of the 
valley is known and if T is assumed to be constant, equation (4) can be integrated numerically, 
step by step, to give the complete surface profile of the glacier. For the present application it is 
reasonable, as shown below, to simplify the procedure by assuming that fJ is constant and that R 
is proportional to h over the range to be considered. Thus 

R = ch 

where c is a constant. Then equation (4) becomes 

where T' = T/C. 

dh+(3_~_~ 
dx - pgch - pgh 

Equation (7) is the same as equation (I) with the effective value of T changed. For constant fJ it 
therefore integrates in the same way to give -

h'o h'o h 
X= fJ2 10geh'o_(3h fJ,(h < h'o/(3) . (8) 

where h'o= -r'/pg and h= o when x=o. 
To apply this equation to the Unteraar Glacier we first need to know the value of c. If the cross­

section of the valley is approximated by a parabola we find that using Koechlin's figures 5 the best 
shape of parabola is given by 

z2=1073 (h-t), where z and (h-t) are in metres. 

Further calculation shows that R = 220 m. when h= 400 m. i.e. c=0·55. 

and R = 62 m. when h= loo m. i.e. C=0·62. 

The mean value of c in this range is thus 

C=0'5 85 

The bed of the Unteraar as drawn in Fig. 1 may be approximated reasonably well by a straight 
line of slope 0 '0213 radians, labelled "assumed bed." With this value for (3, equation (8) gives 
the best fit with the observed profile when h'o= 15-0 m. This gives T'=1'32 bars (I bar= 106 
dynes/cm. 2) and hence T=0'585 X 1'32=0'77 bars. The curve so calculated is drawn in Fig. 1 
and labelled "theoretical surface", so that the agreement may be judged. 

As a check on the value of T used, it may be mentioned that starting with Mercanton's figures 6 

for the width, depth and surface slope at three different places on the Unteraar and assuming 
parabolic sections in order to calculate R, the values of the average shear stress on the bed at these 
three places come out to be 0'566, 0-557 and 0-485 bars. The mean value is 0'54 bars, which differs 
from 0'77 bars by 30 per cent. Another check on the value is the fact that shear stresses of about 
these magnitudes have been found by Glen 7 in laboratory experiments on ice to produce the rates 
of shear observed in glaciers .4 

CONCLUSION 

By assuming the valley of the Unteraar to be a cylinder of parabolic cross-section and taking 
the shear stress on the bed to be constant and equal.to 0'77 bars, the calculated and measured 
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profiles agree quite well. In view of the various assumptions that have been made, the observed 
irregularities of the glacier, and the fact that the theoretical curve depends on only one disposable 
parameter T, which takes a reasonable value, the agreement between theory and observation 
seems quite satisfactory. 

MS. received 3 January 1952 
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A NOTE ON THE USE OF MARGINAL 
DRAINAGE IN THE RECOGNITION OF UNGLACIATED 

ENCLAVES"" 

By S. E. HOLLINGWORTH 

A RECENT interesting note by Professor D. L. Linton mentioning several bases for the delimitation 
of unglaciated enclaves would appear to invite some qualifying comment on one of the methods 
mentioned. The criterion of marginal drainage and overflow channels as marking the limit of 
extraneous ice against rising ice-free ground is legitimate, especially when their true marginal or 
sub aerial character is supported by evidence of contemporaneous deposits in glacier-dammed 
lakes. They then mark the ice margin at their time of operation, but it is quite another matter to 
consider that in general the highest channels mark the maximum encroachment of the ice. The 
latter is certainly the view generally held for the Cleveland Hills area of north-east Yorkshire 
since Kendall's classic paper of 1902. In this example, cited by Professor Linton, the difference 
in the positions of the ice margin at the maximum and that during the initiation of the earliest 
marginal drainage may have been slight, but there seems some justification for envisaging a 
considerable change in climatic conditions in the interval. 

It is generally accepted that marginal drainage channels will only operate below the snow line, 
for above that a level cross section of the land-ice contact will be concave upwards due to marginal 
snow accumulation and to a more rapid outflow of the thicker ice some distance from the ice 
margin. While assignment of a particular altitude to the snow line can only be a vague generalization 
at the best, it is perhaps not unreasonable to assume a severe climate with perhaps a snow line in 
the Cleveland area at the time of the newer drift glaciation of, say 1000 to 1200 ft. O.D. (305-366 m.) 
with little permanent snow on the exposed wind-swept plateau summits. Thick drifts of snow would 
survive the winter in the margins of the enveloping ice and the valleys within the hills might well 
be choked with permanent snow fields . If this were the case, an appreciable, possibly major, 
change of climatic conditions resulting in the raising of the snow line would be needed before 
marginal drainage in glacier lakes comes into being on the scale of the early stages of Kendall's 
sequence. 

Independently of this speculation as to snow line, recent development of the additions to our 

.. Comment on Professor D . L. Limon's note on unglaciated enclaves in glaciated r egions (Journal of Glaciology, 
Vol. I, No. 8, 1951, p. 451 - 52.) 
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